file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.m_spec
val m_spec : Type0
let m_spec = Core.m_spec
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 51, "start_col": 0, "start_line": 51 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Blake2.Core.m_spec" ]
[]
false
false
false
true
true
let m_spec =
Core.m_spec
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.t
val t : a: Hacl.Streaming.Blake2.Common.alg -> Type0
let t (a : alg) = Spec.state a
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 58, "start_col": 0, "start_line": 58 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Spec.Blake2.Definitions.state" ]
[]
false
false
false
true
true
let t (a: alg) =
Spec.state a
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.s
val s : a: Hacl.Streaming.Blake2.Common.alg -> m: Hacl.Streaming.Blake2.Common.m_spec -> Type0
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 55, "start_col": 0, "start_line": 55 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> m: Hacl.Streaming.Blake2.Common.m_spec -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Streaming.Blake2.Common.m_spec", "FStar.Pervasives.Native.tuple2", "Hacl.Impl.Blake2.Core.state_p" ]
[]
false
false
false
true
true
let s (a: alg) (m: m_spec) =
let open Core in state_p a m & state_p a m
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.s_v
val s_v (#a: alg) (#m: m_spec) (h: HS.mem) (s: s a m) : GTot (t a)
val s_v (#a: alg) (#m: m_spec) (h: HS.mem) (s: s a m) : GTot (t a)
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 79, "start_col": 0, "start_line": 78 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> s: Hacl.Streaming.Blake2.Common.s a m -> Prims.GTot (Hacl.Streaming.Blake2.Common.t a)
Prims.GTot
[ "sometrivial" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Streaming.Blake2.Common.m_spec", "FStar.Monotonic.HyperStack.mem", "Hacl.Streaming.Blake2.Common.s", "Hacl.Streaming.Blake2.Common.state_v", "Hacl.Streaming.Blake2.Common.t" ]
[]
false
false
false
false
false
let s_v (#a: alg) (#m: m_spec) (h: HS.mem) (s: s a m) : GTot (t a) =
state_v h s
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.key_size_t
val key_size_t : a: Hacl.Streaming.Blake2.Common.alg -> Type0
let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a}
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 144, "start_col": 0, "start_line": 143 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Spec.Blake2.Definitions.max_key" ]
[]
false
false
false
true
true
let key_size_t (a: alg) =
key_size: U32.t{U32.v key_size <= Spec.max_key a}
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.key_size
val key_size : a: Hacl.Streaming.Blake2.Common.alg -> Type0
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 140, "start_col": 0, "start_line": 140 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key" ]
[]
false
false
false
true
true
let key_size (a: alg) =
kk: nat{kk <= Spec.max_key a}
false
Hacl.Bignum.MontExponentiation.fst
Hacl.Bignum.MontExponentiation.bn_exp_mont_consttime
val bn_exp_mont_consttime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len
val bn_exp_mont_consttime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len
let bn_exp_mont_consttime #t k n mu r2 aM bBits b resM = if bBits <. size S.bn_exp_mont_consttime_threshold then bn_exp_mont_bm_consttime k n mu r2 aM bBits b resM else bn_exp_mont_fw_consttime k 4ul n mu r2 aM bBits b resM
{ "file_name": "code/bignum/Hacl.Bignum.MontExponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 300, "start_col": 0, "start_line": 296 }
module Hacl.Bignum.MontExponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BD = Hacl.Spec.Bignum.Definitions module SN = Hacl.Spec.Bignum module SM = Hacl.Spec.Bignum.Montgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module LE = Lib.Exponentiation module BE = Hacl.Impl.Exponentiation module E = Hacl.Spec.Exponentiation.Lemmas module S = Hacl.Spec.Bignum.MontExponentiation #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // All operations are performed in the Montgomery domain! inline_for_extraction noextract let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) = Lib.NatMod.nat_mod (BD.bn_v n) inline_for_extraction noextract let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 = BD.bn_v a < BD.bn_v n inline_for_extraction noextract let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len{linv n a}) : a_spec n = BD.bn_v a inline_for_extraction noextract let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 = let ctx_n = LSeq.sub ctx 0 len in let ctx_r2 = LSeq.sub ctx len len in ctx_n == n /\ 0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n inline_for_extraction noextract let mk_to_nat_mont_ll_comm_monoid (t:limb_t) (len:BN.meta_len t) (n:BD.lbignum t (v len)) (mu:limb t{SM.bn_mont_pre n mu}) : BE.to_comm_monoid t len (len +! len) = { BE.a_spec = a_spec n; BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu); BE.linv_ctx = linv_ctx n; BE.linv = linv n; BE.refl = refl n; } inline_for_extraction noextract val bn_mont_one: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lone_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_one #t k n mu ctx oneM = [@inline_let] let len = k.BM.bn.BN.len in let ctx_n = sub ctx 0ul len in let ctx_r2 = sub ctx len len in let h0 = ST.get () in SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2); BM.bn_mont_one len k.BM.from ctx_n mu ctx_r2 oneM inline_for_extraction noextract val bn_mont_mul: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lmul_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_mul #t k n mu ctx aM bM resM = let h0 = ST.get () in SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.mul ctx_n mu aM bM resM inline_for_extraction noextract val bn_mont_sqr: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lsqr_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_sqr #t k n mu ctx aM resM = let h0 = ST.get () in SM.bn_mont_sqr_lemma n mu (as_seq h0 aM); SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.sqr ctx_n mu aM resM inline_for_extraction noextract let mk_bn_mont_concrete_ops (t:limb_t) (k:BM.mont t) (n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len))) (mu:limb t{SM.bn_mont_pre n mu}) : BE.concrete_ops t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) = { BE.to = mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu; BE.lone = bn_mont_one k n mu; BE.lmul = bn_mont_mul k n mu; BE.lsqr = bn_mont_sqr k n mu; } /////////////////////////////////////////////////////////////////////// inline_for_extraction noextract val mk_ctx: #t:limb_t -> len:BN.meta_len t -> n:lbignum t len -> r2:lbignum t len -> ctx:lbignum t (len +! len) -> Stack unit (requires fun h -> live h n /\ live h r2 /\ live h ctx /\ disjoint n ctx /\ disjoint r2 ctx /\ 0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ linv_ctx (as_seq h0 n) (as_seq h1 ctx)) let mk_ctx #t len n r2 ctx = let h0 = ST.get () in update_sub ctx 0ul len n; let h1 = ST.get () in assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n); update_sub ctx len len r2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ctx) 0 (v len)) (LSeq.sub (as_seq h1 ctx) 0 (v len)); assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n); assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) noextract let bn_exp_mont_pre (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (mu:limb t) (r2:BD.lbignum t len) (aM:BD.lbignum t len) (bBits:size_nat) (b:BD.lbignum t (BD.blocks0 bBits (bits t))) = SM.bn_mont_pre n mu /\ BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\ BD.bn_v b < pow2 bBits /\ BD.bn_v aM < BD.bn_v n inline_for_extraction noextract let bn_exp_mont_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> r2:lbignum t len -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\ disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\ disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\ bn_exp_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b)) (ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\ (let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in bn_v h1 resM == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_bm_vartime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_bm_vartime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_rl_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_rl_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame () // This function is constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_bm_consttime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_bm_consttime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); LE.exp_mont_ladder_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame () // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_fw_vartime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_fw_vartime #t k l n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame () // This function is constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_fw_consttime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_fw_consttime #t k l n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_consttime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame () /////////////////////////////////////////////// // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_vartime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_vartime #t k n mu r2 aM bBits b resM = if bBits <. size S.bn_exp_mont_vartime_threshold then bn_exp_mont_bm_vartime k n mu r2 aM bBits b resM else bn_exp_mont_fw_vartime k 4ul n mu r2 aM bBits b resM // This function is constant-time on the exponent b. inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Exponentiation.Lemmas.fst.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.MontExponentiation.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontExponentiation.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontExponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Exponentiation.Lemmas", "short_module": "E" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontExponentiation.bn_exp_mont_st t (Mkbn?.len (Mkmont?.bn k))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Lib.IntTypes.op_Less_Dot", "Lib.IntTypes.U32", "Hacl.Spec.Bignum.MontExponentiation.bn_exp_mont_consttime_threshold", "Hacl.Bignum.MontExponentiation.bn_exp_mont_bm_consttime", "Prims.unit", "Prims.bool", "Hacl.Bignum.MontExponentiation.bn_exp_mont_fw_consttime", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
false
false
let bn_exp_mont_consttime #t k n mu r2 aM bBits b resM =
if bBits <. size S.bn_exp_mont_consttime_threshold then bn_exp_mont_bm_consttime k n mu r2 aM bBits b resM else bn_exp_mont_fw_consttime k 4ul n mu r2 aM bBits b resM
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.get_state_p
val get_state_p (#a: alg) (#m: m_spec) (s: s a m) : Tot (Core.state_p a m)
val get_state_p (#a: alg) (#m: m_spec) (s: s a m) : Tot (Core.state_p a m)
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 69, "start_col": 0, "start_line": 68 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Hacl.Streaming.Blake2.Common.s a m -> Hacl.Impl.Blake2.Core.state_p a m
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Streaming.Blake2.Common.m_spec", "Hacl.Streaming.Blake2.Common.s", "Hacl.Impl.Blake2.Core.state_p" ]
[]
false
false
false
false
false
let get_state_p (#a: alg) (#m: m_spec) (s: s a m) : Tot (Core.state_p a m) =
match s with | _, p -> p
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.k
val k : a: Hacl.Streaming.Blake2.Common.alg -> kk: Hacl.Streaming.Blake2.Common.key_size a -> Hacl.Streaming.Interface.stateful Prims.unit
let k = stateful_key
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 215, "start_col": 0, "start_line": 215 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ()) inline_for_extraction noextract let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> kk: Hacl.Streaming.Blake2.Common.key_size a -> Hacl.Streaming.Interface.stateful Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.stateful_key" ]
[]
false
false
false
false
false
let k =
stateful_key
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.mem_memP
val mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)]
val mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)]
let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 42, "start_col": 0, "start_line": 34 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.mem x l <==> FStar.List.Tot.Base.memP x l) [SMTPat (FStar.List.Tot.Base.mem x l); SMTPat (FStar.List.Tot.Base.memP x l)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.mem_memP", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.b2t", "FStar.List.Tot.Base.mem", "FStar.List.Tot.Base.memP", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.bool", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] =
match l with | [] -> () | a :: q -> mem_memP x q
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.llist
val llist : a: Type -> n: Prims.nat -> Type
let llist a (n:nat) = l:list a {length l = n}
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> n: Prims.nat -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.list", "Prims.b2t", "Prims.op_Equality", "FStar.List.Tot.Base.length" ]
[]
false
false
false
true
true
let llist a (n: nat) =
l: list a {length l = n}
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.memP_map_intro
val memP_map_intro (#a #b: Type) (f: (a -> Tot b)) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l)
val memP_map_intro (#a #b: Type) (f: (a -> Tot b)) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l)
let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 79, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> x: a -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP x l ==> FStar.List.Tot.Base.memP (f x) (FStar.List.Tot.Base.map f l)) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.memP_map_intro", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "FStar.List.Tot.Base.memP", "FStar.List.Tot.Base.map", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec memP_map_intro (#a #b: Type) (f: (a -> Tot b)) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) =
match l with | [] -> () | _ :: q -> memP_map_intro f x q
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.mem_existsb
val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs))))
val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs))))
let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 107, "start_col": 0, "start_line": 104 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.bool) -> xs: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.existsb f xs <==> (exists (x: a). f x = true /\ FStar.List.Tot.Base.mem x xs))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.mem_existsb", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_existsb #a f xs =
match xs with | [] -> () | hd :: tl -> mem_existsb f tl
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.memP_existsb
val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs))))
val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs))))
let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 66, "start_col": 0, "start_line": 63 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.bool) -> xs: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.existsb f xs <==> (exists (x: a). f x = true /\ FStar.List.Tot.Base.memP x xs))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.memP_existsb", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec memP_existsb #a f xs =
match xs with | [] -> () | hd :: tl -> memP_existsb f tl
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.memP_map_elim
val memP_map_elim (#a #b: Type) (f: (a -> Tot b)) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x: a). memP x l /\ f x == y))) (decreases l)
val memP_map_elim (#a #b: Type) (f: (a -> Tot b)) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x: a). memP x l /\ f x == y))) (decreases l)
let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 92, "start_col": 0, "start_line": 81 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> y: b -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP y (FStar.List.Tot.Base.map f l) ==> (exists (x: a). FStar.List.Tot.Base.memP x l /\ f x == y)) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.memP_map_elim", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "FStar.List.Tot.Base.memP", "FStar.List.Tot.Base.map", "Prims.l_Exists", "Prims.l_and", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec memP_map_elim (#a #b: Type) (f: (a -> Tot b)) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x: a). memP x l /\ f x == y))) (decreases l) =
match l with | [] -> () | _ :: q -> memP_map_elim f y q
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_index_memP
val lemma_index_memP (#t: Type) (l: list t) (i: nat{i < length l}) : Lemma (ensures ((index l i) `memP` l)) [SMTPat ((index l i) `memP` l)]
val lemma_index_memP (#t: Type) (l: list t) (i: nat{i < length l}) : Lemma (ensures ((index l i) `memP` l)) [SMTPat ((index l i) `memP` l)]
let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 51, "start_col": 0, "start_line": 45 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list t -> i: Prims.nat{i < FStar.List.Tot.Base.length l} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP (FStar.List.Tot.Base.index l i) l) [SMTPat (FStar.List.Tot.Base.memP (FStar.List.Tot.Base.index l i) l)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "Prims.int", "FStar.List.Tot.Properties.lemma_index_memP", "FStar.List.Tot.Base.tl", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.List.Tot.Base.memP", "FStar.List.Tot.Base.index", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_index_memP (#t: Type) (l: list t) (i: nat{i < length l}) : Lemma (ensures ((index l i) `memP` l)) [SMTPat ((index l i) `memP` l)] =
match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1)
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.block_len
val block_len (a: alg) : U32.t
val block_len (a: alg) : U32.t
let block_len (a : alg) : U32.t = Core.size_block a
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 235, "start_col": 0, "start_line": 235 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ()) inline_for_extraction noextract let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key inline_for_extraction noextract let k = stateful_key /// Actual functor instantiation /// ============================ /// Small helpers /// ------------- noextract let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } = assert_norm (pow2 64 < pow2 128); pow2 64 - 1 noextract inline_for_extraction let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL inline_for_extraction noextract let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Impl.Blake2.Core.size_block", "FStar.UInt32.t" ]
[]
false
false
false
true
false
let block_len (a: alg) : U32.t =
Core.size_block a
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_acc_memP
val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc)))
val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc)))
let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 138, "start_col": 0, "start_line": 136 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> acc: Prims.list a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP x (FStar.List.Tot.Base.rev_acc l acc) <==> FStar.List.Tot.Base.memP x l \/ FStar.List.Tot.Base.memP x acc)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev_acc_memP", "Prims.Cons", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec rev_acc_memP #a l acc x =
match l with | [] -> () | hd :: tl -> rev_acc_memP tl (hd :: acc) x
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_length
val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l))
val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l))
let rev_length l = rev_acc_length l []
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 131, "start_col": 0, "start_line": 131 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (FStar.List.Tot.Base.rev l) = FStar.List.Tot.Base.length l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev_acc_length", "Prims.Nil", "Prims.unit" ]
[]
true
false
true
false
false
let rev_length l =
rev_acc_length l []
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_acc_length
val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc))
val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc))
let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 126, "start_col": 0, "start_line": 124 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> acc: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (FStar.List.Tot.Base.rev_acc l acc) = FStar.List.Tot.Base.length l + FStar.List.Tot.Base.length acc)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev_acc_length", "Prims.Cons", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec rev_acc_length l acc =
match l with | [] -> () | hd :: tl -> rev_acc_length tl (hd :: acc)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_memP
val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l))
val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l))
let rev_memP #a l x = rev_acc_memP l [] x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 144, "start_col": 0, "start_line": 144 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP x (FStar.List.Tot.Base.rev l) <==> FStar.List.Tot.Base.memP x l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev_acc_memP", "Prims.Nil", "Prims.unit" ]
[]
true
false
true
false
false
let rev_memP #a l x =
rev_acc_memP l [] x
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_mem
val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l))
val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l))
let rev_mem l x = rev_memP l x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 149, "start_col": 0, "start_line": 149 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.mem x (FStar.List.Tot.Base.rev l) <==> FStar.List.Tot.Base.mem x l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.rev_memP", "Prims.unit" ]
[]
true
false
true
false
false
let rev_mem l x =
rev_memP l x
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.mem_count
val mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0)
val mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0)
let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 117, "start_col": 0, "start_line": 109 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.mem x l <==> FStar.List.Tot.Base.count x l > 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.mem_count", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.b2t", "FStar.List.Tot.Base.mem", "Prims.op_GreaterThan", "FStar.List.Tot.Base.count", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) =
match l with | [] -> () | x' :: l' -> mem_count l' x
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_l_cons
val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl)))
val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl)))
let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl'
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 175, "start_col": 0, "start_line": 173 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hd: 'a -> tl: Prims.list 'a -> l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures l @ hd :: tl == (l @ [hd]) @ tl)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_l_cons", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_l_cons hd tl l =
match l with | [] -> () | hd' :: tl' -> append_l_cons hd tl tl'
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_assoc
val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3)))
val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3)))
let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 182, "start_col": 0, "start_line": 180 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list 'a -> l2: Prims.list 'a -> l3: Prims.list 'a -> FStar.Pervasives.Lemma (ensures l1 @ l2 @ l3 == (l1 @ l2) @ l3)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_assoc", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_assoc l1 l2 l3 =
match l1 with | [] -> () | hd :: tl -> append_assoc tl l2 l3
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_length
val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))]
val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))]
let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 189, "start_col": 0, "start_line": 187 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list 'a -> l2: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (l1 @ l2) = FStar.List.Tot.Base.length l1 + FStar.List.Tot.Base.length l2) [SMTPat (FStar.List.Tot.Base.length (l1 @ l2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_length", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_length l1 l2 =
match l1 with | [] -> () | hd :: tl -> append_length tl l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_l_nil
val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])]
val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])]
let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 163, "start_col": 0, "start_line": 161 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures l @ [] == l) [SMTPat (l @ [])]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_l_nil", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_l_nil =
function | [] -> () | hd :: tl -> append_l_nil tl
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_mem
val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2)))
val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2)))
let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 199, "start_col": 0, "start_line": 197 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list t -> l2: Prims.list t -> a: t -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.mem a (l1 @ l2) = (FStar.List.Tot.Base.mem a l1 || FStar.List.Tot.Base.mem a l2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.append_mem", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_mem #t l1 l2 a =
match l1 with | [] -> () | hd :: tl -> append_mem tl l2 a
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_mem_forall
val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2)))
val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2)))
let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 218, "start_col": 0, "start_line": 216 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (a: a). FStar.List.Tot.Base.mem a (l1 @ l2) = (FStar.List.Tot.Base.mem a l1 || FStar.List.Tot.Base.mem a l2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.append_mem_forall", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_mem_forall #a l1 l2 =
match l1 with | [] -> () | hd :: tl -> append_mem_forall tl l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_memP_forall
val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2)))
val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2)))
let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 226, "start_col": 0, "start_line": 224 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (a: a). FStar.List.Tot.Base.memP a (l1 @ l2) <==> FStar.List.Tot.Base.memP a l1 \/ FStar.List.Tot.Base.memP a l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_memP_forall", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_memP_forall #a l1 l2 =
match l1 with | [] -> () | hd :: tl -> append_memP_forall tl l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev'T
val rev'T : _: Prims.list _ -> Prims.list _
let rev'T = rev'
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 339, "start_col": 0, "start_line": 339 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.list _ -> Prims.list _
Prims.Tot
[ "total" ]
[]
[ "FStar.List.Tot.Properties.rev'", "Prims.list" ]
[]
false
false
false
true
false
let rev'T =
rev'
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_memP
val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2)))
val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2)))
let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 209, "start_col": 0, "start_line": 207 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list t -> l2: Prims.list t -> a: t -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP a (l1 @ l2) <==> FStar.List.Tot.Base.memP a l1 \/ FStar.List.Tot.Base.memP a l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_memP", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_memP #t l1 l2 a =
match l1 with | [] -> () | hd :: tl -> append_memP tl l2 a
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_count_forall
val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2)))
val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2)))
let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 245, "start_col": 0, "start_line": 243 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (a: a). FStar.List.Tot.Base.count a (l1 @ l2) = FStar.List.Tot.Base.count a l1 + FStar.List.Tot.Base.count a l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.append_count_forall", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_count_forall #a l1 l2 =
match l1 with | [] -> () | hd :: tl -> append_count_forall tl l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_count
val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2)))
val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2)))
let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 236, "start_col": 0, "start_line": 234 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list t -> l2: Prims.list t -> a: t -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.count a (l1 @ l2) = FStar.List.Tot.Base.count a l1 + FStar.List.Tot.Base.count a l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.append_count", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_count #t l1 l2 a =
match l1 with | [] -> () | hd :: tl -> append_count tl l2 a
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_length_inv_tail
val append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2))
val append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2))
let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 303, "start_col": 0, "start_line": 295 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
left1: Prims.list a -> right1: Prims.list a -> left2: Prims.list a -> right2: Prims.list a -> FStar.Pervasives.Lemma (requires left1 @ right1 == left2 @ right2 /\ FStar.List.Tot.Base.length right1 == FStar.List.Tot.Base.length right2) (ensures left1 == left2 /\ right1 == right2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_length_inv_head", "Prims.unit", "FStar.List.Tot.Properties.append_length", "Prims.l_and", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.nat", "FStar.List.Tot.Base.length", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) =
append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_inv_tail
val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2))
val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2))
let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) )
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 281, "start_col": 0, "start_line": 267 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> l1: Prims.list 'a -> l2: Prims.list 'a -> FStar.Pervasives.Lemma (requires l1 @ l == l2 @ l) (ensures l1 == l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Properties.append_inv_tail", "Prims.Nil", "FStar.List.Tot.Base.op_At", "Prims.Cons", "Prims.unit", "FStar.List.Tot.Properties.append_l_cons" ]
[ "recursion" ]
false
false
true
false
false
let rec append_inv_tail l l1 l2 =
match l1, l2 with | [], [] -> () | hd1 :: tl1, hd2 :: tl2 -> append_inv_tail l tl1 tl2 | [], hd2 :: tl2 -> (match l with | [] -> () | hd :: tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2 @ [hd])) | hd1 :: tl1, [] -> (match l with | [] -> () | hd :: tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1 @ [hd]) [])
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_length_inv_head
val append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1)
val append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1)
let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 293, "start_col": 0, "start_line": 283 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
left1: Prims.list a -> right1: Prims.list a -> left2: Prims.list a -> right2: Prims.list a -> FStar.Pervasives.Lemma (requires left1 @ right1 == left2 @ right2 /\ FStar.List.Tot.Base.length left1 == FStar.List.Tot.Base.length left2) (ensures left1 == left2 /\ right1 == right2) (decreases left1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_length_inv_head", "FStar.List.Tot.Base.tl", "Prims.unit", "Prims.l_and", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.nat", "FStar.List.Tot.Base.length", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) =
match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_inv_head
val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2))
val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2))
let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 262, "start_col": 0, "start_line": 260 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> l1: Prims.list 'a -> l2: Prims.list 'a -> FStar.Pervasives.Lemma (requires l @ l1 == l @ l2) (ensures l1 == l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_inv_head", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_inv_head l l1 l2 =
match l with | [] -> () | hd :: tl -> append_inv_head tl l1 l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev'
val rev': list 'a -> Tot (list 'a)
val rev': list 'a -> Tot (list 'a)
let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd]
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 338, "start_col": 0, "start_line": 336 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.list 'a -> Prims.list 'a
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.Nil", "FStar.List.Tot.Base.op_At", "FStar.List.Tot.Properties.rev'", "Prims.Cons" ]
[ "recursion" ]
false
false
false
true
false
let rec rev' =
function | [] -> [] | hd :: tl -> (rev' tl) @ [hd]
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_injective
val append_injective (#a: _) (l0 l0' l1 l1': list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1')
val append_injective (#a: _) (l0 l0' l1 l1': list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1')
let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1'
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 321, "start_col": 0, "start_line": 305 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l0: Prims.list a -> l0': Prims.list a -> l1: Prims.list a -> l1': Prims.list a -> FStar.Pervasives.Lemma (ensures (FStar.List.Tot.Base.length l0 == FStar.List.Tot.Base.length l0' \/ FStar.List.Tot.Base.length l1 == FStar.List.Tot.Base.length l1') /\ l0 @ l1 == l0' @ l1' ==> l0 == l0' /\ l1 == l1')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Classical.Sugar.implies_intro", "Prims.l_and", "Prims.l_or", "Prims.eq2", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.List.Tot.Base.append", "Prims.squash", "FStar.Classical.Sugar.or_elim", "Prims.l_not", "FStar.List.Tot.Properties.append_length_inv_head", "FStar.List.Tot.Properties.append_length_inv_tail", "Prims.unit", "Prims.l_True", "Prims.l_imp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let append_injective #a (l0: list a) (l0': list a) (l1: list a) (l1': list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') =
introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> ( l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _ . append_length_inv_head l0 l1 l0' l1' and _ . append_length_inv_tail l0 l1 l0' l1'
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_rev'
val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l)))
val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l)))
let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 351, "start_col": 0, "start_line": 351 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev l == FStar.List.Tot.Properties.rev' l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_l_nil", "FStar.List.Tot.Properties.rev'", "Prims.unit", "FStar.List.Tot.Properties.rev_acc_rev'", "Prims.Nil" ]
[]
true
false
true
false
false
let rev_rev' l =
rev_acc_rev' l []; append_l_nil (rev' l)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_acc_rev'
val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc)))
val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc)))
let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 346, "start_col": 0, "start_line": 344 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> acc: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev_acc l acc == FStar.List.Tot.Properties.rev' l @ acc)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_l_cons", "FStar.List.Tot.Properties.rev'", "Prims.unit", "FStar.List.Tot.Properties.rev_acc_rev'", "Prims.Cons" ]
[ "recursion" ]
false
false
true
false
false
let rec rev_acc_rev' l acc =
match l with | [] -> () | hd :: tl -> rev_acc_rev' tl (hd :: acc); append_l_cons hd acc (rev' tl)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev'_involutive
val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l))
val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l))
let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 370, "start_col": 0, "start_line": 368 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Properties.rev' (FStar.List.Tot.Properties.rev' l) == l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev'_involutive", "Prims.unit", "FStar.List.Tot.Properties.rev'_append", "FStar.List.Tot.Properties.rev'", "Prims.Cons", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec rev'_involutive =
function | [] -> () | hd :: tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_snoc_length
val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1))
val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1))
let lemma_snoc_length (l, x) = append_length l [x]
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 382, "start_col": 0, "start_line": 382 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lx: (Prims.list 'a * 'a) -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (FStar.List.Tot.Base.snoc lx) = FStar.List.Tot.Base.length (FStar.Pervasives.Native.fst lx) + 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.List.Tot.Properties.append_length", "Prims.Cons", "Prims.Nil", "Prims.unit" ]
[]
false
false
true
false
false
let lemma_snoc_length (l, x) =
append_length l [x]
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev'_list_ind
val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l)))
val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l)))
let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 391, "start_col": 0, "start_line": 389 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl)))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: Prims.list 'a -> Prims.bool) -> l: Prims.list 'a -> FStar.Pervasives.Lemma (requires p [] /\ (forall (hd: 'a) (tl: Prims.list 'a). p (FStar.List.Tot.Properties.rev' tl) ==> p (FStar.List.Tot.Properties.rev' (hd :: tl))) ) (ensures p (FStar.List.Tot.Properties.rev' l))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.bool", "FStar.List.Tot.Properties.rev'_list_ind", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec rev'_list_ind p =
function | [] -> () | hd :: tl -> rev'_list_ind p tl
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_involutive
val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l))
val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l))
let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 375, "start_col": 0, "start_line": 375 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev (FStar.List.Tot.Base.rev l) == l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev'_involutive", "Prims.unit", "FStar.List.Tot.Properties.rev_rev'", "FStar.List.Tot.Properties.rev'" ]
[]
true
false
true
false
false
let rev_involutive l =
rev_rev' l; rev_rev' (rev' l); rev'_involutive l
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev'_append
val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1))))
val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1))))
let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd]
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 358, "start_col": 0, "start_line": 356 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list 'a -> l2: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Properties.rev' (l1 @ l2) == FStar.List.Tot.Properties.rev' l2 @ FStar.List.Tot.Properties.rev' l1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_l_nil", "FStar.List.Tot.Properties.rev'", "FStar.List.Tot.Properties.append_assoc", "Prims.Cons", "Prims.Nil", "Prims.unit", "FStar.List.Tot.Properties.rev'_append" ]
[ "recursion" ]
false
false
true
false
false
let rec rev'_append l1 l2 =
match l1 with | [] -> append_l_nil (rev' l2) | hd :: tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd]
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_append
val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1))))
val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1))))
let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 363, "start_col": 0, "start_line": 363 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list 'a -> l2: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev (l1 @ l2) == FStar.List.Tot.Base.rev l2 @ FStar.List.Tot.Base.rev l1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.rev'_append", "Prims.unit", "FStar.List.Tot.Properties.rev_rev'", "FStar.List.Tot.Base.op_At" ]
[]
true
false
true
false
false
let rev_append l1 l2 =
rev_rev' l1; rev_rev' l2; rev_rev' (l1 @ l2); rev'_append l1 l2
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.buffer_to_stateful_key_t
val buffer_to_stateful_key_t (a: alg) (kk: key_size a {kk > 0}) (k: B.buffer uint8 {B.length k == kk}) : Tot (stateful_key_t a kk)
val buffer_to_stateful_key_t (a: alg) (kk: key_size a {kk > 0}) (k: B.buffer uint8 {B.length k == kk}) : Tot (stateful_key_t a kk)
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 155, "start_col": 0, "start_line": 152 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> kk: Hacl.Streaming.Blake2.Common.key_size a {kk > 0} -> k: LowStar.Buffer.buffer Hacl.Streaming.Blake2.Common.uint8 {LowStar.Monotonic.Buffer.length k == kk} -> Hacl.Streaming.Blake2.Common.stateful_key_t a kk
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Streaming.Blake2.Common.key_size", "Prims.b2t", "Prims.op_GreaterThan", "LowStar.Buffer.buffer", "Hacl.Streaming.Blake2.Common.uint8", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "Hacl.Streaming.Blake2.Common.stateful_key_t" ]
[]
false
false
false
false
false
let buffer_to_stateful_key_t (a: alg) (kk: key_size a {kk > 0}) (k: B.buffer uint8 {B.length k == kk}) : Tot (stateful_key_t a kk) =
k
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_append_last
val lemma_append_last (#a: Type) (l1 l2: list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2))
val lemma_append_last (#a: Type) (l1 l2: list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2))
let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 331, "start_col": 0, "start_line": 325 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l2 > 0) (ensures FStar.List.Tot.Base.last (l1 @ l2) == FStar.List.Tot.Base.last l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.lemma_append_last", "Prims.unit", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.last", "FStar.List.Tot.Base.op_At", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_append_last (#a: Type) (l1 l2: list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) =
match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.rev_ind
val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l))
val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l))
let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 396, "start_col": 0, "start_line": 396 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl]))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: Prims.list 'a -> Prims.bool) -> l: Prims.list 'a -> FStar.Pervasives.Lemma (requires p [] /\ (forall (hd: Prims.list 'a) (tl: 'a). p hd ==> p (hd @ [tl]))) (ensures p l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.bool", "FStar.List.Tot.Properties.rev'_list_ind", "FStar.List.Tot.Properties.rev'", "Prims.unit", "FStar.List.Tot.Properties.rev'_involutive" ]
[]
true
false
true
false
false
let rev_ind p l =
rev'_involutive l; rev'_list_ind p (rev' l)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.subset_reflexive
val subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)]
val subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)]
let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 605, "start_col": 0, "start_line": 604 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.subset l l) [SMTPat (FStar.List.Tot.Base.subset l l)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.mem_subset", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.b2t", "FStar.List.Tot.Base.subset", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.bool", "Prims.Nil" ]
[]
true
false
true
false
false
let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] =
mem_subset l l
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.split_using
val split_using (#t: Type) (l: list t) (x: t{x `memP` l}) : GTot (list t * list t)
val split_using (#t: Type) (l: list t) (x: t{x `memP` l}) : GTot (list t * list t)
let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' )
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 496, "start_col": 0, "start_line": 486 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list t -> x: t{FStar.List.Tot.Base.memP x l} -> Prims.GTot (Prims.list t * Prims.list t)
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.list", "FStar.List.Tot.Base.memP", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "FStar.StrongExcludedMiddle.strong_excluded_middle", "Prims.eq2", "Prims.bool", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Properties.split_using" ]
[ "recursion" ]
false
false
false
false
false
let rec split_using (#t: Type) (l: list t) (x: t{x `memP` l}) : GTot (list t * list t) =
match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ([], l) else (let l1', l2' = split_using rest x in a :: l1', l2')
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_unsnoc_length
val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1))
val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1))
let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 445, "start_col": 0, "start_line": 444 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a {FStar.List.Tot.Base.length l > 0} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc l)) == FStar.List.Tot.Base.length l - 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "FStar.List.Tot.Properties.lemma_snoc_length", "FStar.List.Tot.Base.unsnoc", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_unsnoc_length #a l =
lemma_snoc_length (unsnoc l)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.map_lemma
val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)]
val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)]
let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 408, "start_col": 0, "start_line": 405 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> l: Prims.list 'a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (FStar.List.Tot.Base.map f l) = FStar.List.Tot.Base.length l) [SMTPat (FStar.List.Tot.Base.map f l)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.map_lemma", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec map_lemma f l =
match l with | [] -> () | h :: t -> map_lemma f t
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.partition_mem
val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2)))
val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2)))
let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 550, "start_col": 0, "start_line": 548 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.bool) -> l: Prims.list a -> x: a -> FStar.Pervasives.Lemma (ensures (let _ = FStar.List.Tot.Base.partition f l in (let FStar.Pervasives.Native.Mktuple2 #_ #_ l1 l2 = _ in FStar.List.Tot.Base.mem x l = (FStar.List.Tot.Base.mem x l1 || FStar.List.Tot.Base.mem x l2)) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.partition_mem", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec partition_mem #a f l x =
match l with | [] -> () | hd :: tl -> partition_mem f tl x
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.output_size
val output_size (a: alg) : nat
val output_size (a: alg) : nat
let output_size (a : alg) : nat = Spec.max_output a
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 238, "start_col": 0, "start_line": 238 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ()) inline_for_extraction noextract let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key inline_for_extraction noextract let k = stateful_key /// Actual functor instantiation /// ============================ /// Small helpers /// ------------- noextract let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } = assert_norm (pow2 64 < pow2 128); pow2 64 - 1 noextract inline_for_extraction let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL inline_for_extraction noextract let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a }) inline_for_extraction noextract let block_len (a : alg) : U32.t = Core.size_block a
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Spec.Blake2.Definitions.max_output", "Prims.nat" ]
[]
false
false
false
true
false
let output_size (a: alg) : nat =
Spec.max_output a
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.partition_mem_p_forall
val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x))))
val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x))))
let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 571, "start_col": 0, "start_line": 569 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: a -> Prims.bool) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures (let _ = FStar.List.Tot.Base.partition p l in (let FStar.Pervasives.Native.Mktuple2 #_ #_ l1 l2 = _ in (forall (x: a). FStar.List.Tot.Base.mem x l1 ==> p x) /\ (forall (x: a). FStar.List.Tot.Base.mem x l2 ==> Prims.op_Negation (p x))) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.partition_mem_p_forall", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec partition_mem_p_forall #a p l =
match l with | [] -> () | hd :: tl -> partition_mem_p_forall p tl
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_snoc_unsnoc
val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))]
val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))]
let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 438, "start_col": 0, "start_line": 434 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lx: (Prims.list a * a) -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.unsnoc (FStar.List.Tot.Base.snoc lx) == lx) (decreases FStar.List.Tot.Base.length (FStar.Pervasives.Native.fst lx)) [SMTPat (FStar.List.Tot.Base.unsnoc (FStar.List.Tot.Base.snoc lx))]
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.List.Tot.Properties.lemma_snoc_unsnoc", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Base.tl", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_snoc_unsnoc #a lx =
let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_unsnoc_is_last
val lemma_unsnoc_is_last (#t: Type) (l: list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1)))
val lemma_unsnoc_is_last (#t: Type) (l: list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1)))
let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 466, "start_col": 0, "start_line": 460 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list t -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l > 0) (ensures FStar.Pervasives.Native.snd (FStar.List.Tot.Base.unsnoc l) == FStar.List.Tot.Base.last l /\ FStar.Pervasives.Native.snd (FStar.List.Tot.Base.unsnoc l) == FStar.List.Tot.Base.index l (FStar.List.Tot.Base.length l - 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.lemma_unsnoc_is_last", "FStar.List.Tot.Base.tl", "Prims.unit", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.squash", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.snd", "FStar.List.Tot.Base.unsnoc", "FStar.List.Tot.Base.last", "FStar.List.Tot.Base.index", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_unsnoc_is_last (#t: Type) (l: list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) =
match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.partition_count
val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l)))))
val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l)))))
let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 583, "start_col": 0, "start_line": 581 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.bool) -> l: Prims.list a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.count x l = FStar.List.Tot.Base.count x (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.partition f l)) + FStar.List.Tot.Base.count x (FStar.Pervasives.Native.snd (FStar.List.Tot.Base.partition f l)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.partition_count", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec partition_count #a f l x =
match l with | [] -> () | hd :: tl -> partition_count f tl x
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_unsnoc_append
val lemma_unsnoc_append (#a: Type) (l1 l2: list a) : Lemma (requires (length l2 > 0)) (ensures (let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b))
val lemma_unsnoc_append (#a: Type) (l1 l2: list a) : Lemma (requires (length l2 > 0)) (ensures (let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b))
let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 457, "start_col": 0, "start_line": 448 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l2 > 0) (ensures (let _ = FStar.List.Tot.Base.unsnoc (l1 @ l2) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ al a = _ in let _ = FStar.List.Tot.Base.unsnoc l2 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ bl b = _ in al == l1 @ bl /\ a == b) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.lemma_unsnoc_append", "Prims.unit", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.squash", "Prims.l_and", "Prims.eq2", "FStar.List.Tot.Base.op_At", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.unsnoc", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_unsnoc_append (#a: Type) (l1 l2: list a) : Lemma (requires (length l2 > 0)) (ensures (let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) =
match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_unsnoc_snoc
val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))]
val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))]
let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 426, "start_col": 0, "start_line": 417 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a {FStar.List.Tot.Base.length l > 0} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.snoc (FStar.List.Tot.Base.unsnoc l) == l) [SMTPat (FStar.List.Tot.Base.snoc (FStar.List.Tot.Base.unsnoc l))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.splitAt", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.List.Tot.Base.tl", "FStar.List.Tot.Base.lemma_splitAt_snd_length", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons", "FStar.List.Tot.Base.unsnoc" ]
[]
false
false
true
false
false
let lemma_unsnoc_snoc #a l =
let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; let rec aux (l: list a {length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_unsnoc_index
val lemma_unsnoc_index (#t: Type) (l: list t) (i: nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures (i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i))
val lemma_unsnoc_index (#t: Type) (l: list t) (i: nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures (i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i))
let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 478, "start_col": 0, "start_line": 470 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list t -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l > 0 /\ i < FStar.List.Tot.Base.length l - 1) (ensures i < FStar.List.Tot.Base.length (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc l)) /\ FStar.List.Tot.Base.index (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc l)) i == FStar.List.Tot.Base.index l i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.int", "FStar.List.Tot.Properties.lemma_unsnoc_index", "FStar.List.Tot.Base.tl", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.op_LessThan", "Prims.squash", "FStar.Pervasives.Native.fst", "FStar.List.Tot.Base.unsnoc", "Prims.eq2", "FStar.List.Tot.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_unsnoc_index (#t: Type) (l: list t) (i: nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures (i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) =
match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1)
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.block
val block : a: Hacl.Streaming.Blake2.Common.alg -> Type0
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 81, "end_line": 232, "start_col": 0, "start_line": 232 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ()) inline_for_extraction noextract let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key inline_for_extraction noextract let k = stateful_key /// Actual functor instantiation /// ============================ /// Small helpers /// ------------- noextract let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } = assert_norm (pow2 64 < pow2 128); pow2 64 - 1 noextract inline_for_extraction let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "FStar.Seq.Base.seq", "Hacl.Streaming.Blake2.Common.uint8", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Spec.Blake2.Definitions.size_block" ]
[]
false
false
false
true
true
let block (a: alg) =
(block: S.seq uint8 {S.length block = Spec.size_block a})
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.mem_subset
val mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb))
val mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb))
let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 602, "start_col": 0, "start_line": 597 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
la: Prims.list a -> lb: Prims.list a -> FStar.Pervasives.Lemma (requires forall (x: a). FStar.List.Tot.Base.mem x la ==> FStar.List.Tot.Base.mem x lb) (ensures FStar.List.Tot.Base.subset la lb)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.mem_subset", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "FStar.List.Tot.Base.mem", "Prims.squash", "FStar.List.Tot.Base.subset", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) =
match la with | [] -> () | hd :: tl -> mem_subset tl lb
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.partition_mem_forall
val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2))))
val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2))))
let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 560, "start_col": 0, "start_line": 558 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.bool) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures (let _ = FStar.List.Tot.Base.partition f l in (let FStar.Pervasives.Native.Mktuple2 #_ #_ l1 l2 = _ in forall (x: a). FStar.List.Tot.Base.mem x l = (FStar.List.Tot.Base.mem x l1 || FStar.List.Tot.Base.mem x l2)) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.partition_mem_forall", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec partition_mem_forall #a f l =
match l with | [] -> () | hd :: tl -> partition_mem_forall f tl
false
Hacl.Bignum.MontExponentiation.fst
Hacl.Bignum.MontExponentiation.bn_exp_mont_fw_vartime
val bn_exp_mont_fw_vartime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len
val bn_exp_mont_fw_vartime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len
let bn_exp_mont_fw_vartime #t k l n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.MontExponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 256, "start_col": 0, "start_line": 245 }
module Hacl.Bignum.MontExponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BD = Hacl.Spec.Bignum.Definitions module SN = Hacl.Spec.Bignum module SM = Hacl.Spec.Bignum.Montgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module LE = Lib.Exponentiation module BE = Hacl.Impl.Exponentiation module E = Hacl.Spec.Exponentiation.Lemmas module S = Hacl.Spec.Bignum.MontExponentiation #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // All operations are performed in the Montgomery domain! inline_for_extraction noextract let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) = Lib.NatMod.nat_mod (BD.bn_v n) inline_for_extraction noextract let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 = BD.bn_v a < BD.bn_v n inline_for_extraction noextract let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len{linv n a}) : a_spec n = BD.bn_v a inline_for_extraction noextract let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 = let ctx_n = LSeq.sub ctx 0 len in let ctx_r2 = LSeq.sub ctx len len in ctx_n == n /\ 0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n inline_for_extraction noextract let mk_to_nat_mont_ll_comm_monoid (t:limb_t) (len:BN.meta_len t) (n:BD.lbignum t (v len)) (mu:limb t{SM.bn_mont_pre n mu}) : BE.to_comm_monoid t len (len +! len) = { BE.a_spec = a_spec n; BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu); BE.linv_ctx = linv_ctx n; BE.linv = linv n; BE.refl = refl n; } inline_for_extraction noextract val bn_mont_one: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lone_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_one #t k n mu ctx oneM = [@inline_let] let len = k.BM.bn.BN.len in let ctx_n = sub ctx 0ul len in let ctx_r2 = sub ctx len len in let h0 = ST.get () in SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2); BM.bn_mont_one len k.BM.from ctx_n mu ctx_r2 oneM inline_for_extraction noextract val bn_mont_mul: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lmul_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_mul #t k n mu ctx aM bM resM = let h0 = ST.get () in SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.mul ctx_n mu aM bM resM inline_for_extraction noextract val bn_mont_sqr: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lsqr_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_sqr #t k n mu ctx aM resM = let h0 = ST.get () in SM.bn_mont_sqr_lemma n mu (as_seq h0 aM); SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.sqr ctx_n mu aM resM inline_for_extraction noextract let mk_bn_mont_concrete_ops (t:limb_t) (k:BM.mont t) (n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len))) (mu:limb t{SM.bn_mont_pre n mu}) : BE.concrete_ops t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) = { BE.to = mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu; BE.lone = bn_mont_one k n mu; BE.lmul = bn_mont_mul k n mu; BE.lsqr = bn_mont_sqr k n mu; } /////////////////////////////////////////////////////////////////////// inline_for_extraction noextract val mk_ctx: #t:limb_t -> len:BN.meta_len t -> n:lbignum t len -> r2:lbignum t len -> ctx:lbignum t (len +! len) -> Stack unit (requires fun h -> live h n /\ live h r2 /\ live h ctx /\ disjoint n ctx /\ disjoint r2 ctx /\ 0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ linv_ctx (as_seq h0 n) (as_seq h1 ctx)) let mk_ctx #t len n r2 ctx = let h0 = ST.get () in update_sub ctx 0ul len n; let h1 = ST.get () in assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n); update_sub ctx len len r2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ctx) 0 (v len)) (LSeq.sub (as_seq h1 ctx) 0 (v len)); assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n); assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) noextract let bn_exp_mont_pre (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (mu:limb t) (r2:BD.lbignum t len) (aM:BD.lbignum t len) (bBits:size_nat) (b:BD.lbignum t (BD.blocks0 bBits (bits t))) = SM.bn_mont_pre n mu /\ BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\ BD.bn_v b < pow2 bBits /\ BD.bn_v aM < BD.bn_v n inline_for_extraction noextract let bn_exp_mont_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> r2:lbignum t len -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\ disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\ disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\ bn_exp_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b)) (ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\ (let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in bn_v h1 resM == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_bm_vartime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_bm_vartime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_rl_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_rl_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame () // This function is constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_bm_consttime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_bm_consttime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); LE.exp_mont_ladder_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame () // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_fw_vartime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Exponentiation.Lemmas.fst.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.MontExponentiation.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontExponentiation.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontExponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Exponentiation.Lemmas", "short_module": "E" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Hacl.Bignum.Montgomery.mont t -> l: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v l /\ Lib.IntTypes.v l < Lib.IntTypes.bits Lib.IntTypes.U32 /\ Prims.pow2 (Lib.IntTypes.v l) * Lib.IntTypes.v (Mkbn?.len (Mkmont?.bn k)) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.MontExponentiation.bn_exp_mont_st t (Mkbn?.len (Mkmont?.bn k))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Exponentiation.exp_fw_lemma", "Lib.NatMod.nat_mod", "Hacl.Bignum.Definitions.bn_v", "FStar.Ghost.reveal", "Lib.Exponentiation.Definition.comm_monoid", "Hacl.Impl.Exponentiation.lexp_fw_vartime", "Lib.IntTypes.op_Plus_Bang", "Hacl.Bignum.MontExponentiation.mk_bn_mont_concrete_ops", "FStar.Ghost.hide", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.MontExponentiation.mk_ctx", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.add", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.Ghost.erased", "Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid", "Lib.IntTypes.int_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.op_Multiply", "Lib.IntTypes.mk_int", "Hacl.Spec.Bignum.Definitions.blocks0", "Hacl.Bignum.meta_len", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let bn_exp_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame (); let h0 = ST.get () in [@@ inline_let ]let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame ()
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.index_of
val index_of (#t: Type) (l: list t) (x: t{x `memP` l}) : GTot (i: nat{i < length l /\ index l i == x})
val index_of (#t: Type) (l: list t) (x: t{x `memP` l}) : GTot (i: nat{i < length l /\ index l i == x})
let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x )
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 536, "start_col": 0, "start_line": 527 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l].
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list t -> x: t{FStar.List.Tot.Base.memP x l} -> Prims.GTot (i: Prims.nat{i < FStar.List.Tot.Base.length l /\ FStar.List.Tot.Base.index l i == x})
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.list", "FStar.List.Tot.Base.memP", "FStar.StrongExcludedMiddle.strong_excluded_middle", "Prims.eq2", "Prims.bool", "Prims.op_Addition", "FStar.List.Tot.Properties.index_of", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "FStar.List.Tot.Base.index" ]
[ "recursion" ]
false
false
false
false
false
let rec index_of (#t: Type) (l: list t) (x: t{x `memP` l}) : GTot (i: nat{i < length l /\ index l i == x}) =
match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then (0) else (1 + index_of rest x)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.partition_count_forall
val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l)))))
val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l)))))
let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 593, "start_col": 0, "start_line": 591 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l)))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.bool) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.List.Tot.Base.count x l = FStar.List.Tot.Base.count x (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.partition f l)) + FStar.List.Tot.Base.count x (FStar.Pervasives.Native.snd (FStar.List.Tot.Base.partition f l)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "FStar.List.Tot.Properties.partition_count_forall", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec partition_count_forall #a f l =
match l with | [] -> () | hd :: tl -> partition_count_forall f tl
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.state_to_lbuffer
val state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m))
val state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m))
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 86, "start_col": 0, "start_line": 84 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Hacl.Impl.Blake2.Core.state_p a m -> LowStar.Buffer.lbuffer (Hacl.Impl.Blake2.Core.element_t a m) (4 * FStar.UInt32.v (Hacl.Impl.Blake2.Core.row_len a m))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Streaming.Blake2.Common.m_spec", "Hacl.Impl.Blake2.Core.state_p", "LowStar.Buffer.lbuffer", "Hacl.Impl.Blake2.Core.element_t", "FStar.Mul.op_Star", "FStar.UInt32.v", "Hacl.Impl.Blake2.Core.row_len" ]
[]
false
false
false
false
false
let state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.lemma_split_using
val lemma_split_using (#t: Type) (l: list t) (x: t{x `memP` l}) : Lemma (ensures (let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l))
val lemma_split_using (#t: Type) (l: list t) (x: t{x `memP` l}) : Lemma (ensures (let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l))
let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 520, "start_col": 0, "start_line": 498 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list t -> x: t{FStar.List.Tot.Base.memP x l} -> FStar.Pervasives.Lemma (ensures (let _ = FStar.List.Tot.Properties.split_using l x in (let FStar.Pervasives.Native.Mktuple2 #_ #_ l1 l2 = _ in FStar.List.Tot.Base.length l2 > 0 /\ ~(FStar.List.Tot.Base.memP x l1) /\ FStar.List.Tot.Base.hd l2 == x /\ l1 @ l2 == l) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Base.memP", "FStar.Classical.or_elim", "Prims.eq2", "Prims.unit", "Prims.squash", "FStar.List.Tot.Properties.lemma_split_using", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "Prims.l_not", "FStar.List.Tot.Base.hd", "FStar.List.Tot.Base.append", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Properties.split_using", "Prims.l_True", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_split_using (#t: Type) (l: list t) (x: t{x `memP` l}) : Lemma (ensures (let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) =
match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_: squash (a == x)) -> ()) (fun (_: squash (x `memP` rest)) -> lemma_split_using rest x)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.append_sorted
val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))]
val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))]
let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 656, "start_col": 0, "start_line": 654 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: a -> Prims.bool) -> l1: Prims.list a {FStar.List.Tot.Properties.sorted f l1} -> l2: Prims.list a {FStar.List.Tot.Properties.sorted f l2} -> pivot: a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Properties.total_order f /\ (forall (y: a). FStar.List.Tot.Base.mem y l1 ==> Prims.op_Negation (f pivot y)) /\ (forall (y: a). FStar.List.Tot.Base.mem y l2 ==> f pivot y)) (ensures FStar.List.Tot.Properties.sorted f (l1 @ pivot :: l2)) [SMTPat (FStar.List.Tot.Properties.sorted f (l1 @ pivot :: l2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.bool", "Prims.list", "Prims.b2t", "FStar.List.Tot.Properties.sorted", "FStar.List.Tot.Properties.append_sorted", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec append_sorted #a f l1 l2 pivot =
match l1 with | [] -> () | hd :: tl -> append_sorted f tl l2 pivot
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.sortWith_permutation
val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l))
val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l))
let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 624, "start_col": 0, "start_line": 616 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: a -> Prims.int) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.List.Tot.Base.count x l = FStar.List.Tot.Base.count x (FStar.List.Tot.Base.sortWith f l)) (decreases FStar.List.Tot.Base.length l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.int", "Prims.list", "FStar.List.Tot.Properties.append_count_forall", "FStar.List.Tot.Base.sortWith", "Prims.Cons", "Prims.unit", "FStar.List.Tot.Properties.sortWith_permutation", "FStar.List.Tot.Properties.partition_count_forall", "FStar.List.Tot.Base.bool_of_compare", "FStar.List.Tot.Base.partition_length", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.partition" ]
[ "recursion" ]
false
false
true
false
false
let rec sortWith_permutation #a f l =
match l with | [] -> () | pivot :: tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot :: sortWith f hi)
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.max_input_len
val max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a})
val max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a})
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 94, "end_line": 229, "start_col": 0, "start_line": 229 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ()) inline_for_extraction noextract let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key inline_for_extraction noextract let k = stateful_key /// Actual functor instantiation /// ============================ /// Small helpers /// ------------- noextract let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } = assert_norm (pow2 64 < pow2 128); pow2 64 - 1
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> x: FStar.UInt64.t{FStar.UInt64.v x == Hacl.Streaming.Blake2.Common.max_input_length a}
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "FStar.UInt64.__uint_to_t", "FStar.UInt64.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt64.n", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_limb", "Prims.op_GreaterThan", "Spec.Blake2.Definitions.size_block", "FStar.UInt64.v", "Hacl.Streaming.Blake2.Common.max_input_length" ]
[]
false
false
false
false
false
let max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a}) =
0xffffffffffffffffuL
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.sorted
val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool
val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool
let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 633, "start_col": 0, "start_line": 630 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> _: 'a -> Prims.bool) -> _: Prims.list 'a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.list", "Prims.op_AmpAmp", "FStar.List.Tot.Properties.sorted", "Prims.Cons" ]
[ "recursion" ]
false
false
false
true
false
let rec sorted f =
function | [] | [_] -> true | x :: y :: tl -> f x y && sorted f (y :: tl)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.noRepeats_append_elim
val noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x. mem x l1 ==> ~(mem x l2)))) (decreases l1)
val noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x. mem x l1 ==> ~(mem x l2)))) (decreases l1)
let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 704, "start_col": 0, "start_line": 693 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.noRepeats (l1 @ l2)) (ensures FStar.List.Tot.Base.noRepeats l1 /\ FStar.List.Tot.Base.noRepeats l2 /\ (forall (x: a). FStar.List.Tot.Base.mem x l1 ==> ~(FStar.List.Tot.Base.mem x l2))) (decreases l1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.noRepeats_append_elim", "Prims.unit", "FStar.List.Tot.Properties.append_mem", "Prims.b2t", "FStar.List.Tot.Base.noRepeats", "FStar.List.Tot.Base.op_At", "Prims.squash", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.mem", "Prims.l_not", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x. mem x l1 ==> ~(mem x l2)))) (decreases l1) =
match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.noRepeats_append_intro
val noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x. mem x l1 ==> ~(mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1)
val noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x. mem x l1 ==> ~(mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1)
let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 717, "start_col": 0, "start_line": 706 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.noRepeats l1 /\ FStar.List.Tot.Base.noRepeats l2 /\ (forall (x: a). FStar.List.Tot.Base.mem x l1 ==> ~(FStar.List.Tot.Base.mem x l2))) (ensures FStar.List.Tot.Base.noRepeats (l1 @ l2)) (decreases l1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.List.Tot.Properties.noRepeats_append_intro", "Prims.unit", "FStar.List.Tot.Properties.append_mem", "Prims.l_and", "Prims.b2t", "FStar.List.Tot.Base.noRepeats", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.mem", "Prims.l_not", "Prims.squash", "FStar.List.Tot.Base.op_At", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x. mem x l1 ==> ~(mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) =
match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.stateful_key_to_buffer
val stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk) : b: B.buffer uint8 {B.length b = kk}
val stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk) : b: B.buffer uint8 {B.length b = kk}
let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 212, "start_col": 0, "start_line": 209 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ())
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
key: Hacl.Streaming.Blake2.Common.stateful_key_t a kk -> b: LowStar.Buffer.buffer Hacl.Streaming.Blake2.Common.uint8 {LowStar.Monotonic.Buffer.length b = kk}
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Hacl.Streaming.Blake2.Common.key_size", "Hacl.Streaming.Blake2.Common.stateful_key_t", "Prims.op_Equality", "Prims.int", "LowStar.Buffer.null", "Hacl.Streaming.Blake2.Common.uint8", "Prims.bool", "LowStar.Buffer.buffer", "Prims.b2t", "Prims.nat", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk) : b: B.buffer uint8 {B.length b = kk} =
if kk = 0 then B.null #uint8 else key
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.no_repeats_p_append_elim
val no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))) (decreases l1)
val no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))) (decreases l1)
let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 746, "start_col": 0, "start_line": 735 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.no_repeats_p (l1 @ l2)) (ensures FStar.List.Tot.Base.no_repeats_p l1 /\ FStar.List.Tot.Base.no_repeats_p l2 /\ (forall (x: a). FStar.List.Tot.Base.memP x l1 ==> ~(FStar.List.Tot.Base.memP x l2))) (decreases l1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.no_repeats_p_append_elim", "Prims.unit", "FStar.List.Tot.Properties.append_memP", "FStar.List.Tot.Base.no_repeats_p", "FStar.List.Tot.Base.append", "Prims.squash", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Prims.l_not", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))) (decreases l1) =
match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.no_repeats_p_append
val no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ((no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))))
val no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ((no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))))
let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 769, "start_col": 0, "start_line": 761 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.no_repeats_p (l1 @ l2) <==> FStar.List.Tot.Base.no_repeats_p l1 /\ FStar.List.Tot.Base.no_repeats_p l2 /\ (forall (x: a). FStar.List.Tot.Base.memP x l1 ==> ~(FStar.List.Tot.Base.memP x l2)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Classical.move_requires", "FStar.List.Tot.Base.no_repeats_p", "FStar.List.Tot.Base.append", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Prims.l_not", "FStar.List.Tot.Properties.no_repeats_p_append_elim", "Prims.unit", "FStar.List.Tot.Properties.no_repeats_p_append_intro", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ((no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2))))) =
FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2
false
Hacl.Bignum.MontExponentiation.fst
Hacl.Bignum.MontExponentiation.bn_exp_mont_bm_vartime
val bn_exp_mont_bm_vartime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len
val bn_exp_mont_bm_vartime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len
let bn_exp_mont_bm_vartime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_rl_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_rl_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.MontExponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 216, "start_col": 0, "start_line": 205 }
module Hacl.Bignum.MontExponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BD = Hacl.Spec.Bignum.Definitions module SN = Hacl.Spec.Bignum module SM = Hacl.Spec.Bignum.Montgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module LE = Lib.Exponentiation module BE = Hacl.Impl.Exponentiation module E = Hacl.Spec.Exponentiation.Lemmas module S = Hacl.Spec.Bignum.MontExponentiation #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // All operations are performed in the Montgomery domain! inline_for_extraction noextract let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) = Lib.NatMod.nat_mod (BD.bn_v n) inline_for_extraction noextract let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 = BD.bn_v a < BD.bn_v n inline_for_extraction noextract let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len{linv n a}) : a_spec n = BD.bn_v a inline_for_extraction noextract let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 = let ctx_n = LSeq.sub ctx 0 len in let ctx_r2 = LSeq.sub ctx len len in ctx_n == n /\ 0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n inline_for_extraction noextract let mk_to_nat_mont_ll_comm_monoid (t:limb_t) (len:BN.meta_len t) (n:BD.lbignum t (v len)) (mu:limb t{SM.bn_mont_pre n mu}) : BE.to_comm_monoid t len (len +! len) = { BE.a_spec = a_spec n; BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu); BE.linv_ctx = linv_ctx n; BE.linv = linv n; BE.refl = refl n; } inline_for_extraction noextract val bn_mont_one: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lone_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_one #t k n mu ctx oneM = [@inline_let] let len = k.BM.bn.BN.len in let ctx_n = sub ctx 0ul len in let ctx_r2 = sub ctx len len in let h0 = ST.get () in SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2); BM.bn_mont_one len k.BM.from ctx_n mu ctx_r2 oneM inline_for_extraction noextract val bn_mont_mul: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lmul_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_mul #t k n mu ctx aM bM resM = let h0 = ST.get () in SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.mul ctx_n mu aM bM resM inline_for_extraction noextract val bn_mont_sqr: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lsqr_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_sqr #t k n mu ctx aM resM = let h0 = ST.get () in SM.bn_mont_sqr_lemma n mu (as_seq h0 aM); SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.sqr ctx_n mu aM resM inline_for_extraction noextract let mk_bn_mont_concrete_ops (t:limb_t) (k:BM.mont t) (n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len))) (mu:limb t{SM.bn_mont_pre n mu}) : BE.concrete_ops t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) = { BE.to = mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu; BE.lone = bn_mont_one k n mu; BE.lmul = bn_mont_mul k n mu; BE.lsqr = bn_mont_sqr k n mu; } /////////////////////////////////////////////////////////////////////// inline_for_extraction noextract val mk_ctx: #t:limb_t -> len:BN.meta_len t -> n:lbignum t len -> r2:lbignum t len -> ctx:lbignum t (len +! len) -> Stack unit (requires fun h -> live h n /\ live h r2 /\ live h ctx /\ disjoint n ctx /\ disjoint r2 ctx /\ 0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ linv_ctx (as_seq h0 n) (as_seq h1 ctx)) let mk_ctx #t len n r2 ctx = let h0 = ST.get () in update_sub ctx 0ul len n; let h1 = ST.get () in assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n); update_sub ctx len len r2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ctx) 0 (v len)) (LSeq.sub (as_seq h1 ctx) 0 (v len)); assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n); assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) noextract let bn_exp_mont_pre (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (mu:limb t) (r2:BD.lbignum t len) (aM:BD.lbignum t len) (bBits:size_nat) (b:BD.lbignum t (BD.blocks0 bBits (bits t))) = SM.bn_mont_pre n mu /\ BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\ BD.bn_v b < pow2 bBits /\ BD.bn_v aM < BD.bn_v n inline_for_extraction noextract let bn_exp_mont_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> r2:lbignum t len -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\ disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\ disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\ bn_exp_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b)) (ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\ (let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in bn_v h1 resM == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Exponentiation.Lemmas.fst.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.MontExponentiation.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontExponentiation.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontExponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Exponentiation.Lemmas", "short_module": "E" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontExponentiation.bn_exp_mont_st t (Mkbn?.len (Mkmont?.bn k))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Exponentiation.exp_rl_lemma", "Lib.NatMod.nat_mod", "Hacl.Bignum.Definitions.bn_v", "FStar.Ghost.reveal", "Lib.Exponentiation.Definition.comm_monoid", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Exponentiation.lexp_rl_vartime", "Lib.IntTypes.op_Plus_Bang", "Hacl.Bignum.MontExponentiation.mk_bn_mont_concrete_ops", "FStar.Ghost.hide", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.MontExponentiation.mk_ctx", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.add", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.Ghost.erased", "Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid", "Lib.IntTypes.int_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Lib.IntTypes.mk_int", "Hacl.Spec.Bignum.Definitions.blocks0", "Hacl.Bignum.meta_len", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let bn_exp_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame (); let h0 = ST.get () in [@@ inline_let ]let len = k.BM.bn.BN.len in [@@ inline_let ]let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_rl_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_rl_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame ()
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.sortWith_sorted
val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l))
val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l))
let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 675, "start_col": 0, "start_line": 665 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: a -> Prims.int) -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Properties.total_order (FStar.List.Tot.Base.bool_of_compare f)) (ensures FStar.List.Tot.Properties.sorted (FStar.List.Tot.Base.bool_of_compare f) (FStar.List.Tot.Base.sortWith f l) /\ (forall (x: a). FStar.List.Tot.Base.mem x l = FStar.List.Tot.Base.mem x (FStar.List.Tot.Base.sortWith f l))) (decreases FStar.List.Tot.Base.length l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.int", "Prims.list", "FStar.List.Tot.Properties.append_sorted", "FStar.List.Tot.Base.bool_of_compare", "FStar.List.Tot.Base.sortWith", "Prims.unit", "FStar.List.Tot.Properties.append_mem_forall", "Prims.Cons", "FStar.List.Tot.Properties.sortWith_sorted", "FStar.List.Tot.Properties.partition_mem_p_forall", "FStar.List.Tot.Properties.partition_mem_forall", "FStar.List.Tot.Base.partition_length", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.partition" ]
[ "recursion" ]
false
false
true
false
false
let rec sortWith_sorted #a f l =
match l with | [] -> () | pivot :: tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot :: sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.no_repeats_p_append_swap
val no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1))
val no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1))
let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 777, "start_col": 0, "start_line": 771 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.no_repeats_p (l1 @ l2) <==> FStar.List.Tot.Base.no_repeats_p (l2 @ l1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.no_repeats_p_append", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "FStar.List.Tot.Base.no_repeats_p", "FStar.List.Tot.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) =
no_repeats_p_append l1 l2; no_repeats_p_append l2 l1
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.no_repeats_p_false_intro
val no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~(no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3)))))))
val no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~(no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3)))))))
let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 810, "start_col": 0, "start_line": 799 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l: Prims.list a -> l2: Prims.list a -> l3: Prims.list a -> FStar.Pervasives.Lemma (requires Cons? l) (ensures ~(FStar.List.Tot.Base.no_repeats_p (l1 @ l @ l2 @ l @ l3)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_memP", "Prims.unit", "FStar.List.Tot.Base.append", "FStar.List.Tot.Properties.no_repeats_p_append", "Prims._assert", "FStar.List.Tot.Base.memP", "FStar.List.Tot.Base.hd", "Prims.b2t", "Prims.uu___is_Cons", "Prims.squash", "Prims.l_not", "FStar.List.Tot.Base.no_repeats_p", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~(no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) =
let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.fold_left_invar
val fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b). p x ==> memP y l ==> p (f x y)) (ensures forall (x: a). p x ==> p (fold_left f x l))
val fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b). p x ==> memP y l ==> p (f x y)) (ensures forall (x: a). p x ==> p (fold_left f x l))
let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b) . p x ==> memP y l ==> p (f x y) ) (ensures forall (x: a) . p x ==> p (fold_left f x l)) = match l with | [] -> () | y :: q -> fold_left_invar f q p
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 926, "start_col": 0, "start_line": 915 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l) (** Properties of [fold_left] *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: b -> a) -> l: Prims.list b -> p: (_: a -> Type0) -> FStar.Pervasives.Lemma (requires forall (x: a) (y: b). p x ==> FStar.List.Tot.Base.memP y l ==> p (f x y)) (ensures forall (x: a). p x ==> p (FStar.List.Tot.Base.fold_left f x l))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.fold_left_invar", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Prims.squash", "FStar.List.Tot.Base.fold_left", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b). p x ==> memP y l ==> p (f x y)) (ensures forall (x: a). p x ==> p (fold_left f x l)) =
match l with | [] -> () | y :: q -> fold_left_invar f q p
false
Hacl.Streaming.Blake2.Common.fst
Hacl.Streaming.Blake2.Common.max_input_length
val max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a}
val max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a}
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } = assert_norm (pow2 64 < pow2 128); pow2 64 - 1
{ "file_name": "code/streaming/Hacl.Streaming.Blake2.Common.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 226, "start_col": 0, "start_line": 224 }
module Hacl.Streaming.Blake2.Common module HS = FStar.HyperStack module B = LowStar.Buffer module S = FStar.Seq module LS = Lib.Sequence module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module I = Hacl.Streaming.Interface module ST = FStar.HyperStack.ST open FStar.Mul module Loops = Lib.LoopCombinators /// Opening a bunch of modules for Blake2 /// ===================================== inline_for_extraction noextract let uint8 = Lib.IntTypes.uint8 inline_for_extraction noextract let uint32 = Lib.IntTypes.uint32 unfold noextract let size_nat = Lib.IntTypes.size_nat unfold noextract let max_key = Spec.Blake2.max_key unfold noextract let lbytes = Lib.ByteSequence.lbytes module Spec = Spec.Blake2 module Core = Hacl.Impl.Blake2.Core open Hacl.Impl.Blake2.Generic /// An instance of the stateful type class for blake2 /// ================================================= #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50" inline_for_extraction noextract let index = unit inline_for_extraction noextract let alg = Spec.alg inline_for_extraction noextract let m_spec = Core.m_spec /// The stateful state: (wv, hash) inline_for_extraction noextract let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m) inline_for_extraction noextract let t (a : alg) = Spec.state a (* In the internal state, we keep wv, the working vector. It's essentially temporary scratch space that the Blake2 implementation expects to receive. (Why is the implementation not performing its own stack allocations? Don't know!) *) inline_for_extraction noextract let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with wv, _ -> wv inline_for_extraction noextract let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) = match s with _, p -> p (* But the working vector is not reflected in the state at all -- it doesn't have meaningful specification contents. *) inline_for_extraction noextract let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) = Core.state_v h (get_state_p s) inline_for_extraction noextract let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) = state_v h s /// Small helper which facilitates inferencing implicit arguments for buffer /// operations inline_for_extraction noextract let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = s inline_for_extraction noextract let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit = I.Stateful (fun () -> s a m) (* s *) (* footprint *) (fun #_ _ acc -> let wv, b = acc in B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv)) (B.loc_addr_of_buffer (state_to_lbuffer b))) (* freeable *) (fun #_ _ acc -> let wv, b = acc in B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b)) (* invariant *) (fun #_ h acc -> let wv, b = acc in B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\ B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b)) (fun () -> t a) (* t *) (fun () h acc -> s_v h acc) (* v *) (fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *) (fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *) (fun #_ _ _ _ _ -> ()) (* frame_freeable *) (* alloca *) (fun () -> let wv = Core.alloc_state a m in let b = Core.alloc_state a m in wv, b) (* create_in *) (fun () r -> let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in wv, b) (* free *) (fun _ acc -> match acc with wv, b -> B.free (state_to_lbuffer wv); B.free (state_to_lbuffer b)) (* copy *) (fun _ src dst -> match src with src_wv, src_b -> match dst with src_wv, dst_b -> B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul U32.(4ul *^ Core.row_len a m)) /// Stateful key /// ============ inline_for_extraction noextract let key_size (a : alg) = kk:nat{kk <= Spec.max_key a} inline_for_extraction noextract let key_size_t (a : alg) = key_size:U32.t{U32.v key_size <= Spec.max_key a} /// Defining stateful keys inline_for_extraction noextract let stateful_key_t (a : alg) (key_size : key_size a) : Type = if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size} inline_for_extraction noextract let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0}) (k : B.buffer uint8 { B.length k == kk }) : Tot (stateful_key_t a kk) = k inline_for_extraction noextract let unit_to_stateful_key_t (a : alg) : Tot (stateful_key_t a 0) = () /// The ``has_key`` parameter is meta /// TODO: this definition could be moved to Hacl.Streaming.Interface, it could /// be pretty useful in other situations as it generalizes ``stateful_buffer`` in /// the case the length is zero. Note that rather than being unit, the type could /// be buffer too (and we would use null whenever needed). inline_for_extraction noextract let stateful_key (a : alg) (kk : key_size a) : I.stateful unit = I.Stateful (fun _ -> stateful_key_t a kk) (* footprint *) (fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8)) (* freeable *) (fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8)) (* invariant *) (fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8)) (fun _ -> s:S.seq uint8 { S.length s == kk }) (fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8)) (fun #_ h s -> ()) (* invariant_loc_in_footprint *) (fun #_ l s h0 h1 -> ()) (* frame_invariant *) (fun #_ l s h0 h1 -> ()) (* frame_freeable *) (* alloca *) (fun () -> if kk > 0 then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* create_in *) (fun () r -> if kk > 0 then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk)) else unit_to_stateful_key_t a) (* free *) (fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ()) (* copy *) (fun _ s_src s_dst -> if kk > 0 then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk) else ()) inline_for_extraction noextract let stateful_key_to_buffer (#a : alg) (#kk : key_size a) (key : stateful_key_t a kk) : b:B.buffer uint8 { B.length b = kk } = if kk = 0 then B.null #uint8 else key inline_for_extraction noextract let k = stateful_key /// Actual functor instantiation /// ============================ /// Small helpers /// -------------
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Alternative.fsti.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Impl.Blake2.Generic.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Blake2.Common.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Impl.Blake2.Core", "short_module": "Core" }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Streaming.Blake2.Common.alg -> n: Prims.nat{n <= Spec.Blake2.Definitions.max_limb a /\ n > Spec.Blake2.Definitions.size_block a}
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Blake2.Common.alg", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_limb", "Prims.op_GreaterThan", "Spec.Blake2.Definitions.size_block" ]
[]
false
false
false
false
false
let max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a} =
assert_norm (pow2 64 < pow2 128); pow2 64 - 1
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.no_repeats_p_append_permut
val no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5)))))
val no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5)))))
let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5))
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 797, "start_col": 0, "start_line": 779 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> l3: Prims.list a -> l4: Prims.list a -> l5: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.no_repeats_p (l1 @ l2 @ l3 @ l4 @ l5) <==> FStar.List.Tot.Base.no_repeats_p (l1 @ l4 @ l3 @ l2 @ l5))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.append_memP_forall", "FStar.List.Tot.Base.append", "Prims.unit", "FStar.List.Tot.Properties.no_repeats_p_append", "Prims.l_True", "Prims.squash", "Prims.l_iff", "FStar.List.Tot.Base.no_repeats_p", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) =
no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5))
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.assoc_append_elim_r
val assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~(assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1)
val assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~(assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1)
let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 69, "end_line": 854, "start_col": 0, "start_line": 843 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> l1: Prims.list (a * b) -> l2: Prims.list (a * b) -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.assoc x l2 == FStar.Pervasives.Native.None \/ ~(FStar.List.Tot.Base.assoc x l1 == FStar.Pervasives.Native.None)) (ensures FStar.List.Tot.Base.assoc x (l1 @ l2) == FStar.List.Tot.Base.assoc x l1) (decreases l1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_Equality", "Prims.bool", "FStar.List.Tot.Properties.assoc_append_elim_r", "Prims.unit", "Prims.l_or", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.List.Tot.Base.assoc", "FStar.Pervasives.Native.None", "Prims.l_not", "Prims.squash", "FStar.List.Tot.Base.op_At", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~(assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) =
match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.assoc_append_elim_l
val assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1)
val assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1)
let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 867, "start_col": 0, "start_line": 856 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> l1: Prims.list (a * b) -> l2: Prims.list (a * b) -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.assoc x l1 == FStar.Pervasives.Native.None) (ensures FStar.List.Tot.Base.assoc x (l1 @ l2) == FStar.List.Tot.Base.assoc x l2) (decreases l1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_Equality", "Prims._assert", "Prims.l_False", "Prims.bool", "FStar.List.Tot.Properties.assoc_append_elim_l", "Prims.unit", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.List.Tot.Base.assoc", "FStar.Pervasives.Native.None", "Prims.squash", "FStar.List.Tot.Base.op_At", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) =
match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.assoc_mem
val assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y. assoc x l == Some y)))
val assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y. assoc x l == Some y)))
let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l)
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 911, "start_col": 0, "start_line": 896 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> l: Prims.list (a * b) -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.mem x (FStar.List.Tot.Base.map FStar.Pervasives.Native.fst l) <==> (exists (y: b). FStar.List.Tot.Base.assoc x l == FStar.Pervasives.Native.Some y))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.assoc", "FStar.List.Tot.Properties.memP_map_elim", "FStar.Pervasives.Native.fst", "Prims.unit", "FStar.List.Tot.Properties.mem_memP", "FStar.List.Tot.Base.map", "FStar.List.Tot.Properties.assoc_memP_none", "FStar.List.Tot.Properties.memP_map_intro", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Properties.assoc_memP_some", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.b2t", "FStar.List.Tot.Base.mem", "Prims.l_Exists", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y. assoc x l == Some y))) =
match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l)
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.no_repeats_p_append_intro
val no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1)
val no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1)
let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 759, "start_col": 0, "start_line": 748 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.no_repeats_p l1 /\ FStar.List.Tot.Base.no_repeats_p l2 /\ (forall (x: a). FStar.List.Tot.Base.memP x l1 ==> ~(FStar.List.Tot.Base.memP x l2))) (ensures FStar.List.Tot.Base.no_repeats_p (l1 @ l2)) (decreases l1)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.no_repeats_p_append_intro", "Prims.unit", "FStar.List.Tot.Properties.append_memP", "Prims.l_and", "FStar.List.Tot.Base.no_repeats_p", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Prims.l_not", "Prims.squash", "FStar.List.Tot.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x. memP x l1 ==> ~(memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) =
match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.assoc_memP_none
val assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y. ~(memP (x, y) l))) (decreases l)
val assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y. ~(memP (x, y) l))) (decreases l)
let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 894, "start_col": 0, "start_line": 883 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> l: Prims.list (a * b) -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.assoc x l == FStar.Pervasives.Native.None) (ensures forall (y: b). ~(FStar.List.Tot.Base.memP (x, y) l)) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_Equality", "Prims._assert", "Prims.l_False", "Prims.bool", "FStar.List.Tot.Properties.assoc_memP_none", "Prims.unit", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.List.Tot.Base.assoc", "FStar.Pervasives.Native.None", "Prims.squash", "Prims.l_Forall", "Prims.l_not", "FStar.List.Tot.Base.memP", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y. ~(memP (x, y) l))) (decreases l) =
match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.index_extensionality
val index_extensionality (#a: Type) (l1 l2: list a) : Lemma (requires (length l1 == length l2 /\ (forall (i: nat). i < length l1 ==> index l1 i == index l2 i))) (ensures (l1 == l2))
val index_extensionality (#a: Type) (l1 l2: list a) : Lemma (requires (length l1 == length l2 /\ (forall (i: nat). i < length l1 ==> index l1 i == index l2 i))) (ensures (l1 == l2))
let index_extensionality (#a: Type) (l1 l2: list a) : Lemma (requires (length l1 == length l2 /\ (forall (i: nat) . i < length l1 ==> index l1 i == index l2 i))) (ensures (l1 == l2)) = index_extensionality_aux l1 l2 () (fun i -> ())
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 1023, "start_col": 0, "start_line": 1015 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l) (** Properties of [fold_left] *) let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b) . p x ==> memP y l ==> p (f x y) ) (ensures forall (x: a) . p x ==> p (fold_left f x l)) = match l with | [] -> () | y :: q -> fold_left_invar f q p let rec fold_left_map (#a #b #c: Type) (f_aba: a -> b -> Tot a) (f_bc: b -> Tot c) (f_aca: a -> c -> Tot a) (l: list b) : Lemma (requires forall (x: a) (y: b) . f_aba x y == f_aca x (f_bc y) ) (ensures forall (x : a) . fold_left f_aba x l == fold_left f_aca x (map f_bc l) ) = match l with | [] -> () | y :: q -> fold_left_map f_aba f_bc f_aca q let rec map_append (#a #b: Type) (f: a -> Tot b) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2) = match l1 with | [] -> () | x :: q -> map_append f q l2 let rec fold_left_append (#a #b: Type) (f: a -> b -> Tot a) (l1 l2: list b) : Lemma (ensures forall x . fold_left f x (l1 @ l2) == fold_left f (fold_left f x l1) l2) = match l1 with | [] -> () | x :: q -> fold_left_append f q l2 let rec fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w . (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x . (x `opA` zeroA) == x) /\ (forall x . (zeroA `opA` x) == x)) (ensures forall x . (fold_left opA x l) == (x `opA` (fold_left opA zeroA l))) = match l with | [] -> () | x :: q -> fold_left_monoid opA zeroA q let fold_left_append_monoid (#a: Type) (f: (a -> a -> Tot a)) (z: a) (l1 l2: list a) : Lemma (requires (forall u v w . f u (f v w) == f (f u v) w) /\ (forall x . f x z == x) /\ (forall x . f z x == x)) (ensures fold_left f z (l1 @ l2) == f (fold_left f z l1) (fold_left f z l2)) = fold_left_append f l1 l2; fold_left_monoid f z l2 (* Properties of [index] *) private let rec index_extensionality_aux (#a: Type) (l1 l2: list a) (l_len: (l_len: unit { length l1 == length l2 } )) (l_index: (i: (i: nat {i < length l1})) -> Tot (l_index: unit {index l1 i == index l2 i})) : Lemma (ensures (l1 == l2)) = match (l1, l2) with | (a1::q1, a2::q2) -> let a_eq : (a_eq : unit {a1 == a2}) = l_index 0 in let q_len : (q_len: unit {length q1 == length q2}) = () in let q_index (i: (i: nat {i < length q1})) : Tot (q_index: unit {index q1 i == index q2 i}) = l_index (i + 1) in let q_eq : (q_eq : unit {l1 == l2}) = index_extensionality_aux q1 q2 q_len q_index in () | _ -> ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length l1 == FStar.List.Tot.Base.length l2 /\ (forall (i: Prims.nat). i < FStar.List.Tot.Base.length l1 ==> FStar.List.Tot.Base.index l1 i == FStar.List.Tot.Base.index l2 i)) (ensures l1 == l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.index_extensionality_aux", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "Prims.unit", "Prims.eq2", "FStar.List.Tot.Base.index", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let index_extensionality (#a: Type) (l1 l2: list a) : Lemma (requires (length l1 == length l2 /\ (forall (i: nat). i < length l1 ==> index l1 i == index l2 i))) (ensures (l1 == l2)) =
index_extensionality_aux l1 l2 () (fun i -> ())
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.assoc_memP_some
val assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l)
val assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l)
let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 881, "start_col": 0, "start_line": 869 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> y: b -> l: Prims.list (a * b) -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.assoc x l == FStar.Pervasives.Native.Some y) (ensures FStar.List.Tot.Base.memP (x, y) l) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_Equality", "Prims.bool", "FStar.List.Tot.Properties.assoc_memP_some", "Prims.unit", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.List.Tot.Base.assoc", "FStar.Pervasives.Native.Some", "Prims.squash", "FStar.List.Tot.Base.memP", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) =
match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q
false
Hacl.Bignum.MontExponentiation.fst
Hacl.Bignum.MontExponentiation.bn_exp_mont_fw_consttime
val bn_exp_mont_fw_consttime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len
val bn_exp_mont_fw_consttime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len
let bn_exp_mont_fw_consttime #t k l n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_consttime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.MontExponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 278, "start_col": 0, "start_line": 267 }
module Hacl.Bignum.MontExponentiation open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BD = Hacl.Spec.Bignum.Definitions module SN = Hacl.Spec.Bignum module SM = Hacl.Spec.Bignum.Montgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module LE = Lib.Exponentiation module BE = Hacl.Impl.Exponentiation module E = Hacl.Spec.Exponentiation.Lemmas module S = Hacl.Spec.Bignum.MontExponentiation #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" // All operations are performed in the Montgomery domain! inline_for_extraction noextract let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) = Lib.NatMod.nat_mod (BD.bn_v n) inline_for_extraction noextract let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 = BD.bn_v a < BD.bn_v n inline_for_extraction noextract let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len{linv n a}) : a_spec n = BD.bn_v a inline_for_extraction noextract let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 = let ctx_n = LSeq.sub ctx 0 len in let ctx_r2 = LSeq.sub ctx len len in ctx_n == n /\ 0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n inline_for_extraction noextract let mk_to_nat_mont_ll_comm_monoid (t:limb_t) (len:BN.meta_len t) (n:BD.lbignum t (v len)) (mu:limb t{SM.bn_mont_pre n mu}) : BE.to_comm_monoid t len (len +! len) = { BE.a_spec = a_spec n; BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu); BE.linv_ctx = linv_ctx n; BE.linv = linv n; BE.refl = refl n; } inline_for_extraction noextract val bn_mont_one: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lone_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_one #t k n mu ctx oneM = [@inline_let] let len = k.BM.bn.BN.len in let ctx_n = sub ctx 0ul len in let ctx_r2 = sub ctx len len in let h0 = ST.get () in SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2); BM.bn_mont_one len k.BM.from ctx_n mu ctx_r2 oneM inline_for_extraction noextract val bn_mont_mul: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lmul_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_mul #t k n mu ctx aM bM resM = let h0 = ST.get () in SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.mul ctx_n mu aM bM resM inline_for_extraction noextract val bn_mont_sqr: #t:limb_t -> k:BM.mont t -> n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len)) -> mu:limb t{SM.bn_mont_pre n mu} -> BE.lsqr_st t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) (mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu) let bn_mont_sqr #t k n mu ctx aM resM = let h0 = ST.get () in SM.bn_mont_sqr_lemma n mu (as_seq h0 aM); SM.bn_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM); let ctx_n = sub ctx 0ul k.BM.bn.BN.len in k.BM.sqr ctx_n mu aM resM inline_for_extraction noextract let mk_bn_mont_concrete_ops (t:limb_t) (k:BM.mont t) (n:Ghost.erased (BD.lbignum t (v k.BM.bn.BN.len))) (mu:limb t{SM.bn_mont_pre n mu}) : BE.concrete_ops t k.BM.bn.BN.len (k.BM.bn.BN.len +! k.BM.bn.BN.len) = { BE.to = mk_to_nat_mont_ll_comm_monoid t k.BM.bn.BN.len n mu; BE.lone = bn_mont_one k n mu; BE.lmul = bn_mont_mul k n mu; BE.lsqr = bn_mont_sqr k n mu; } /////////////////////////////////////////////////////////////////////// inline_for_extraction noextract val mk_ctx: #t:limb_t -> len:BN.meta_len t -> n:lbignum t len -> r2:lbignum t len -> ctx:lbignum t (len +! len) -> Stack unit (requires fun h -> live h n /\ live h r2 /\ live h ctx /\ disjoint n ctx /\ disjoint r2 ctx /\ 0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ linv_ctx (as_seq h0 n) (as_seq h1 ctx)) let mk_ctx #t len n r2 ctx = let h0 = ST.get () in update_sub ctx 0ul len n; let h1 = ST.get () in assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n); update_sub ctx len len r2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ctx) 0 (v len)) (LSeq.sub (as_seq h1 ctx) 0 (v len)); assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n); assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) noextract let bn_exp_mont_pre (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (mu:limb t) (r2:BD.lbignum t len) (aM:BD.lbignum t len) (bBits:size_nat) (b:BD.lbignum t (BD.blocks0 bBits (bits t))) = SM.bn_mont_pre n mu /\ BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\ BD.bn_v b < pow2 bBits /\ BD.bn_v aM < BD.bn_v n inline_for_extraction noextract let bn_exp_mont_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> r2:lbignum t len -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\ disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\ disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\ bn_exp_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b)) (ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\ (let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in bn_v h1 resM == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_bm_vartime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_bm_vartime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_rl_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_rl_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame () // This function is constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_bm_consttime: #t:limb_t -> k:BM.mont t -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_bm_consttime #t k n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in [@inline_let] let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM; LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); LE.exp_mont_ladder_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b); pop_frame () // This function is *NOT* constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_fw_vartime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len let bn_exp_mont_fw_vartime #t k l n mu r2 aM bBits b resM = push_frame (); let h0 = ST.get () in [@inline_let] let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_vartime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame () // This function is constant-time on the exponent b. inline_for_extraction noextract val bn_exp_mont_fw_consttime: #t:limb_t -> k:BM.mont t -> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.BM.bn.BN.len <= max_size_t} -> bn_exp_mont_st t k.BM.bn.BN.len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Exponentiation.Lemmas.fst.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.MontExponentiation.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontExponentiation.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontExponentiation", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Exponentiation.Lemmas", "short_module": "E" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Hacl.Bignum.Montgomery.mont t -> l: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v l /\ Lib.IntTypes.v l < Lib.IntTypes.bits Lib.IntTypes.U32 /\ Prims.pow2 (Lib.IntTypes.v l) * Lib.IntTypes.v (Mkbn?.len (Mkmont?.bn k)) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.MontExponentiation.bn_exp_mont_st t (Mkbn?.len (Mkmont?.bn k))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Exponentiation.exp_fw_lemma", "Lib.NatMod.nat_mod", "Hacl.Bignum.Definitions.bn_v", "FStar.Ghost.reveal", "Lib.Exponentiation.Definition.comm_monoid", "Hacl.Impl.Exponentiation.lexp_fw_consttime", "Lib.IntTypes.op_Plus_Bang", "Hacl.Bignum.MontExponentiation.mk_bn_mont_concrete_ops", "FStar.Ghost.hide", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.MontExponentiation.mk_ctx", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.add", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.Ghost.erased", "Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid", "Lib.IntTypes.int_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.op_Multiply", "Lib.IntTypes.mk_int", "Hacl.Spec.Bignum.Definitions.blocks0", "Hacl.Bignum.meta_len", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let bn_exp_mont_fw_consttime #t k l n mu r2 aM bBits b resM =
push_frame (); let h0 = ST.get () in [@@ inline_let ]let len = k.BM.bn.BN.len in let bLen = blocks0 bBits (size (bits t)) in let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in let ctx = create (len +! len) (uint #t #SEC 0) in mk_ctx #t len n r2 ctx; BE.lexp_fw_consttime len (len +! len) (mk_bn_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM; LE.exp_fw_lemma k1 (bn_v h0 aM) (v bBits) (bn_v h0 b) (v l); pop_frame ()
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.strict_suffix_of_nil
val strict_suffix_of_nil (#a: Type) (x: a) (l: list a) : Lemma (requires True) (ensures (strict_suffix_of [] (x :: l))) (decreases l)
val strict_suffix_of_nil (#a: Type) (x: a) (l: list a) : Lemma (requires True) (ensures (strict_suffix_of [] (x :: l))) (decreases l)
let rec strict_suffix_of_nil (#a: Type) (x: a) (l: list a) : Lemma (requires True) (ensures (strict_suffix_of [] (x::l))) (decreases l) = match l with | [] -> () | a' :: q -> strict_suffix_of_nil a' q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 1034, "start_col": 0, "start_line": 1027 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l) (** Properties of [fold_left] *) let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b) . p x ==> memP y l ==> p (f x y) ) (ensures forall (x: a) . p x ==> p (fold_left f x l)) = match l with | [] -> () | y :: q -> fold_left_invar f q p let rec fold_left_map (#a #b #c: Type) (f_aba: a -> b -> Tot a) (f_bc: b -> Tot c) (f_aca: a -> c -> Tot a) (l: list b) : Lemma (requires forall (x: a) (y: b) . f_aba x y == f_aca x (f_bc y) ) (ensures forall (x : a) . fold_left f_aba x l == fold_left f_aca x (map f_bc l) ) = match l with | [] -> () | y :: q -> fold_left_map f_aba f_bc f_aca q let rec map_append (#a #b: Type) (f: a -> Tot b) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2) = match l1 with | [] -> () | x :: q -> map_append f q l2 let rec fold_left_append (#a #b: Type) (f: a -> b -> Tot a) (l1 l2: list b) : Lemma (ensures forall x . fold_left f x (l1 @ l2) == fold_left f (fold_left f x l1) l2) = match l1 with | [] -> () | x :: q -> fold_left_append f q l2 let rec fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w . (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x . (x `opA` zeroA) == x) /\ (forall x . (zeroA `opA` x) == x)) (ensures forall x . (fold_left opA x l) == (x `opA` (fold_left opA zeroA l))) = match l with | [] -> () | x :: q -> fold_left_monoid opA zeroA q let fold_left_append_monoid (#a: Type) (f: (a -> a -> Tot a)) (z: a) (l1 l2: list a) : Lemma (requires (forall u v w . f u (f v w) == f (f u v) w) /\ (forall x . f x z == x) /\ (forall x . f z x == x)) (ensures fold_left f z (l1 @ l2) == f (fold_left f z l1) (fold_left f z l2)) = fold_left_append f l1 l2; fold_left_monoid f z l2 (* Properties of [index] *) private let rec index_extensionality_aux (#a: Type) (l1 l2: list a) (l_len: (l_len: unit { length l1 == length l2 } )) (l_index: (i: (i: nat {i < length l1})) -> Tot (l_index: unit {index l1 i == index l2 i})) : Lemma (ensures (l1 == l2)) = match (l1, l2) with | (a1::q1, a2::q2) -> let a_eq : (a_eq : unit {a1 == a2}) = l_index 0 in let q_len : (q_len: unit {length q1 == length q2}) = () in let q_index (i: (i: nat {i < length q1})) : Tot (q_index: unit {index q1 i == index q2 i}) = l_index (i + 1) in let q_eq : (q_eq : unit {l1 == l2}) = index_extensionality_aux q1 q2 q_len q_index in () | _ -> () let index_extensionality (#a: Type) (l1 l2: list a) : Lemma (requires (length l1 == length l2 /\ (forall (i: nat) . i < length l1 ==> index l1 i == index l2 i))) (ensures (l1 == l2)) = index_extensionality_aux l1 l2 () (fun i -> ()) (** Properties of [strict_suffix_of] *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.strict_suffix_of [] (x :: l)) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.strict_suffix_of_nil", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.List.Tot.Base.strict_suffix_of", "Prims.Nil", "Prims.Cons", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec strict_suffix_of_nil (#a: Type) (x: a) (l: list a) : Lemma (requires True) (ensures (strict_suffix_of [] (x :: l))) (decreases l) =
match l with | [] -> () | a' :: q -> strict_suffix_of_nil a' q
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.fold_left_append_monoid
val fold_left_append_monoid (#a: Type) (f: (a -> a -> Tot a)) (z: a) (l1 l2: list a) : Lemma (requires (forall u v w. f u (f v w) == f (f u v) w) /\ (forall x. f x z == x) /\ (forall x. f z x == x)) (ensures fold_left f z (l1 @ l2) == f (fold_left f z l1) (fold_left f z l2))
val fold_left_append_monoid (#a: Type) (f: (a -> a -> Tot a)) (z: a) (l1 l2: list a) : Lemma (requires (forall u v w. f u (f v w) == f (f u v) w) /\ (forall x. f x z == x) /\ (forall x. f z x == x)) (ensures fold_left f z (l1 @ l2) == f (fold_left f z l1) (fold_left f z l2))
let fold_left_append_monoid (#a: Type) (f: (a -> a -> Tot a)) (z: a) (l1 l2: list a) : Lemma (requires (forall u v w . f u (f v w) == f (f u v) w) /\ (forall x . f x z == x) /\ (forall x . f z x == x)) (ensures fold_left f z (l1 @ l2) == f (fold_left f z l1) (fold_left f z l2)) = fold_left_append f l1 l2; fold_left_monoid f z l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 994, "start_col": 0, "start_line": 981 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l) (** Properties of [fold_left] *) let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b) . p x ==> memP y l ==> p (f x y) ) (ensures forall (x: a) . p x ==> p (fold_left f x l)) = match l with | [] -> () | y :: q -> fold_left_invar f q p let rec fold_left_map (#a #b #c: Type) (f_aba: a -> b -> Tot a) (f_bc: b -> Tot c) (f_aca: a -> c -> Tot a) (l: list b) : Lemma (requires forall (x: a) (y: b) . f_aba x y == f_aca x (f_bc y) ) (ensures forall (x : a) . fold_left f_aba x l == fold_left f_aca x (map f_bc l) ) = match l with | [] -> () | y :: q -> fold_left_map f_aba f_bc f_aca q let rec map_append (#a #b: Type) (f: a -> Tot b) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2) = match l1 with | [] -> () | x :: q -> map_append f q l2 let rec fold_left_append (#a #b: Type) (f: a -> b -> Tot a) (l1 l2: list b) : Lemma (ensures forall x . fold_left f x (l1 @ l2) == fold_left f (fold_left f x l1) l2) = match l1 with | [] -> () | x :: q -> fold_left_append f q l2 let rec fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w . (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x . (x `opA` zeroA) == x) /\ (forall x . (zeroA `opA` x) == x)) (ensures forall x . (fold_left opA x l) == (x `opA` (fold_left opA zeroA l))) = match l with | [] -> () | x :: q -> fold_left_monoid opA zeroA q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: a -> a) -> z: a -> l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (requires (forall (u905: a) (v: a) (w: a). f u905 (f v w) == f (f u905 v) w) /\ (forall (x: a). f x z == x) /\ (forall (x: a). f z x == x)) (ensures FStar.List.Tot.Base.fold_left f z (l1 @ l2) == f (FStar.List.Tot.Base.fold_left f z l1) (FStar.List.Tot.Base.fold_left f z l2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.fold_left_monoid", "Prims.unit", "FStar.List.Tot.Properties.fold_left_append", "Prims.l_and", "Prims.l_Forall", "Prims.eq2", "Prims.squash", "FStar.List.Tot.Base.fold_left", "FStar.List.Tot.Base.op_At", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let fold_left_append_monoid (#a: Type) (f: (a -> a -> Tot a)) (z: a) (l1 l2: list a) : Lemma (requires (forall u v w. f u (f v w) == f (f u v) w) /\ (forall x. f x z == x) /\ (forall x. f z x == x)) (ensures fold_left f z (l1 @ l2) == f (fold_left f z l1) (fold_left f z l2)) =
fold_left_append f l1 l2; fold_left_monoid f z l2
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.fold_left_monoid
val fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w. (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x. (x `opA` zeroA) == x) /\ (forall x. (zeroA `opA` x) == x)) (ensures forall x. (fold_left opA x l) == (x `opA` (fold_left opA zeroA l)))
val fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w. (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x. (x `opA` zeroA) == x) /\ (forall x. (zeroA `opA` x) == x)) (ensures forall x. (fold_left opA x l) == (x `opA` (fold_left opA zeroA l)))
let rec fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w . (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x . (x `opA` zeroA) == x) /\ (forall x . (zeroA `opA` x) == x)) (ensures forall x . (fold_left opA x l) == (x `opA` (fold_left opA zeroA l))) = match l with | [] -> () | x :: q -> fold_left_monoid opA zeroA q
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 979, "start_col": 0, "start_line": 964 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l) (** Properties of [fold_left] *) let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b) . p x ==> memP y l ==> p (f x y) ) (ensures forall (x: a) . p x ==> p (fold_left f x l)) = match l with | [] -> () | y :: q -> fold_left_invar f q p let rec fold_left_map (#a #b #c: Type) (f_aba: a -> b -> Tot a) (f_bc: b -> Tot c) (f_aca: a -> c -> Tot a) (l: list b) : Lemma (requires forall (x: a) (y: b) . f_aba x y == f_aca x (f_bc y) ) (ensures forall (x : a) . fold_left f_aba x l == fold_left f_aca x (map f_bc l) ) = match l with | [] -> () | y :: q -> fold_left_map f_aba f_bc f_aca q let rec map_append (#a #b: Type) (f: a -> Tot b) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2) = match l1 with | [] -> () | x :: q -> map_append f q l2 let rec fold_left_append (#a #b: Type) (f: a -> b -> Tot a) (l1 l2: list b) : Lemma (ensures forall x . fold_left f x (l1 @ l2) == fold_left f (fold_left f x l1) l2) = match l1 with | [] -> () | x :: q -> fold_left_append f q l2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
opA: (_: a -> _: a -> a) -> zeroA: a -> l: Prims.list a -> FStar.Pervasives.Lemma (requires (forall (u890: a) (v: a) (w: a). opA u890 (opA v w) == opA (opA u890 v) w) /\ (forall (x: a). opA x zeroA == x) /\ (forall (x: a). opA zeroA x == x)) (ensures forall (x: a). FStar.List.Tot.Base.fold_left opA x l == opA x (FStar.List.Tot.Base.fold_left opA zeroA l) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.fold_left_monoid", "Prims.unit", "Prims.l_and", "Prims.l_Forall", "Prims.eq2", "Prims.squash", "FStar.List.Tot.Base.fold_left", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec fold_left_monoid (#a: Type) (opA: (a -> a -> Tot a)) (zeroA: a) (l: list a) : Lemma (requires (forall u v w. (u `opA` (v `opA` w)) == ((u `opA` v) `opA` w)) /\ (forall x. (x `opA` zeroA) == x) /\ (forall x. (zeroA `opA` x) == x)) (ensures forall x. (fold_left opA x l) == (x `opA` (fold_left opA zeroA l))) =
match l with | [] -> () | x :: q -> fold_left_monoid opA zeroA q
false
FStar.List.Tot.Properties.fst
FStar.List.Tot.Properties.map_append
val map_append (#a #b: Type) (f: (a -> Tot b)) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2)
val map_append (#a #b: Type) (f: (a -> Tot b)) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2)
let rec map_append (#a #b: Type) (f: a -> Tot b) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2) = match l1 with | [] -> () | x :: q -> map_append f q l2
{ "file_name": "ulib/FStar.List.Tot.Properties.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 952, "start_col": 0, "start_line": 942 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module states and proves some properties about pure and total operations on lists. @summary Properties of pure total operations on lists *) module FStar.List.Tot.Properties open FStar.List.Tot.Base (** A list indexed by its length **) let llist a (n:nat) = l:list a {length l = n} (** Properties about mem **) (** Correctness of [mem] for types with decidable equality. TODO: replace [mem] with [memP] in relevant lemmas and define the right SMTPat to automatically recover lemmas about [mem] for types with decidable equality *) let rec mem_memP (#a: eqtype) (x: a) (l: list a) : Lemma (ensures (mem x l <==> memP x l)) [SMTPat (mem x l); SMTPat (memP x l)] = match l with | [] -> () | a :: q -> mem_memP x q (** If an element can be [index]ed, then it is a [memP] of the list. *) let rec lemma_index_memP (#t:Type) (l:list t) (i:nat{i < length l}) : Lemma (ensures (index l i `memP` l)) [SMTPat (index l i `memP` l)] = match i with | 0 -> () | _ -> lemma_index_memP (tl l) (i - 1) (** The empty list has no elements. *) val memP_empty : #a: Type -> x:a -> Lemma (requires (memP x [])) (ensures False) let memP_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val memP_existsb: #a: Type -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ memP x xs)))) let rec memP_existsb #a f xs = match xs with | [] -> () | hd::tl -> memP_existsb f tl let rec memP_map_intro (#a #b: Type) (f: a -> Tot b) (x: a) (l: list a) : Lemma (requires True) (ensures (memP x l ==> memP (f x) (map f l))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_intro f x q (* NOTE: would fail if [requires memP x l] instead of [ ==> ] *) let rec memP_map_elim (#a #b: Type) (f: a -> Tot b) (y: b) (l: list a) : Lemma (requires True) (ensures (memP y (map f l) ==> (exists (x : a) . memP x l /\ f x == y))) (decreases l) = match l with | [] -> () | _ :: q -> memP_map_elim f y q (** The empty list has no elements *) val mem_empty : #a:eqtype -> x:a -> Lemma (requires (mem x [])) (ensures False) let mem_empty #a x = () (** Full specification for [existsb]: [existsb f xs] holds if, and only if, there exists an element [x] of [xs] such that [f x] holds. *) val mem_existsb: #a:eqtype -> f:(a -> Tot bool) -> xs:list a -> Lemma(ensures (existsb f xs <==> (exists (x:a). (f x = true /\ mem x xs)))) let rec mem_existsb #a f xs = match xs with | [] -> () | hd::tl -> mem_existsb f tl let rec mem_count (#a: eqtype) (l: list a) (x: a) : Lemma (mem x l <==> count x l > 0) = match l with | [] -> () | x' :: l' -> mem_count l' x (** Properties about rev **) val rev_acc_length : l:list 'a -> acc:list 'a -> Lemma (requires True) (ensures (length (rev_acc l acc) = length l + length acc)) let rec rev_acc_length l acc = match l with | [] -> () | hd::tl -> rev_acc_length tl (hd::acc) val rev_length : l:list 'a -> Lemma (requires True) (ensures (length (rev l) = length l)) let rev_length l = rev_acc_length l [] val rev_acc_memP : #a:Type -> l:list a -> acc:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev_acc l acc) <==> (memP x l \/ memP x acc))) let rec rev_acc_memP #a l acc x = match l with | [] -> () | hd::tl -> rev_acc_memP tl (hd::acc) x (** A list and its reversed have the same elements *) val rev_memP : #a:Type -> l:list a -> x:a -> Lemma (requires True) (ensures (memP x (rev l) <==> memP x l)) let rev_memP #a l x = rev_acc_memP l [] x val rev_mem : #a:eqtype -> l:list a -> x:a -> Lemma (requires True) (ensures (mem x (rev l) <==> mem x l)) let rev_mem l x = rev_memP l x (** Properties about append **) val append_nil_l: l:list 'a -> Lemma (requires True) (ensures ([]@l == l)) let append_nil_l l = () val append_l_nil: l:list 'a -> Lemma (requires True) (ensures (l@[] == l)) [SMTPat (l@[])] let rec append_l_nil = function | [] -> () | hd::tl -> append_l_nil tl val append_cons_l: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures (((hd::tl)@l) == (hd::(tl@l)))) let append_cons_l hd tl l = () val append_l_cons: hd:'a -> tl:list 'a -> l:list 'a -> Lemma (requires True) (ensures ((l@(hd::tl)) == ((l@[hd])@tl))) let rec append_l_cons hd tl l = match l with | [] -> () | hd'::tl' -> append_l_cons hd tl tl' val append_assoc: l1:list 'a -> l2:list 'a -> l3:list 'a -> Lemma (requires True) (ensures ((l1@(l2@l3)) == ((l1@l2)@l3))) let rec append_assoc l1 l2 l3 = match l1 with | [] -> () | hd::tl -> append_assoc tl l2 l3 val append_length: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures (length (l1@l2) = length l1 + length l2)) [SMTPat (length (l1 @ l2))] let rec append_length l1 l2 = match l1 with | [] -> () | hd::tl -> append_length tl l2 val append_mem: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (mem a (l1@l2) = (mem a l1 || mem a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_mem #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_mem tl l2 a val append_memP: #t:Type -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) (* [SMTPat (mem a (l1@l2))] *) let rec append_memP #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_memP tl l2 a val append_mem_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. mem a (l1@l2) = (mem a l1 || mem a l2))) let rec append_mem_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_mem_forall tl l2 val append_memP_forall: #a:Type -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. memP a (l1 `append` l2) <==> (memP a l1 \/ memP a l2))) let rec append_memP_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_memP_forall tl l2 val append_count: #t:eqtype -> l1:list t -> l2:list t -> a:t -> Lemma (requires True) (ensures (count a (l1@l2) = (count a l1 + count a l2))) let rec append_count #t l1 l2 a = match l1 with | [] -> () | hd::tl -> append_count tl l2 a val append_count_forall: #a:eqtype -> l1:list a -> l2:list a -> Lemma (requires True) (ensures (forall a. count a (l1@l2) = (count a l1 + count a l2))) (* [SMTPat (l1@l2)] *) let rec append_count_forall #a l1 l2 = match l1 with | [] -> () | hd::tl -> append_count_forall tl l2 val append_eq_nil: l1:list 'a -> l2:list 'a -> Lemma (requires (l1@l2 == [])) (ensures (l1 == [] /\ l2 == [])) let append_eq_nil l1 l2 = () val append_eq_singl: l1:list 'a -> l2:list 'a -> x:'a -> Lemma (requires (l1@l2 == [x])) (ensures ((l1 == [x] /\ l2 == []) \/ (l1 == [] /\ l2 == [x]))) let append_eq_singl l1 l2 x = () val append_inv_head: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l@l1) == (l@l2))) (ensures (l1 == l2)) let rec append_inv_head l l1 l2 = match l with | [] -> () | hd::tl -> append_inv_head tl l1 l2 val append_inv_tail: l:list 'a -> l1:list 'a -> l2:list 'a -> Lemma (requires ((l1@l) == (l2@l))) (ensures (l1 == l2)) let rec append_inv_tail l l1 l2 = match l1, l2 with | [], [] -> () | hd1::tl1, hd2::tl2 -> append_inv_tail l tl1 tl2 | [], hd2::tl2 -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl2; append_inv_tail tl [] (tl2@[hd]) (* We can here apply the induction hypothesis thanks to termination on a lexicographical ordering of the arguments! *) ) | hd1::tl1, [] -> (match l with | [] -> () | hd::tl -> append_l_cons hd tl tl1; append_inv_tail tl (tl1@[hd]) [] (* Idem *) ) let rec append_length_inv_head (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length left1 == length left2)) (ensures (left1 == left2 /\ right1 == right2)) (decreases left1) = match left1 with | [] -> () | _ :: left1' -> append_length_inv_head left1' right1 (tl left2) right2 let append_length_inv_tail (#a: Type) (left1 right1 left2 right2: list a) : Lemma (requires (append left1 right1 == append left2 right2 /\ length right1 == length right2)) (ensures (left1 == left2 /\ right1 == right2)) = append_length left1 right1; append_length left2 right2; append_length_inv_head left1 right1 left2 right2 let append_injective #a (l0 l0':list a) (l1 l1':list a) : Lemma (ensures (length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1' ==> l0 == l0' /\ l1 == l1') = introduce ((length l0 == length l0' \/ length l1 == length l1') /\ append l0 l1 == append l0' l1') ==> (l0 == l0' /\ l1 == l1') with _. eliminate (length l0 == length l0') \/ (length l1 == length l1') returns _ with _. append_length_inv_head l0 l1 l0' l1' and _. append_length_inv_tail l0 l1 l0' l1' (** The [last] element of a list remains the same, even after that list is [append]ed to another list. *) let rec lemma_append_last (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) (ensures (last (l1 @ l2) == last l2)) = match l1 with | [] -> () | _ :: l1' -> lemma_append_last l1' l2 (** Properties mixing rev and append **) val rev': list 'a -> Tot (list 'a) let rec rev' = function | [] -> [] | hd::tl -> (rev' tl)@[hd] let rev'T = rev' val rev_acc_rev': l:list 'a -> acc:list 'a -> Lemma (requires (True)) (ensures ((rev_acc l acc) == ((rev' l)@acc))) let rec rev_acc_rev' l acc = match l with | [] -> () | hd::tl -> rev_acc_rev' tl (hd::acc); append_l_cons hd acc (rev' tl) val rev_rev': l:list 'a -> Lemma (requires True) (ensures ((rev l) == (rev' l))) let rev_rev' l = rev_acc_rev' l []; append_l_nil (rev' l) val rev'_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev' (l1@l2)) == ((rev' l2)@(rev' l1)))) let rec rev'_append l1 l2 = match l1 with | [] -> append_l_nil (rev' l2) | hd::tl -> rev'_append tl l2; append_assoc (rev' l2) (rev' tl) [hd] val rev_append: l1:list 'a -> l2:list 'a -> Lemma (requires True) (ensures ((rev (l1@l2)) == ((rev l2)@(rev l1)))) let rev_append l1 l2 = rev_rev' l1; rev_rev' l2; rev_rev' (l1@l2); rev'_append l1 l2 val rev'_involutive : l:list 'a -> Lemma (requires True) (ensures (rev' (rev' l) == l)) let rec rev'_involutive = function | [] -> () | hd::tl -> rev'_append (rev' tl) [hd]; rev'_involutive tl val rev_involutive : l:list 'a -> Lemma (requires True) (ensures (rev (rev l) == l)) let rev_involutive l = rev_rev' l; rev_rev' (rev' l); rev'_involutive l (** Properties about snoc *) val lemma_snoc_length : (lx:(list 'a * 'a)) -> Lemma (requires True) (ensures (length (snoc lx) = length (fst lx) + 1)) let lemma_snoc_length (l, x) = append_length l [x] (** Reverse induction principle **) val rev'_list_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p (rev' tl) ==> p (rev' (hd::tl))))) (ensures (p (rev' l))) let rec rev'_list_ind p = function | [] -> () | hd::tl -> rev'_list_ind p tl val rev_ind: p:(list 'a -> Tot bool) -> l:list 'a -> Lemma (requires ((p []) /\ (forall hd tl. p hd ==> p (hd@[tl])))) (ensures (p l)) let rev_ind p l = rev'_involutive l; rev'_list_ind p (rev' l) (** Properties about iterators **) val map_lemma: f:('a -> Tot 'b) -> l:(list 'a) -> Lemma (requires True) (ensures (length (map f l)) = length l) [SMTPat (map f l)] let rec map_lemma f l = match l with | [] -> () | h::t -> map_lemma f t (** Properties about unsnoc *) (** [unsnoc] is the inverse of [snoc] *) val lemma_unsnoc_snoc: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (snoc (unsnoc l) == l)) [SMTPat (snoc (unsnoc l))] let lemma_unsnoc_snoc #a l = let l', x = unsnoc l in let l1, l2 = l', [x] in lemma_splitAt_snd_length (length l - 1) l; // assert ((l1, l2) == splitAt (length l - 1) l); let rec aux (l:list a{length l > 0}) : Lemma (let l1, l2 = splitAt (length l - 1) l in append l1 l2 == l) = if length l = 1 then () else aux (tl l) in aux l (** [snoc] is the inverse of [unsnoc] *) val lemma_snoc_unsnoc: #a:Type -> lx:(list a * a) -> Lemma (requires True) (ensures (unsnoc (snoc lx) == lx)) (decreases (length (fst (lx)))) [SMTPat (unsnoc (snoc lx))] let rec lemma_snoc_unsnoc #a lx = let l, x = lx in match l with | [] -> () | _ -> lemma_snoc_unsnoc (tl l, x) (** Doing an [unsnoc] gives us a list that is shorter in length by 1 *) val lemma_unsnoc_length: #a:Type -> l:list a{length l > 0} -> Lemma (requires True) (ensures (length (fst (unsnoc l)) == length l - 1)) let lemma_unsnoc_length #a l = lemma_snoc_length (unsnoc l) (** [unsnoc] followed by [append] can be connected to the same vice-versa. *) let rec lemma_unsnoc_append (#a:Type) (l1 l2:list a) : Lemma (requires (length l2 > 0)) // the [length l2 = 0] is trivial (ensures ( let al, a = unsnoc (l1 @ l2) in let bl, b = unsnoc l2 in al == l1 @ bl /\ a == b)) = match l1 with | [] -> () | _ :: l1' -> lemma_unsnoc_append l1' l2 (** [unsnoc] gives you [last] element, which is [index]ed at [length l - 1] *) let rec lemma_unsnoc_is_last (#t:Type) (l:list t) : Lemma (requires (length l > 0)) (ensures (snd (unsnoc l) == last l /\ snd (unsnoc l) == index l (length l - 1))) = match l with | [_] -> () | _ -> lemma_unsnoc_is_last (tl l) (** [index]ing on the left part of an [unsnoc]d list is the same as indexing the original list. *) let rec lemma_unsnoc_index (#t:Type) (l:list t) (i:nat) : Lemma (requires (length l > 0 /\ i < length l - 1)) (ensures ( i < length (fst (unsnoc l)) /\ index (fst (unsnoc l)) i == index l i)) = match i with | 0 -> () | _ -> lemma_unsnoc_index (tl l) (i - 1) (** Definition and properties about [split_using] *) (** [split_using] splits a list at the first instance of finding an element in it. NOTE: Uses [strong_excluded_middle] axiom. *) let rec split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (list t * list t) = match l with | [_] -> [], l | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( [], l ) else ( let l1', l2' = split_using rest x in a :: l1', l2' ) let rec lemma_split_using (#t:Type) (l:list t) (x:t{x `memP` l}) : Lemma (ensures ( let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l)) = match l with | [_] -> () | a :: rest -> let goal = let l1, l2 = split_using l x in length l2 > 0 /\ ~(x `memP` l1) /\ hd l2 == x /\ append l1 l2 == l in FStar.Classical.or_elim #_ #_ #(fun () -> goal) (fun (_:squash (a == x)) -> ()) (fun (_:squash (x `memP` rest)) -> lemma_split_using rest x) (** Definition of [index_of] *) (** [index_of l x] gives the index of the leftmost [x] in [l]. NOTE: Uses [strong_excluded_middle] axiom. *) let rec index_of (#t:Type) (l:list t) (x:t{x `memP` l}) : GTot (i:nat{i < length l /\ index l i == x}) = match l with | [_] -> 0 | a :: rest -> if FStar.StrongExcludedMiddle.strong_excluded_middle (a == x) then ( 0 ) else ( 1 + index_of rest x ) (** Properties about partition **) (** If [partition f l = (l1, l2)], then for any [x], [x] is in [l] if and only if [x] is in either one of [l1] or [l2] *) val partition_mem: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in mem x l = (mem x l1 || mem x l2))) let rec partition_mem #a f l x = match l with | [] -> () | hd::tl -> partition_mem f tl x (** Same as [partition_mem], but using [forall] *) val partition_mem_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition f l in (forall x. mem x l = (mem x l1 || mem x l2)))) let rec partition_mem_forall #a f l = match l with | [] -> () | hd::tl -> partition_mem_forall f tl (** If [partition f l = (l1, l2)], then for any [x], if [x] is in [l1] (resp. [l2]), then [f x] holds (resp. does not hold) *) val partition_mem_p_forall: #a:eqtype -> p:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (let l1, l2 = partition p l in (forall x. mem x l1 ==> p x) /\ (forall x. mem x l2 ==> not (p x)))) let rec partition_mem_p_forall #a p l = match l with | [] -> () | hd::tl -> partition_mem_p_forall p tl (** If [partition f l = (l1, l2)], then the number of occurrences of any [x] in [l] is the same as the sum of the number of occurrences in [l1] and [l2]. *) val partition_count: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> x:a -> Lemma (requires True) (ensures (count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) let rec partition_count #a f l x = match l with | [] -> () | hd::tl -> partition_count f tl x (** Same as [partition_count], but using [forall] *) val partition_count_forall: #a:eqtype -> f:(a -> Tot bool) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = (count x (fst (partition f l)) + count x (snd (partition f l))))) (* [SMTPat (partitionT f l)] *) let rec partition_count_forall #a f l= match l with | [] -> () | hd::tl -> partition_count_forall f tl (** Properties about subset **) let rec mem_subset (#a: eqtype) (la lb: list a) : Lemma (requires (forall x. mem x la ==> mem x lb)) (ensures (subset la lb)) = match la with | [] -> () | hd :: tl -> mem_subset tl lb let subset_reflexive (#a: eqtype) (l: list a) : Lemma (subset l l) [SMTPat (subset l l)] = mem_subset l l (** Correctness of quicksort **) (** Correctness of [sortWith], part 1/2: the number of occurrences of any [x] in [sortWith f l] is the same as the number of occurrences in [l]. *) val sortWith_permutation: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires True) (ensures (forall x. count x l = count x (sortWith f l))) (decreases (length l)) let rec sortWith_permutation #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_count_forall (bool_of_compare f pivot) tl; sortWith_permutation f lo; sortWith_permutation f hi; append_count_forall (sortWith f lo) (pivot::sortWith f hi) (** [sorted f l] holds if, and only if, any two consecutive elements [x], [y] of [l] are such that [f x y] holds *) val sorted: ('a -> 'a -> Tot bool) -> list 'a -> Tot bool let rec sorted f = function | [] | [_] -> true | x::y::tl -> f x y && sorted f (y::tl) (** [f] is a total order if, and only if, it is reflexive, anti-symmetric, transitive and total. *) type total_order (#a:Type) (f: (a -> a -> Tot bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. f a1 a2 /\ f a2 a1 ==> a1 == a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) (** Correctness of the merging of two sorted lists around a pivot. *) val append_sorted: #a:eqtype -> f:(a -> a -> Tot bool) -> l1:list a{sorted f l1} -> l2:list a{sorted f l2} -> pivot:a -> Lemma (requires (total_order #a f /\ (forall y. mem y l1 ==> not(f pivot y)) /\ (forall y. mem y l2 ==> f pivot y))) (ensures (sorted f (l1@(pivot::l2)))) [SMTPat (sorted f (l1@(pivot::l2)))] let rec append_sorted #a f l1 l2 pivot = match l1 with | [] -> () | hd::tl -> append_sorted f tl l2 pivot (** Correctness of [sortWith], part 2/2: the elements of [sortWith f l] are sorted according to comparison function [f], and the elements of [sortWith f l] are the elements of [l]. *) val sortWith_sorted: #a:eqtype -> f:(a -> a -> Tot int) -> l:list a -> Lemma (requires (total_order #a (bool_of_compare f))) (ensures ((sorted (bool_of_compare f) (sortWith f l)) /\ (forall x. mem x l = mem x (sortWith f l)))) (decreases (length l)) let rec sortWith_sorted #a f l = match l with | [] -> () | pivot::tl -> let hi, lo = partition (bool_of_compare f pivot) tl in partition_length (bool_of_compare f pivot) tl; partition_mem_forall (bool_of_compare f pivot) tl; partition_mem_p_forall (bool_of_compare f pivot) tl; sortWith_sorted f lo; sortWith_sorted f hi; append_mem_forall (sortWith f lo) (pivot::sortWith f hi); append_sorted (bool_of_compare f) (sortWith f lo) (sortWith f hi) pivot (** Properties of [noRepeats] *) let noRepeats_nil (#a: eqtype) : Lemma (ensures (noRepeats #a [])) = () let noRepeats_cons (#a: eqtype) (h: a) (tl: list a) : Lemma (requires ((~ (mem h tl)) /\ noRepeats tl)) (ensures (noRepeats #a (h::tl))) = () let rec noRepeats_append_elim (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats (l1 @ l2))) (ensures (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_elim q1 l2 let rec noRepeats_append_intro (#a: eqtype) (l1 l2: list a) : Lemma (requires (noRepeats l1 /\ noRepeats l2 /\ (forall x . mem x l1 ==> ~ (mem x l2)))) (ensures (noRepeats (l1 @ l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_mem q1 l2 x; noRepeats_append_intro q1 l2 (** Properties of [no_repeats_p] *) let no_repeats_p_nil (#a: Type) : Lemma (ensures (no_repeats_p #a [])) = () let no_repeats_p_cons (#a: Type) (h: a) (tl: list a) : Lemma (requires ((~ (memP h tl)) /\ no_repeats_p tl)) (ensures (no_repeats_p #a (h::tl))) = () let rec no_repeats_p_append_elim (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p (l1 `append` l2))) (ensures (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_elim q1 l2 let rec no_repeats_p_append_intro (#a: Type) (l1 l2: list a) : Lemma (requires (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2)))) (ensures (no_repeats_p (l1 `append` l2))) (decreases l1) = match l1 with | [] -> () | x :: q1 -> append_memP q1 l2 x; no_repeats_p_append_intro q1 l2 let no_repeats_p_append (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> ( (no_repeats_p l1 /\ no_repeats_p l2 /\ (forall x . memP x l1 ==> ~ (memP x l2))) )) = FStar.Classical.move_requires (no_repeats_p_append_intro l1) l2; FStar.Classical.move_requires (no_repeats_p_append_elim l1) l2 let no_repeats_p_append_swap (#a: Type) (l1 l2: list a) : Lemma (no_repeats_p (l1 `append` l2) <==> no_repeats_p (l2 `append` l1)) = no_repeats_p_append l1 l2; no_repeats_p_append l2 l1 let no_repeats_p_append_permut (#a: Type) (l1 l2 l3 l4 l5: list a) : Lemma ((no_repeats_p (l1 `append` (l2 `append` (l3 `append` (l4 `append` l5))))) <==> no_repeats_p (l1 `append` (l4 `append` (l3 `append` (l2 `append` l5))))) = no_repeats_p_append l1 (l2 `append` (l3 `append` (l4 `append` l5))); append_memP_forall l2 (l3 `append` (l4 `append` l5)); append_memP_forall l3 (l4 `append` l5); append_memP_forall l4 l5; no_repeats_p_append l2 (l3 `append` (l4 `append` l5)); no_repeats_p_append l3 (l4 `append` l5); no_repeats_p_append l4 l5; no_repeats_p_append l2 l5; no_repeats_p_append l3 (l2 `append` l5); append_memP_forall l2 l5; no_repeats_p_append l4 (l3 `append` (l2 `append` l5)); append_memP_forall l3 (l2 `append` l5); no_repeats_p_append l1 (l4 `append` (l3 `append` (l2 `append` l5))); append_memP_forall l4 (l3 `append` (l2 `append` l5)) let no_repeats_p_false_intro (#a: Type) (l1 l l2 l3: list a) : Lemma (requires (Cons? l)) (ensures (~ (no_repeats_p (l1 `append` (l `append` (l2 `append` (l `append` l3))))))) = let x = hd l in assert (memP x l); no_repeats_p_append l1 (l `append` (l2 `append` (l `append` l3))); no_repeats_p_append l (l2 `append` (l `append` l3)); append_memP l2 (l `append` l3) x; append_memP l l3 x (** Properties of [assoc] *) let assoc_nil (#a: eqtype) (#b: Type) (x: a) : Lemma (ensures (assoc #a #b x [] == None)) = () let assoc_cons_eq (#a: eqtype) (#b: Type) (x: a) (y: b) (q: list (a * b)) : Lemma (ensures (assoc x ((x, y) :: q) == Some y)) = () let assoc_cons_not_eq (#a: eqtype) (#b: Type) (x x': a) (y: b) (q: list (a * b)) : Lemma (requires (x <> x')) (ensures (assoc x' ((x, y) :: q) == assoc x' q)) = () let rec assoc_append_elim_r (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l2 == None \/ ~ (assoc x l1 == None))) (ensures (assoc x (l1 @ l2) == assoc x l1)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_append_elim_r x q l2 let rec assoc_append_elim_l (#a: eqtype) (#b: Type) (x: a) (l1 l2: list (a * b)) : Lemma (requires (assoc x l1 == None)) (ensures (assoc x (l1 @ l2) == assoc x l2)) (decreases l1) = match l1 with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_append_elim_l x q l2 let rec assoc_memP_some (#a: eqtype) (#b: Type) (x: a) (y: b) (l: list (a * b)) : Lemma (requires (assoc x l == Some y)) (ensures (memP (x, y) l)) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then () else assoc_memP_some x y q let rec assoc_memP_none (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (requires (assoc x l == None)) (ensures (forall y . ~ (memP (x, y) l))) (decreases l) = match l with | [] -> () | (x', _) :: q -> if x = x' then assert False else assoc_memP_none x q let assoc_mem (#a: eqtype) (#b: Type) (x: a) (l: list (a * b)) : Lemma (ensures (mem x (map fst l) <==> (exists y . assoc x l == Some y))) = match assoc x l with | None -> assoc_memP_none x l; mem_memP x (map fst l); memP_map_elim fst x l | Some y -> assoc_memP_some x y l; memP_map_intro fst (x, y) l; mem_memP x (map fst l) (** Properties of [fold_left] *) let rec fold_left_invar (#a #b: Type) (f: (a -> b -> Tot a)) (l: list b) (p: (a -> Tot Type0)) : Lemma (requires forall (x: a) (y: b) . p x ==> memP y l ==> p (f x y) ) (ensures forall (x: a) . p x ==> p (fold_left f x l)) = match l with | [] -> () | y :: q -> fold_left_invar f q p let rec fold_left_map (#a #b #c: Type) (f_aba: a -> b -> Tot a) (f_bc: b -> Tot c) (f_aca: a -> c -> Tot a) (l: list b) : Lemma (requires forall (x: a) (y: b) . f_aba x y == f_aca x (f_bc y) ) (ensures forall (x : a) . fold_left f_aba x l == fold_left f_aca x (map f_bc l) ) = match l with | [] -> () | y :: q -> fold_left_map f_aba f_bc f_aca q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.List.Tot.Properties.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> l1: Prims.list a -> l2: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.map f (l1 @ l2) == FStar.List.Tot.Base.map f l1 @ FStar.List.Tot.Base.map f l2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.List.Tot.Properties.map_append", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.map", "FStar.List.Tot.Base.op_At", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec map_append (#a #b: Type) (f: (a -> Tot b)) (l1 l2: list a) : Lemma (ensures map f (l1 @ l2) == map f l1 @ map f l2) =
match l1 with | [] -> () | x :: q -> map_append f q l2
false