file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hacl.Impl.Chacha20.Core32xN.fst | Hacl.Impl.Chacha20.Core32xN.transpose8 | val transpose8: st:state 8 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose8 (as_seq h0 st))) | val transpose8: st:state 8 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose8 (as_seq h0 st))) | let transpose8 st =
let (st0,st1,st2,st3,st4,st5,st6,st7) = (st.(0ul),st.(1ul),st.(2ul),st.(3ul),st.(4ul),st.(5ul),st.(6ul),st.(7ul)) in
let (st8,st9,st10,st11,st12,st13,st14,st15) = (st.(8ul),st.(9ul),st.(10ul),st.(11ul),st.(12ul),st.(13ul),st.(14ul),st.(15ul)) in
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st0,st1,st2,st3,st4,st5,st6,st7) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st8,st9,st10,st11,st12,st13,st14,st15) in
create16 #(uint32xN 8) st v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | {
"file_name": "code/chacha20/Hacl.Impl.Chacha20.Core32xN.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 81,
"end_line": 110,
"start_col": 0,
"start_line": 105
} | module Hacl.Impl.Chacha20.Core32xN
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Lib.IntVector
module Spec = Hacl.Spec.Chacha20.Vec
module VecTranspose = Lib.IntVector.Transpose
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
let lanes = Spec.lanes
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
inline_for_extraction
let state (w:lanes) = lbuffer (uint32xN w) 16ul
inline_for_extraction
let index = (i:size_t{size_v i < 16})
inline_for_extraction noextract
val create_state: w:lanes -> StackInline (state w)
(requires (fun h -> True))
(ensures (fun h0 r h1 -> live h1 r /\
as_seq h1 r == Seq.create 16 (vec_zero U32 w) /\
stack_allocated r h0 h1 (Seq.create 16 (vec_zero U32 w))))
let create_state w = create (size 16) (vec_zero U32 w)
inline_for_extraction noextract
val add_counter:
#w:lanes
-> st:state w
-> c:size_t{w * v c <= max_size_t} ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.add_counter #w (v c) (as_seq h0 st)))
let add_counter #w st c =
let v = vec_load #U32 (u32 w *! size_to_uint32 c) w in
let old_c = st.(12ul) in
st.(size 12) <- old_c +| v
inline_for_extraction noextract
val copy_state:
#w:lanes
-> st:state w
-> ost:state w ->
Stack unit
(requires (fun h -> live h st /\ live h ost /\ disjoint st ost))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == as_seq h0 ost))
let copy_state #w st ost = copy st ost
inline_for_extraction noextract
val sum_state:
#w:lanes
-> st:state w
-> ost:state w ->
Stack unit
(requires (fun h -> live h st /\ live h ost /\ eq_or_disjoint st ost))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.sum_state (as_seq h0 st) (as_seq h0 ost)))
let sum_state #w st ost = map2T (size 16) st ( +| ) st ost
inline_for_extraction noextract
val transpose1: st:state 1 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose1 (as_seq h0 st)))
let transpose1 st = ()
inline_for_extraction noextract
val transpose4: st:state 4 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose4 (as_seq h0 st)))
let transpose4 st =
let (st0, st1, st2, st3) = (st.(0ul),st.(1ul),st.(2ul),st.(3ul)) in
let (st4, st5, st6, st7) = (st.(4ul),st.(5ul),st.(6ul),st.(7ul)) in
let (st8, st9, st10, st11) = (st.(8ul),st.(9ul),st.(10ul),st.(11ul)) in
let (st12, st13, st14, st15) = (st.(12ul),st.(13ul),st.(14ul),st.(15ul)) in
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st0, st1, st2, st3) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st4, st5, st6, st7) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st8, st9, st10, st11) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st12, st13, st14, st15) in
create16 #(uint32xN 4) st v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
inline_for_extraction noextract
val transpose8: st:state 8 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Chacha20.Vec.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Chacha20.Core32xN.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Chacha20.Vec",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Impl.Chacha20.Core32xN.state 8 -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Chacha20.Core32xN.state",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U32",
"Lib.Buffer.create16",
"Hacl.Impl.Chacha20.Core32xN.uint32xN",
"Prims.unit",
"Lib.IntVector.Transpose.vec_t8",
"Lib.IntVector.Transpose.transpose8x8",
"FStar.Pervasives.Native.Mktuple8",
"FStar.Pervasives.Native.tuple8",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"FStar.UInt32.__uint_to_t"
] | [] | false | true | false | false | false | let transpose8 st =
| let st0, st1, st2, st3, st4, st5, st6, st7 =
(st.(0ul), st.(1ul), st.(2ul), st.(3ul), st.(4ul), st.(5ul), st.(6ul), st.(7ul))
in
let st8, st9, st10, st11, st12, st13, st14, st15 =
(st.(8ul), st.(9ul), st.(10ul), st.(11ul), st.(12ul), st.(13ul), st.(14ul), st.(15ul))
in
let v0, v1, v2, v3, v4, v5, v6, v7 =
VecTranspose.transpose8x8 (st0, st1, st2, st3, st4, st5, st6, st7)
in
let v8, v9, v10, v11, v12, v13, v14, v15 =
VecTranspose.transpose8x8 (st8, st9, st10, st11, st12, st13, st14, st15)
in
create16 #(uint32xN 8) st v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.transpose | val transpose (#w: lanes) (st: state w) : state w | val transpose (#w: lanes) (st: state w) : state w | let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 144,
"start_col": 0,
"start_line": 140
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Spec.Chacha20.Vec.state w -> Hacl.Spec.Chacha20.Vec.state w | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.transpose1",
"Hacl.Spec.Chacha20.Vec.transpose4",
"Hacl.Spec.Chacha20.Vec.transpose8"
] | [] | false | false | false | false | false | let transpose (#w: lanes) (st: state w) : state w =
| match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.chacha20_constants | val chacha20_constants:lseq size_t 4 | val chacha20_constants:lseq size_t 4 | let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 112,
"start_col": 0,
"start_line": 108
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB) 4 | Prims.Tot | [
"total"
] | [] | [
"Lib.Sequence.createL",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Hacl.Spec.Chacha20.Vec.c0",
"Hacl.Spec.Chacha20.Vec.c1",
"Hacl.Spec.Chacha20.Vec.c2",
"Hacl.Spec.Chacha20.Vec.c3",
"Prims.Nil"
] | [] | false | false | false | false | false | let chacha20_constants:lseq size_t 4 =
| [@@ inline_let ]let l = [c0; c1; c2; c3] in
assert_norm (List.Tot.length l == 4);
createL l | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.chacha20_init | val chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w | val chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w | let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 124,
"start_col": 0,
"start_line": 120
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
ctr0: Hacl.Spec.Chacha20.Vec.counter
-> Hacl.Spec.Chacha20.Vec.state w | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Lib.Sequence.op_String_Assignment",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.op_Plus_Bar",
"Lib.IntTypes.U32",
"Lib.Sequence.op_String_Access",
"Lib.IntVector.vec_t",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntVector.vec_v",
"Lib.Sequence.createi",
"Lib.IntTypes.mk_int",
"Lib.IntVector.vec_counter",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.index",
"Hacl.Spec.Chacha20.Vec.vec_load_i",
"Lib.Sequence.map",
"Lib.IntTypes.uint32",
"Hacl.Spec.Chacha20.Vec.setup1",
"Hacl.Spec.Chacha20.Vec.state"
] | [] | false | false | false | false | false | let chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w =
| let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[ 12 ] <- st.[ 12 ] +| c | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last | val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len) | val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len) | let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 186,
"start_col": 0,
"start_line": 182
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len -> | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
st0: Hacl.Spec.Chacha20.Vec.state w ->
incr: Hacl.Spec.Chacha20.Vec.counter{incr * w <= Lib.IntTypes.max_size_t} ->
len: Lib.IntTypes.size_nat{len < w * Hacl.Spec.Chacha20.Vec.size_block} ->
b: Lib.ByteSequence.lbytes len
-> Lib.ByteSequence.lbytes len | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.counter",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.max_size_t",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"Hacl.Spec.Chacha20.Vec.size_block",
"Lib.ByteSequence.lbytes",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Hacl.Spec.Chacha20.Vec.blocks",
"Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.eq2",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"Prims.op_Addition",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Prims.l_imp",
"Lib.Sequence.create",
"Lib.IntTypes.u8"
] | [] | false | false | false | false | false | let chacha20_encrypt_last #w st0 incr len b =
| let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len | false |
Hacl.Impl.Chacha20.Core32xN.fst | Hacl.Impl.Chacha20.Core32xN.xor_block | val xor_block:
#w:lanes
-> o:lbuffer uint8 ((4ul *! size w) *! 16ul)
-> st:state w
-> b:lbuffer uint8 ((4ul *! size w) *! 16ul) ->
Stack unit
(requires (fun h -> live h o /\ live h st /\ live h b /\
disjoint st b /\ disjoint st o /\ eq_or_disjoint b o))
(ensures (fun h0 _ h1 -> modifies (loc st |+| loc o) h0 h1 /\
as_seq h1 o == Spec.xor_block #w (as_seq h0 st) (as_seq h0 b))) | val xor_block:
#w:lanes
-> o:lbuffer uint8 ((4ul *! size w) *! 16ul)
-> st:state w
-> b:lbuffer uint8 ((4ul *! size w) *! 16ul) ->
Stack unit
(requires (fun h -> live h o /\ live h st /\ live h b /\
disjoint st b /\ disjoint st o /\ eq_or_disjoint b o))
(ensures (fun h0 _ h1 -> modifies (loc st |+| loc o) h0 h1 /\
as_seq h1 o == Spec.xor_block #w (as_seq h0 st) (as_seq h0 b))) | let xor_block #w o st b =
let h0 = ST.get () in
map_blocks_multi h0 (size w *! 4ul) 16ul b o
(fun h -> Spec.xor_block_f #w (as_seq h0 st))
(fun i ->
[@inline_let]
let bs = normalize_term (size w *! 4ul) in
let x = vec_load_le U32 w (sub b (i *! bs) bs) in
let y = x ^| st.(i) in
vec_store_le #U32 #w (sub o (i *! bs) bs) y
) | {
"file_name": "code/chacha20/Hacl.Impl.Chacha20.Core32xN.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 147,
"start_col": 0,
"start_line": 137
} | module Hacl.Impl.Chacha20.Core32xN
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Lib.IntVector
module Spec = Hacl.Spec.Chacha20.Vec
module VecTranspose = Lib.IntVector.Transpose
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
let lanes = Spec.lanes
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
inline_for_extraction
let state (w:lanes) = lbuffer (uint32xN w) 16ul
inline_for_extraction
let index = (i:size_t{size_v i < 16})
inline_for_extraction noextract
val create_state: w:lanes -> StackInline (state w)
(requires (fun h -> True))
(ensures (fun h0 r h1 -> live h1 r /\
as_seq h1 r == Seq.create 16 (vec_zero U32 w) /\
stack_allocated r h0 h1 (Seq.create 16 (vec_zero U32 w))))
let create_state w = create (size 16) (vec_zero U32 w)
inline_for_extraction noextract
val add_counter:
#w:lanes
-> st:state w
-> c:size_t{w * v c <= max_size_t} ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.add_counter #w (v c) (as_seq h0 st)))
let add_counter #w st c =
let v = vec_load #U32 (u32 w *! size_to_uint32 c) w in
let old_c = st.(12ul) in
st.(size 12) <- old_c +| v
inline_for_extraction noextract
val copy_state:
#w:lanes
-> st:state w
-> ost:state w ->
Stack unit
(requires (fun h -> live h st /\ live h ost /\ disjoint st ost))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == as_seq h0 ost))
let copy_state #w st ost = copy st ost
inline_for_extraction noextract
val sum_state:
#w:lanes
-> st:state w
-> ost:state w ->
Stack unit
(requires (fun h -> live h st /\ live h ost /\ eq_or_disjoint st ost))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.sum_state (as_seq h0 st) (as_seq h0 ost)))
let sum_state #w st ost = map2T (size 16) st ( +| ) st ost
inline_for_extraction noextract
val transpose1: st:state 1 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose1 (as_seq h0 st)))
let transpose1 st = ()
inline_for_extraction noextract
val transpose4: st:state 4 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose4 (as_seq h0 st)))
let transpose4 st =
let (st0, st1, st2, st3) = (st.(0ul),st.(1ul),st.(2ul),st.(3ul)) in
let (st4, st5, st6, st7) = (st.(4ul),st.(5ul),st.(6ul),st.(7ul)) in
let (st8, st9, st10, st11) = (st.(8ul),st.(9ul),st.(10ul),st.(11ul)) in
let (st12, st13, st14, st15) = (st.(12ul),st.(13ul),st.(14ul),st.(15ul)) in
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st0, st1, st2, st3) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st4, st5, st6, st7) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st8, st9, st10, st11) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st12, st13, st14, st15) in
create16 #(uint32xN 4) st v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
inline_for_extraction noextract
val transpose8: st:state 8 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose8 (as_seq h0 st)))
let transpose8 st =
let (st0,st1,st2,st3,st4,st5,st6,st7) = (st.(0ul),st.(1ul),st.(2ul),st.(3ul),st.(4ul),st.(5ul),st.(6ul),st.(7ul)) in
let (st8,st9,st10,st11,st12,st13,st14,st15) = (st.(8ul),st.(9ul),st.(10ul),st.(11ul),st.(12ul),st.(13ul),st.(14ul),st.(15ul)) in
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st0,st1,st2,st3,st4,st5,st6,st7) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st8,st9,st10,st11,st12,st13,st14,st15) in
create16 #(uint32xN 8) st v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
inline_for_extraction noextract
val transpose:
#w:lanes
-> st:state w ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose (as_seq h0 st)))
let transpose #w st =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
inline_for_extraction noextract
val xor_block:
#w:lanes
-> o:lbuffer uint8 ((4ul *! size w) *! 16ul)
-> st:state w
-> b:lbuffer uint8 ((4ul *! size w) *! 16ul) ->
Stack unit
(requires (fun h -> live h o /\ live h st /\ live h b /\
disjoint st b /\ disjoint st o /\ eq_or_disjoint b o))
(ensures (fun h0 _ h1 -> modifies (loc st |+| loc o) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Chacha20.Vec.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Chacha20.Core32xN.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Chacha20.Vec",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
o: Lib.Buffer.lbuffer Lib.IntTypes.uint8 (4ul *! Lib.IntTypes.size w *! 16ul) ->
st: Hacl.Impl.Chacha20.Core32xN.state w ->
b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 (4ul *! Lib.IntTypes.size w *! 16ul)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Chacha20.Core32xN.lanes",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size",
"Hacl.Impl.Chacha20.Core32xN.state",
"Lib.Buffer.map_blocks_multi",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Spec.Chacha20.Vec.xor_block_f",
"Lib.Buffer.as_seq",
"Hacl.Impl.Chacha20.Core32xN.uint32xN",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.Sequence.lseq",
"Lib.IntTypes.size_t",
"Lib.IntVector.vec_store_le",
"Prims.unit",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul",
"Lib.IntTypes.mk_int",
"Lib.Buffer.sub",
"Lib.IntVector.vec_t",
"Lib.IntVector.op_Hat_Bar",
"Lib.Buffer.op_Array_Access",
"Lib.IntVector.vec_load_le",
"FStar.Pervasives.normalize_term",
"FStar.HyperStack.ST.get"
] | [] | false | true | false | false | false | let xor_block #w o st b =
| let h0 = ST.get () in
map_blocks_multi h0
(size w *! 4ul)
16ul
b
o
(fun h -> Spec.xor_block_f #w (as_seq h0 st))
(fun i ->
[@@ inline_let ]let bs = normalize_term (size w *! 4ul) in
let x = vec_load_le U32 w (sub b (i *! bs) bs) in
let y = x ^| st.(i) in
vec_store_le #U32 #w (sub o (i *! bs) bs) y) | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.chacha20_decrypt_bytes | val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg} | val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg} | let chacha20_decrypt_bytes #w key nonce ctr0 cipher =
let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 cipher | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 221,
"start_col": 0,
"start_line": 219
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len)
let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len
val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_update #w st0 msg =
let cipher = msg in
map_blocks (w * size_block) cipher
(chacha20_encrypt_block st0)
(chacha20_encrypt_last st0)
val chacha20_encrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_encrypt_bytes #w key nonce ctr0 msg =
let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 msg
val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg} | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
c: Hacl.Spec.Chacha20.Vec.counter ->
cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher <= Lib.IntTypes.max_size_t}
-> msg: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg} | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Chacha20.Vec.chacha20_update",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.chacha20_init",
"Prims.eq2",
"Prims.nat"
] | [] | false | false | false | false | false | let chacha20_decrypt_bytes #w key nonce ctr0 cipher =
| let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 cipher | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block | val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w) | val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w) | let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 15,
"end_line": 173,
"start_col": 0,
"start_line": 170
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w -> | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
st0: Hacl.Spec.Chacha20.Vec.state w ->
incr: Hacl.Spec.Chacha20.Vec.counter{incr * w <= Lib.IntTypes.max_size_t} ->
b: Hacl.Spec.Chacha20.Vec.blocks w
-> Hacl.Spec.Chacha20.Vec.blocks w | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.counter",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Chacha20.Vec.blocks",
"Hacl.Spec.Chacha20.Vec.xor_block",
"Hacl.Spec.Chacha20.Vec.transpose",
"Hacl.Spec.Chacha20.Vec.chacha20_core"
] | [] | false | false | false | false | false | let chacha20_encrypt_block #w st0 incr b =
| let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.xor_block | val xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w | val xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w | let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 53,
"end_line": 162,
"start_col": 0,
"start_line": 161
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Hacl.Spec.Chacha20.Vec.state w -> b: Hacl.Spec.Chacha20.Vec.blocks w
-> Hacl.Spec.Chacha20.Vec.blocks w | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.blocks",
"Lib.Sequence.map_blocks_multi",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Hacl.Spec.Chacha20.Vec.xor_block_f"
] | [] | false | false | false | false | false | let xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w =
| map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) | false |
Vale.Lib.Tactics.fst | Vale.Lib.Tactics.iterate_env | val iterate_env (bs: binders) : Tac unit | val iterate_env (bs: binders) : Tac unit | let rec iterate_env (bs : binders) : Tac unit =
match bs with
| [] -> ()
| b :: bs ->
let ty = type_of_binder b in
let elim = tf ty in
begin
match term_as_formula_total ty with
| And _ _ ->
elim (pack (Tv_Var (bv_of_binder b)));
clear b;
let t1 = implies_intro () in
let t2 = implies_intro () in
iterate_env (t1 :: t2 :: bs)
| _ -> iterate_env bs
end | {
"file_name": "vale/code/lib/util/Vale.Lib.Tactics.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 40,
"start_col": 0,
"start_line": 25
} | module Vale.Lib.Tactics
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.Derived
open FStar.Reflection.Formula
(***** Tactic to destruct conjuctions in context *)
private val __squash_and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __squash_and_elim #p #q #phi p_and_q f = ()
let squash_and_elim (t : term) : Tac unit =
let ae = `__squash_and_elim in
apply_lemma (mk_e_app ae [t])
let tf (t : term) : Tot (term -> Tac unit) =
match unsquash_term t with
| None -> and_elim
| _ -> squash_and_elim | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Derived.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.Formula.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Tactics.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | bs: FStar.Stubs.Reflection.Types.binders -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binders",
"Prims.unit",
"FStar.Stubs.Reflection.Types.binder",
"Prims.list",
"FStar.Stubs.Reflection.Types.term",
"Vale.Lib.Tactics.iterate_env",
"Prims.Cons",
"FStar.Tactics.V1.Logic.implies_intro",
"FStar.Stubs.Tactics.V1.Builtins.clear",
"FStar.Stubs.Tactics.V1.Builtins.pack",
"FStar.Stubs.Reflection.V1.Data.Tv_Var",
"FStar.Reflection.V1.Derived.bv_of_binder",
"FStar.Reflection.V1.Formula.formula",
"FStar.Reflection.V1.Formula.term_as_formula_total",
"Vale.Lib.Tactics.tf",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Reflection.V1.Derived.type_of_binder"
] | [
"recursion"
] | false | true | false | false | false | let rec iterate_env (bs: binders) : Tac unit =
| match bs with
| [] -> ()
| b :: bs ->
let ty = type_of_binder b in
let elim = tf ty in
match term_as_formula_total ty with
| And _ _ ->
elim (pack (Tv_Var (bv_of_binder b)));
clear b;
let t1 = implies_intro () in
let t2 = implies_intro () in
iterate_env (t1 :: t2 :: bs)
| _ -> iterate_env bs | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.chacha20_update | val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | let chacha20_update #w st0 msg =
let cipher = msg in
map_blocks (w * size_block) cipher
(chacha20_encrypt_block st0)
(chacha20_encrypt_last st0) | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 197,
"start_col": 0,
"start_line": 193
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len)
let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len
val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t} | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
st0: Hacl.Spec.Chacha20.Vec.state w ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t}
-> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg} | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.map_blocks",
"FStar.Mul.op_Star",
"Hacl.Spec.Chacha20.Vec.size_block",
"Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block",
"Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last",
"Lib.Sequence.seq",
"Lib.IntTypes.int_t",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.eq2",
"Prims.nat"
] | [] | false | false | false | false | false | let chacha20_update #w st0 msg =
| let cipher = msg in
map_blocks (w * size_block) cipher (chacha20_encrypt_block st0) (chacha20_encrypt_last st0) | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.transpose1 | val transpose1 (st: state 1) : state 1 | val transpose1 (st: state 1) : state 1 | let transpose1 (st:state 1) : state 1 = st | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 126,
"start_col": 0,
"start_line": 126
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Spec.Chacha20.Vec.state 1 -> Hacl.Spec.Chacha20.Vec.state 1 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.state"
] | [] | false | false | false | false | false | let transpose1 (st: state 1) : state 1 =
| st | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.xor_block_f | val xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4) | val xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4) | let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 159,
"start_col": 0,
"start_line": 156
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < 16} -> b: Lib.ByteSequence.lbytes (w * 4)
-> Lib.ByteSequence.lbytes (w * 4) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.ByteSequence.lbytes",
"FStar.Mul.op_Star",
"Lib.IntVector.vec_to_bytes_le",
"Lib.IntTypes.U32",
"Lib.IntVector.vec_t",
"Lib.IntVector.op_Hat_Bar",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.vec_from_bytes_le"
] | [] | false | false | false | false | false | let xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4) =
| let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[ i ] in
vec_to_bytes_le y | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.transpose4 | val transpose4 (st: state 4) : state 4 | val transpose4 (st: state 4) : state 4 | let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 64,
"end_line": 133,
"start_col": 0,
"start_line": 128
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Spec.Chacha20.Vec.state 4 -> Hacl.Spec.Chacha20.Vec.state 4 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.state",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U32",
"Lib.Sequence.create16",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.Transpose.vec_t4",
"Lib.IntVector.Transpose.transpose4x4",
"FStar.Pervasives.Native.Mktuple4",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let transpose4 (st: state 4) : state 4 =
| let v0, v1, v2, v3 = VecTranspose.transpose4x4 (st.[ 0 ], st.[ 1 ], st.[ 2 ], st.[ 3 ]) in
let v4, v5, v6, v7 = VecTranspose.transpose4x4 (st.[ 4 ], st.[ 5 ], st.[ 6 ], st.[ 7 ]) in
let v8, v9, v10, v11 = VecTranspose.transpose4x4 (st.[ 8 ], st.[ 9 ], st.[ 10 ], st.[ 11 ]) in
let v12, v13, v14, v15 = VecTranspose.transpose4x4 (st.[ 12 ], st.[ 13 ], st.[ 14 ], st.[ 15 ]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15 | false |
Hacl.Spec.Chacha20.Vec.fst | Hacl.Spec.Chacha20.Vec.transpose8 | val transpose8 (st: state 8) : state 8 | val transpose8 (st: state 8) : state 8 | let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 64,
"end_line": 138,
"start_col": 0,
"start_line": 135
} | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15 | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Spec.Chacha20.Vec.state 8 -> Hacl.Spec.Chacha20.Vec.state 8 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Chacha20.Vec.state",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U32",
"Lib.Sequence.create16",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.Transpose.vec_t8",
"Lib.IntVector.Transpose.transpose8x8",
"FStar.Pervasives.Native.Mktuple8",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let transpose8 (st: state 8) : state 8 =
| let v0, v1, v2, v3, v4, v5, v6, v7 =
VecTranspose.transpose8x8 (st.[ 0 ],
st.[ 1 ],
st.[ 2 ],
st.[ 3 ],
st.[ 4 ],
st.[ 5 ],
st.[ 6 ],
st.[ 7 ])
in
let v8, v9, v10, v11, v12, v13, v14, v15 =
VecTranspose.transpose8x8 (st.[ 8 ],
st.[ 9 ],
st.[ 10 ],
st.[ 11 ],
st.[ 12 ],
st.[ 13 ],
st.[ 14 ],
st.[ 15 ])
in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | false |
Hacl.Impl.Chacha20.Core32xN.fst | Hacl.Impl.Chacha20.Core32xN.double_round | val double_round:
#w:lanes
-> st:state w ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.double_round (as_seq h0 st))) | val double_round:
#w:lanes
-> st:state w ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.double_round (as_seq h0 st))) | let double_round #w st =
quarter_round st (size 0) (size 4) (size 8) (size 12);
quarter_round st (size 1) (size 5) (size 9) (size 13);
quarter_round st (size 2) (size 6) (size 10) (size 14);
quarter_round st (size 3) (size 7) (size 11) (size 15);
quarter_round st (size 0) (size 5) (size 10) (size 15);
quarter_round st (size 1) (size 6) (size 11) (size 12);
quarter_round st (size 2) (size 7) (size 8) (size 13);
quarter_round st (size 3) (size 4) (size 9) (size 14) | {
"file_name": "code/chacha20/Hacl.Impl.Chacha20.Core32xN.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 198,
"start_col": 0,
"start_line": 189
} | module Hacl.Impl.Chacha20.Core32xN
module ST = FStar.HyperStack.ST
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Lib.IntVector
module Spec = Hacl.Spec.Chacha20.Vec
module VecTranspose = Lib.IntVector.Transpose
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
let lanes = Spec.lanes
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
inline_for_extraction
let state (w:lanes) = lbuffer (uint32xN w) 16ul
inline_for_extraction
let index = (i:size_t{size_v i < 16})
inline_for_extraction noextract
val create_state: w:lanes -> StackInline (state w)
(requires (fun h -> True))
(ensures (fun h0 r h1 -> live h1 r /\
as_seq h1 r == Seq.create 16 (vec_zero U32 w) /\
stack_allocated r h0 h1 (Seq.create 16 (vec_zero U32 w))))
let create_state w = create (size 16) (vec_zero U32 w)
inline_for_extraction noextract
val add_counter:
#w:lanes
-> st:state w
-> c:size_t{w * v c <= max_size_t} ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.add_counter #w (v c) (as_seq h0 st)))
let add_counter #w st c =
let v = vec_load #U32 (u32 w *! size_to_uint32 c) w in
let old_c = st.(12ul) in
st.(size 12) <- old_c +| v
inline_for_extraction noextract
val copy_state:
#w:lanes
-> st:state w
-> ost:state w ->
Stack unit
(requires (fun h -> live h st /\ live h ost /\ disjoint st ost))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == as_seq h0 ost))
let copy_state #w st ost = copy st ost
inline_for_extraction noextract
val sum_state:
#w:lanes
-> st:state w
-> ost:state w ->
Stack unit
(requires (fun h -> live h st /\ live h ost /\ eq_or_disjoint st ost))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.sum_state (as_seq h0 st) (as_seq h0 ost)))
let sum_state #w st ost = map2T (size 16) st ( +| ) st ost
inline_for_extraction noextract
val transpose1: st:state 1 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose1 (as_seq h0 st)))
let transpose1 st = ()
inline_for_extraction noextract
val transpose4: st:state 4 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose4 (as_seq h0 st)))
let transpose4 st =
let (st0, st1, st2, st3) = (st.(0ul),st.(1ul),st.(2ul),st.(3ul)) in
let (st4, st5, st6, st7) = (st.(4ul),st.(5ul),st.(6ul),st.(7ul)) in
let (st8, st9, st10, st11) = (st.(8ul),st.(9ul),st.(10ul),st.(11ul)) in
let (st12, st13, st14, st15) = (st.(12ul),st.(13ul),st.(14ul),st.(15ul)) in
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st0, st1, st2, st3) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st4, st5, st6, st7) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st8, st9, st10, st11) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st12, st13, st14, st15) in
create16 #(uint32xN 4) st v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
inline_for_extraction noextract
val transpose8: st:state 8 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose8 (as_seq h0 st)))
let transpose8 st =
let (st0,st1,st2,st3,st4,st5,st6,st7) = (st.(0ul),st.(1ul),st.(2ul),st.(3ul),st.(4ul),st.(5ul),st.(6ul),st.(7ul)) in
let (st8,st9,st10,st11,st12,st13,st14,st15) = (st.(8ul),st.(9ul),st.(10ul),st.(11ul),st.(12ul),st.(13ul),st.(14ul),st.(15ul)) in
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st0,st1,st2,st3,st4,st5,st6,st7) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st8,st9,st10,st11,st12,st13,st14,st15) in
create16 #(uint32xN 8) st v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
inline_for_extraction noextract
val transpose:
#w:lanes
-> st:state w ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.transpose (as_seq h0 st)))
let transpose #w st =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
inline_for_extraction noextract
val xor_block:
#w:lanes
-> o:lbuffer uint8 ((4ul *! size w) *! 16ul)
-> st:state w
-> b:lbuffer uint8 ((4ul *! size w) *! 16ul) ->
Stack unit
(requires (fun h -> live h o /\ live h st /\ live h b /\
disjoint st b /\ disjoint st o /\ eq_or_disjoint b o))
(ensures (fun h0 _ h1 -> modifies (loc st |+| loc o) h0 h1 /\
as_seq h1 o == Spec.xor_block #w (as_seq h0 st) (as_seq h0 b)))
let xor_block #w o st b =
let h0 = ST.get () in
map_blocks_multi h0 (size w *! 4ul) 16ul b o
(fun h -> Spec.xor_block_f #w (as_seq h0 st))
(fun i ->
[@inline_let]
let bs = normalize_term (size w *! 4ul) in
let x = vec_load_le U32 w (sub b (i *! bs) bs) in
let y = x ^| st.(i) in
vec_store_le #U32 #w (sub o (i *! bs) bs) y
)
inline_for_extraction noextract
val line:
#w:lanes
-> st:state w
-> a:index -> b:index -> d:index
-> r:rotval U32 ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.line (v a) (v b) (v d) r (as_seq h0 st)))
let line #w st a b d r =
st.(a) <- st.(a) +| st.(b);
let std = st.(d) ^| st.(a) in
st.(d) <- std <<<| r
inline_for_extraction noextract
val quarter_round:
#w:lanes
-> st:state w
-> a:index -> b:index -> c:index -> d:index ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.quarter_round (v a) (v b) (v c) (v d) (as_seq h0 st)))
let quarter_round #w st a b c d =
line st a b d (size 16);
line st c d b (size 12);
line st a b d (size 8);
line st c d b (size 7)
inline_for_extraction noextract
val double_round:
#w:lanes
-> st:state w ->
Stack unit
(requires (fun h -> live h st))
(ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\
as_seq h1 st == Spec.double_round (as_seq h0 st))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Chacha20.Vec.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Chacha20.Core32xN.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Chacha20.Vec",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Impl.Chacha20.Core32xN.state w -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Chacha20.Core32xN.lanes",
"Hacl.Impl.Chacha20.Core32xN.state",
"Hacl.Impl.Chacha20.Core32xN.quarter_round",
"Lib.IntTypes.size",
"Prims.unit"
] | [] | false | true | false | false | false | let double_round #w st =
| quarter_round st (size 0) (size 4) (size 8) (size 12);
quarter_round st (size 1) (size 5) (size 9) (size 13);
quarter_round st (size 2) (size 6) (size 10) (size 14);
quarter_round st (size 3) (size 7) (size 11) (size 15);
quarter_round st (size 0) (size 5) (size 10) (size 15);
quarter_round st (size 1) (size 6) (size 11) (size 12);
quarter_round st (size 2) (size 7) (size 8) (size 13);
quarter_round st (size 3) (size 4) (size 9) (size 14) | false |
HACL.fst | HACL.signable_len | val signable_len : Type0 | let signable_len = v:US.t{ is_signable_len v } | {
"file_name": "share/steel/examples/pulse/dice/common/HACL.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 51,
"start_col": 0,
"start_line": 51
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module HACL
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module US = FStar.SizeT
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let v32us : US.t = 32sz
// let coerce (l:US.t) (s:erased (elseq U8.t l)) : erased (Seq.seq U8.t)
// = let s_ = reveal s in
// hide s_
// let coerce_refined (l:US.t) (s:erased (Seq.seq U8.t){Seq.length (reveal s) == US.v l}) : erased (elseq U8.t l)
// = let s_ = reveal s in
// hide s_
(* a tiny model of HACL* hashes *)
assume
val alg_t : Type0
assume
val digest_len (_:alg_t) : US.t
assume
val is_hashable_len (_:US.t) : prop
let hashable_len = v:US.t{ is_hashable_len v }
assume
val is_signable_len (_:US.t) : prop | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "HACL.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"HACL.is_signable_len"
] | [] | false | false | false | true | true | let signable_len =
| v: US.t{is_signable_len v} | false |
|
HACL.fst | HACL.hkdf_ikm_len | val hkdf_ikm_len : Type0 | let hkdf_ikm_len = v:US.t{ valid_hkdf_ikm_len v } | {
"file_name": "share/steel/examples/pulse/dice/common/HACL.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 61,
"start_col": 0,
"start_line": 61
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module HACL
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module US = FStar.SizeT
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let v32us : US.t = 32sz
// let coerce (l:US.t) (s:erased (elseq U8.t l)) : erased (Seq.seq U8.t)
// = let s_ = reveal s in
// hide s_
// let coerce_refined (l:US.t) (s:erased (Seq.seq U8.t){Seq.length (reveal s) == US.v l}) : erased (elseq U8.t l)
// = let s_ = reveal s in
// hide s_
(* a tiny model of HACL* hashes *)
assume
val alg_t : Type0
assume
val digest_len (_:alg_t) : US.t
assume
val is_hashable_len (_:US.t) : prop
let hashable_len = v:US.t{ is_hashable_len v }
assume
val is_signable_len (_:US.t) : prop
let signable_len = v:US.t{ is_signable_len v }
assume
val valid_hkdf_lbl_len (l:US.t) : prop
let hkdf_lbl_len = v:US.t{ valid_hkdf_lbl_len v }
assume
val valid_hkdf_ikm_len (_:US.t) : prop | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "HACL.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"HACL.valid_hkdf_ikm_len"
] | [] | false | false | false | true | true | let hkdf_ikm_len =
| v: US.t{valid_hkdf_ikm_len v} | false |
|
HACL.fst | HACL.hkdf_lbl_len | val hkdf_lbl_len : Type0 | let hkdf_lbl_len = v:US.t{ valid_hkdf_lbl_len v } | {
"file_name": "share/steel/examples/pulse/dice/common/HACL.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 56,
"start_col": 0,
"start_line": 56
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module HACL
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module US = FStar.SizeT
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let v32us : US.t = 32sz
// let coerce (l:US.t) (s:erased (elseq U8.t l)) : erased (Seq.seq U8.t)
// = let s_ = reveal s in
// hide s_
// let coerce_refined (l:US.t) (s:erased (Seq.seq U8.t){Seq.length (reveal s) == US.v l}) : erased (elseq U8.t l)
// = let s_ = reveal s in
// hide s_
(* a tiny model of HACL* hashes *)
assume
val alg_t : Type0
assume
val digest_len (_:alg_t) : US.t
assume
val is_hashable_len (_:US.t) : prop
let hashable_len = v:US.t{ is_hashable_len v }
assume
val is_signable_len (_:US.t) : prop
let signable_len = v:US.t{ is_signable_len v }
assume
val valid_hkdf_lbl_len (l:US.t) : prop | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "HACL.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"HACL.valid_hkdf_lbl_len"
] | [] | false | false | false | true | true | let hkdf_lbl_len =
| v: US.t{valid_hkdf_lbl_len v} | false |
|
HACL.fst | HACL.v32us | val v32us:US.t | val v32us:US.t | let v32us : US.t = 32sz | {
"file_name": "share/steel/examples/pulse/dice/common/HACL.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 25,
"start_col": 0,
"start_line": 25
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module HACL
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module US = FStar.SizeT
module U8 = FStar.UInt8
module U32 = FStar.UInt32 | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "HACL.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.SizeT.t | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.__uint_to_t"
] | [] | false | false | false | true | false | let v32us:US.t =
| 32sz | false |
HACL.fst | HACL.hashable_len | val hashable_len : Type0 | let hashable_len = v:US.t{ is_hashable_len v } | {
"file_name": "share/steel/examples/pulse/dice/common/HACL.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 46,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module HACL
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module US = FStar.SizeT
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let v32us : US.t = 32sz
// let coerce (l:US.t) (s:erased (elseq U8.t l)) : erased (Seq.seq U8.t)
// = let s_ = reveal s in
// hide s_
// let coerce_refined (l:US.t) (s:erased (Seq.seq U8.t){Seq.length (reveal s) == US.v l}) : erased (elseq U8.t l)
// = let s_ = reveal s in
// hide s_
(* a tiny model of HACL* hashes *)
assume
val alg_t : Type0
assume
val digest_len (_:alg_t) : US.t
assume
val is_hashable_len (_:US.t) : prop | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "HACL.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"HACL.is_hashable_len"
] | [] | false | false | false | true | true | let hashable_len =
| v: US.t{is_hashable_len v} | false |
|
Vale.AES.GCM_BE.fsti | Vale.AES.GCM_BE.set_to_one | val set_to_one (q: quad32) : quad32 | val set_to_one (q: quad32) : quad32 | let set_to_one (q:quad32) : quad32 = Mkfour 1 q.lo1 q.hi2 q.hi3 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Vale.AES.GCM_BE
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_BE_s
open Vale.AES.AES_BE_s
open Vale.AES.GCM_helpers_BE
open Vale.AES.GCTR_BE_s
open Vale.AES.GCTR_BE
open Vale.AES.GHash_BE_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open FStar.Calc
open Vale.AES.GHash_BE | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_BE_s.fst.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCTR_BE.fsti.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.GCM_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_BE.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3"
] | [] | false | false | false | true | false | let set_to_one (q: quad32) : quad32 =
| Mkfour 1 q.lo1 q.hi2 q.hi3 | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_pattern' | val close_pattern' : p: Pulse.Syntax.Base.pattern -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i] | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 22,
"end_line": 168,
"start_col": 0,
"start_line": 167
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) = | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Pulse.Syntax.Base.pattern -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.ND",
"Prims.Nil"
] | [] | false | false | false | true | false | let close_pattern' (p: pattern) (x: var) (i: index) =
| subst_pat p [ND x i] | false |
|
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_pattern_args' | val close_pattern_args' : ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i] | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 172,
"start_col": 0,
"start_line": 171
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) = | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Prims.bool",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat_args",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.ND",
"Prims.Nil"
] | [] | false | false | false | true | false | let close_pattern_args' (ps: list (pattern & bool)) (x: var) (i: index) =
| subst_pat_args ps [ND x i] | false |
|
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_pairs' | val open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term)) | val open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term)) | let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ] | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 33,
"end_line": 133,
"start_col": 0,
"start_line": 131
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
v: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_term_pairs",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.DT",
"Prims.Nil"
] | [] | false | false | false | true | false | let open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term)) =
| subst_term_pairs t [DT i v] | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_pattern_args' | val open_pattern_args' : ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
v: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v] | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 170,
"start_col": 0,
"start_line": 169
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) = | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
v: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Prims.bool",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat_args",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.DT",
"Prims.Nil"
] | [] | false | false | false | true | false | let open_pattern_args' (ps: list (pattern & bool)) (v: term) (i: index) =
| subst_pat_args ps [DT i v] | false |
|
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_pattern' | val open_pattern' : p: Pulse.Syntax.Base.pattern -> v: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v] | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 22,
"end_line": 166,
"start_col": 0,
"start_line": 165
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> () | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Pulse.Syntax.Base.pattern -> v: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.DT",
"Prims.Nil"
] | [] | false | false | false | true | false | let open_pattern' (p: pattern) (v: term) (i: index) =
| subst_pat p [DT i v] | false |
|
Vale.AES.GCM_BE.fsti | Vale.AES.GCM_BE.gcm_decrypt_BE_tag | val gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True) | val gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True) | let gcm_decrypt_BE_tag (alg:algorithm) (key:seq nat8) (iv:supported_iv_BE) (cipher:seq nat8) (auth:seq nat8) :
Pure (seq nat8)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
)
(ensures fun t -> True)
=
let key_BE = seq_nat8_to_seq_nat32_BE key in
let h_BE = aes_encrypt_word alg key_BE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_BE iv in
let lengths_BE = two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length cipher))) in
let zero_padded_c_BE = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_BE = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_BE = append zero_padded_a_BE (append zero_padded_c_BE (create 1 lengths_BE)) in
let s_BE = ghash_BE h_BE hash_input_BE in
let t = gctr_encrypt j0_BE (be_quad32_to_bytes s_BE) alg key_BE in
t | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 200,
"start_col": 0,
"start_line": 179
} | module Vale.AES.GCM_BE
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_BE_s
open Vale.AES.AES_BE_s
open Vale.AES.GCM_helpers_BE
open Vale.AES.GCTR_BE_s
open Vale.AES.GCTR_BE
open Vale.AES.GHash_BE_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open FStar.Calc
open Vale.AES.GHash_BE
let set_to_one (q:quad32) : quad32 = Mkfour 1 q.lo1 q.hi2 q.hi3
val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = index iv_extra_b 0 in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_BE iv)
val lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == two_two_to_four (Mktwo (nat_to_two 32 0)
(nat_to_two 32 (8 * length iv))))
(ensures j0 == compute_iv_BE h_BE iv)
val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes)
val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_word alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > length p128 * 16 then
append p128 p_bytes
else
p128
in
let cipher:seq quad32 =
if p_num_bytes > length p128 * 16 then
append c128 c_bytes
else
c128
in
let cipher_bound:nat = length p128 +
(if p_num_bytes > length p128 * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append auth_quads c128 in
let total_bytes = length auth_quads * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > length p128 * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
be_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in
let plain_raw_quads = append p128 p_bytes in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in
let cipher_raw_quads = append c128 c_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\
be_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key)
iv plain_bytes auth_bytes))
)
val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128 p_bytes c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_BE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128 * 16 + 16 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_word alg key /\
(let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_BE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > length p128 * 16 then
append p128 p_bytes
else
p128
in
let cipher:seq quad32 =
if p_num_bytes > length p128 * 16 then
append c128 c_bytes
else
c128
in
let cipher_bound:nat = length p128 +
(if p_num_bytes > length p128 * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append p128 p_bytes in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in
let cipher_raw_quads = append c128 c_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag))) | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_BE_s.fst.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCTR_BE.fsti.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.GCM_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_BE.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
iv: Vale.AES.GCM_BE_s.supported_iv_BE ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8
-> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Words_s.nat8) | Prims.Pure | [] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCM_BE_s.supported_iv_BE",
"Vale.AES.GCTR_BE_s.gctr_encrypt",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.Def.Types_s.quad32",
"Vale.AES.GHash_BE_s.ghash_BE",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.two_two_to_four",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.nat_to_two",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.AES.GCM_BE_s.compute_iv_BE",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True"
] | [] | false | false | false | false | false | let gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True) =
| let key_BE = seq_nat8_to_seq_nat32_BE key in
let h_BE = aes_encrypt_word alg key_BE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_BE iv in
let lengths_BE =
two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length cipher)))
in
let zero_padded_c_BE = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_BE = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_BE = append zero_padded_a_BE (append zero_padded_c_BE (create 1 lengths_BE)) in
let s_BE = ghash_BE h_BE hash_input_BE in
let t = gctr_encrypt j0_BE (be_quad32_to_bytes s_BE) alg key_BE in
t | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_term_pairs' | val close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term)) | val close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term)) | let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ] | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 33,
"end_line": 871,
"start_col": 0,
"start_line": 869
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
v: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_term_pairs",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.ND",
"Prims.Nil"
] | [] | false | false | false | true | false | let close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term)) =
| subst_term_pairs t [ND v i] | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.tot_typing_ln | val tot_typing_ln (#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma (ln e /\ ln t) | val tot_typing_ln (#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma (ln e /\ ln t) | let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 1028,
"start_col": 0,
"start_line": 1023
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1)
#pop-options
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.tot_typing g e t
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln e /\ Pulse.Syntax.Naming.ln t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let tot_typing_ln (#g #e #t: _) (d: tot_typing g e t) : Lemma (ensures ln e /\ ln t) =
| tot_or_ghost_typing_ln d | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_opt' | val open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t) | val open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t) | let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 113,
"start_col": 0,
"start_line": 106
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires
Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln'
(Pulse.Syntax.Naming.open_term_opt' t x i)
(i - 1)) (ensures Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln' t i) (decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln'",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_opt'",
"Pulse.Syntax.Naming.ln'",
"Pulse.Syntax.Naming.open_term_opt'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t) =
| match t with
| None -> ()
| Some t -> open_term_ln' t x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_proof_hint_ln | val open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i) | val open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i) | let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> () | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 163,
"start_col": 0,
"start_line": 147
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Pulse.Syntax.Base.proof_hint_type -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires
Pulse.Syntax.Naming.ln_proof_hint' (Pulse.Syntax.Naming.open_proof_hint' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_proof_hint' t i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.proof_hint_type",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.open_term_ln'",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.LN.open_term_ln_opt'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_pairs",
"Pulse.Syntax.Base.range",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Pulse.Syntax.Naming.open_proof_hint'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i) =
| match t with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> open_term_ln' p x i
| RENAME { pairs = pairs ; goal = goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1 = t1 ; t2 = t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD | SHOW_PROOF_STATE _ -> () | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_st_term_ln | val open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0) | val open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0) | let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0 | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 48,
"end_line": 365,
"start_col": 0,
"start_line": 361
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0 | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Pulse.Syntax.Base.st_term -> v: Pulse.Syntax.Base.var
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_st (Pulse.Syntax.Naming.open_st_term e v))
(ensures Pulse.Syntax.Naming.ln_st' e 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.var",
"Pulse.Typing.LN.open_st_term_ln'",
"Pulse.Syntax.Pure.term_of_no_name_var",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_st",
"Pulse.Syntax.Naming.open_st_term",
"Prims.squash",
"Pulse.Syntax.Naming.ln_st'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0) =
| open_st_term_ln' e (term_of_no_name_var v) 0 | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln | val open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0) | val open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0) | let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0 | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 45,
"end_line": 358,
"start_col": 0,
"start_line": 354
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Pulse.Syntax.Base.term -> v: Pulse.Syntax.Base.var
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln (Pulse.Syntax.Naming.open_term e v))
(ensures Pulse.Syntax.Naming.ln' e 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Pure.term_of_no_name_var",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Naming.open_term",
"Prims.squash",
"Pulse.Syntax.Naming.ln'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0) =
| open_term_ln' e (term_of_no_name_var v) 0 | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_pairs | val open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t) | val open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t) | let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 145,
"start_col": 0,
"start_line": 135
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ] | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
x: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_terms' (Pulse.Typing.LN.open_term_pairs' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_terms' t i)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_pairs",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_terms'",
"Pulse.Typing.LN.open_term_pairs'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t) =
| match t with
| [] -> ()
| (l, r) :: tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_list' | val open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t) | val open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t) | let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 129,
"start_col": 0,
"start_line": 120
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Prims.list Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_list' (Pulse.Syntax.Naming.open_term_list' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_list' t i)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_list'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_list'",
"Pulse.Syntax.Naming.open_term_list'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t) =
| match t with
| [] -> ()
| hd :: tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.well_typed_terms_are_ln | val well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) | val well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) | let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 43,
"end_line": 34,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2 | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: FStar.Stubs.Reflection.Types.env ->
e: FStar.Stubs.Reflection.Types.term ->
t: FStar.Stubs.Reflection.Types.term ->
d: FStar.Reflection.Typing.typing g e (eff, t)
-> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.ln e /\ FStar.Reflection.Typing.ln t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Stubs.Reflection.Types.env",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Reflection.Typing.typing",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Reflection.Typing.well_typed_terms_are_ln",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"FStar.Reflection.Typing.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
| RT.well_typed_terms_are_ln g e (eff, t) d | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.ln_weakening_comp | val ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j) | val ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j) | let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 41,
"end_line": 424,
"start_col": 0,
"start_line": 406
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c' c i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_c' c j) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.comp",
"Prims.int",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.ln_weakening",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Base.observability",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j) =
| match c with
| C_Tot t -> ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1) | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.ln_weakening_pairs | val ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t) | val ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t) | let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 457,
"start_col": 0,
"start_line": 447
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_terms' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_terms' t j)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Typing.LN.ln_weakening_pairs",
"Prims.unit",
"Pulse.Typing.LN.ln_weakening",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_terms'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t) =
| match t with
| [] -> ()
| (l, r) :: tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.ln_weakening_list | val ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t) | val ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t) | let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 445,
"start_col": 0,
"start_line": 436
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Prims.list Pulse.Syntax.Base.term -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_list' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_list' t j)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Typing.LN.ln_weakening_list",
"Prims.unit",
"Pulse.Typing.LN.ln_weakening",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_list'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t) =
| match t with
| [] -> ()
| hd :: tl ->
ln_weakening hd i j;
ln_weakening_list tl i j | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.__brs_of | val __brs_of (t: st_term{Tm_Match? t.term}) : list branch | val __brs_of (t: st_term{Tm_Match? t.term}) : list branch | let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 118,
"start_col": 0,
"start_line": 116
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Pulse.Syntax.Base.st_term{Tm_Match? (Mkst_term?.term t)} -> Prims.list Pulse.Syntax.Base.branch | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.st_term",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_Tm_Match",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Pulse.Syntax.Base.term",
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.vprop",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.branch",
"Pulse.Syntax.Base.st_term'"
] | [] | false | false | false | false | false | let __brs_of (t: st_term{Tm_Match? t.term}) : list branch =
| let Tm_Match { brs = brs } = t.term in
brs | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.ln_weakening_opt | val ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' ln' t i /\ i <= j) (ensures ln_opt' ln' t j) (decreases t) | val ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' ln' t i /\ i <= j) (ensures ln_opt' ln' t j) (decreases t) | let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 34,
"end_line": 433,
"start_col": 0,
"start_line": 426
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln' t j)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Typing.LN.ln_weakening",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_opt'",
"Pulse.Syntax.Naming.ln'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' ln' t i /\ i <= j) (ensures ln_opt' ln' t j) (decreases t) =
| match t with
| None -> ()
| Some t -> ln_weakening t i j | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_inv_list' | val open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t) | val open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t) | let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 655,
"start_col": 0,
"start_line": 644
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Prims.list Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_list' t i)
(ensures Pulse.Syntax.Naming.ln_list' (Pulse.Syntax.Naming.open_term_list' t x i) (i - 1))
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv_list'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Naming.ln_list'",
"Prims.squash",
"Pulse.Syntax.Naming.open_term_list'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t) =
| match t with
| [] -> ()
| hd :: tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_comp_ln' | val open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i) | val open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i) | let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 36,
"end_line": 104,
"start_col": 0,
"start_line": 84
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.open_comp' c x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_c' c i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Base.observability",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c'",
"Pulse.Syntax.Naming.open_comp'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i) =
| match c with
| C_Tot t -> open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1) | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln' | val open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e) | val open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e) | let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 42,
"end_line": 82,
"start_col": 0,
"start_line": 51
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln' (Pulse.Syntax.Naming.open_term' e x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln' e i)
(decreases e) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.open_term_ln'",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.open_term_ln_host'",
"Pulse.Elaborate.Pure.elab_term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln'",
"Pulse.Syntax.Naming.open_term'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e) =
| match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ()
| Tm_Inv p -> open_term_ln' p x i
| Tm_Pure p -> open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t -> open_term_ln_host' t (elab_term x) i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_term_ln_opt' | val close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t) | val close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t) | let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 36,
"end_line": 856,
"start_col": 0,
"start_line": 849
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln' t (i - 1))
(ensures
Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln'
(Pulse.Syntax.Naming.close_term_opt' t x i)
i)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.close_term_ln'",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_opt'",
"Pulse.Syntax.Naming.ln'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_term_opt'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t) =
| match t with
| None -> ()
| Some t -> close_term_ln' t x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_inv_opt' | val open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t) | val open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t) | let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 39,
"end_line": 642,
"start_col": 0,
"start_line": 633
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln' t i)
(ensures
Pulse.Syntax.Naming.ln_opt' Pulse.Syntax.Naming.ln'
(Pulse.Syntax.Naming.open_term_opt' t x i)
(i - 1))
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv'",
"Prims.unit",
"Pulse.Syntax.Naming.ln_opt'",
"Pulse.Syntax.Naming.ln'",
"Prims.squash",
"Pulse.Syntax.Naming.open_term_opt'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t) =
| match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.ln_weakening_proof_hint | val ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j) | val ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j) | let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> () | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 475,
"start_col": 0,
"start_line": 459
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Pulse.Syntax.Base.proof_hint_type -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_proof_hint' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_proof_hint' t j) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.proof_hint_type",
"Prims.int",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.ln_weakening",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.ln_weakening_opt",
"Prims.unit",
"Pulse.Typing.LN.ln_weakening_pairs",
"Pulse.Syntax.Base.range",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j) =
| match t with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> ln_weakening p i j
| RENAME { pairs = pairs ; goal = goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1 = t1 ; t2 = t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD | SHOW_PROOF_STATE _ -> () | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_comp_ln_inv' | val open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1)) | val open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1)) | let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 40,
"end_line": 631,
"start_col": 0,
"start_line": 611
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Pulse.Syntax.Base.comp ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c' c i)
(ensures Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.open_comp' c x i) (i - 1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Base.observability",
"Pulse.Syntax.Naming.ln_c'",
"Prims.squash",
"Pulse.Syntax.Naming.open_comp'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1)) =
| match c with
| C_Tot t -> open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1) | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.ln_weakening | val ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)] | val ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)] | let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 26,
"end_line": 403,
"start_col": 0,
"start_line": 373
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Pulse.Syntax.Base.term -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln' e i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln' e j)
(decreases e)
[SMTPat (Pulse.Syntax.Naming.ln' e j); SMTPat (Pulse.Syntax.Naming.ln' e i)] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.ln_weakening",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.r_ln_weakening",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.bool",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)] =
| match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ()
| Tm_Inv p -> ln_weakening p i j
| Tm_Pure p -> ln_weakening p i j
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t -> r_ln_weakening t i j | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_proof_hint_ln_inv | val open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1)) | val open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1)) | let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> () | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 687,
"start_col": 0,
"start_line": 671
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ht: Pulse.Syntax.Base.proof_hint_type ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_proof_hint' ht i)
(ensures
Pulse.Syntax.Naming.ln_proof_hint' (Pulse.Syntax.Naming.open_proof_hint' ht x i) (i - 1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.proof_hint_type",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.open_term_ln_inv'",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.LN.open_term_ln_inv_opt'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_inv_pairs",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Prims.squash",
"Pulse.Syntax.Naming.open_proof_hint'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1)) =
| match ht with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> open_term_ln_inv' p x i
| RENAME { pairs = pairs ; goal = goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1 = t1 ; t2 = t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD | SHOW_PROOF_STATE _ -> () | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_inv_pairs | val open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t) | val open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t) | let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 669,
"start_col": 0,
"start_line": 657
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_terms' t i)
(ensures Pulse.Syntax.Naming.ln_terms' (Pulse.Typing.LN.open_term_pairs' t x i) (i - 1))
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv_pairs",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Naming.ln_terms'",
"Prims.squash",
"Pulse.Typing.LN.open_term_pairs'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t) =
| match t with
| [] -> ()
| (l, r) :: tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_comp_ln' | val close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i) | val close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i) | let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 37,
"end_line": 847,
"start_col": 0,
"start_line": 827
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c' c (i - 1))
(ensures Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.close_comp' c x i) i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.close_term_ln'",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Base.observability",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_comp'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i) =
| match c with
| C_Tot t -> close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1) | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.tot_or_ghost_typing_ln | val tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t) | val tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t) | let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 21,
"end_line": 1021,
"start_col": 0,
"start_line": 1013
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1)
#pop-options
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= () | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.typing g e eff t
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln e /\ Pulse.Syntax.Naming.ln t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"Pulse.Typing.typing",
"FStar.Reflection.Typing.typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.Types.typ",
"Pulse.Typing.LN.elab_ln_inverse",
"Prims.unit",
"Pulse.Typing.LN.well_typed_terms_are_ln",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t) =
| let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_term_ln' | val close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e) | val close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e) | let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 825,
"start_col": 0,
"start_line": 795
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln' e (i - 1))
(ensures Pulse.Syntax.Naming.ln' (Pulse.Syntax.Naming.close_term' e x i) i)
(decreases e) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.close_term_ln'",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.r_close_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_term'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e) =
| match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ()
| Tm_Inv p -> close_term_ln' p x i
| Tm_Pure p -> close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t -> r_close_term_ln' t x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_proof_hint_ln | val close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i) | val close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i) | let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> () | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 901,
"start_col": 0,
"start_line": 885
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ht: Pulse.Syntax.Base.proof_hint_type -> v: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_proof_hint' ht (i - 1))
(ensures Pulse.Syntax.Naming.ln_proof_hint' (Pulse.Syntax.Naming.close_proof_hint' ht v i) i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.proof_hint_type",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.close_term_ln'",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.close_term_ln_opt'",
"Prims.unit",
"Pulse.Typing.LN.close_term_ln_pairs",
"Pulse.Syntax.Base.range",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_proof_hint'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i) =
| match ht with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> close_term_ln' p v i
| RENAME { pairs = pairs ; goal = goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1 = t1 ; t2 = t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD | SHOW_PROOF_STATE _ -> () | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_comp_ln | val close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0) | val close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0) | let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0 | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 24,
"end_line": 1003,
"start_col": 0,
"start_line": 999
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp -> v: Pulse.Syntax.Base.var
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c c)
(ensures Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.close_comp c v) 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.var",
"Pulse.Typing.LN.close_comp_ln'",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c",
"Prims.squash",
"Pulse.Syntax.Naming.ln_c'",
"Pulse.Syntax.Naming.close_comp",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0) =
| close_comp_ln' c v 0 | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_term_ln_inv' | val open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e) | val open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e) | let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 43,
"end_line": 609,
"start_col": 0,
"start_line": 576
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1)) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln' e i)
(ensures Pulse.Syntax.Naming.ln' (Pulse.Syntax.Naming.open_term' e x i) (i - 1))
(decreases e) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.ln_weakening",
"Prims.op_Minus",
"Prims.op_Subtraction",
"Pulse.Typing.LN.open_term_ln_inv'",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.r_open_term_ln_inv'",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Elaborate.elab_ln",
"Pulse.Syntax.Naming.ln'",
"Prims.squash",
"Pulse.Syntax.Naming.open_term'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e) =
| match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ln_weakening x (- 1) (i - 1)
| Tm_Inv p -> open_term_ln_inv' p x i
| Tm_Pure p -> open_term_ln_inv' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (- 1);
r_open_term_ln_inv' t (elab_term x) i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_term_ln_list' | val close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t) | val close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t) | let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 32,
"end_line": 867,
"start_col": 0,
"start_line": 858
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Prims.list Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_list' t (i - 1))
(ensures Pulse.Syntax.Naming.ln_list' (Pulse.Syntax.Naming.close_term_list' t x i) i)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.close_term_ln_list'",
"Prims.unit",
"Pulse.Typing.LN.close_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_list'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_term_list'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t) =
| match t with
| [] -> ()
| hd :: tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.close_term_ln_pairs | val close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t) | val close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t) | let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 32,
"end_line": 883,
"start_col": 0,
"start_line": 873
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ] | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_terms' t (i - 1))
(ensures Pulse.Syntax.Naming.ln_terms' (Pulse.Typing.LN.close_term_pairs' t x i) i)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.close_term_ln_pairs",
"Prims.unit",
"Pulse.Typing.LN.close_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_terms'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Typing.LN.close_term_pairs'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t) =
| match t with
| [] -> ()
| (l, r) :: tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_pattern_args_ln | val open_pattern_args_ln (pats: list (pattern & bool)) (x: term) (i: index)
: Lemma (requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats) | val open_pattern_args_ln (pats: list (pattern & bool)) (x: term) (i: index)
: Lemma (requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats) | let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 56,
"end_line": 213,
"start_col": 0,
"start_line": 190
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pats: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
x: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires
Pulse.Syntax.Naming.ln_pattern_args' (Pulse.Typing.LN.open_pattern_args' pats x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_pattern_args' pats i)
(decreases pats) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [
"open_pattern_ln",
"open_pattern_args_ln"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Prims.bool",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_pattern_args_ln",
"Prims.op_Addition",
"Pulse.Syntax.Naming.pattern_shift_n",
"Prims.unit",
"Pulse.Typing.LN.open_pattern_ln",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_pattern_args'",
"Pulse.Typing.LN.open_pattern_args'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"mutual recursion"
] | false | false | true | false | false | let rec open_pattern_args_ln (pats: list (pattern & bool)) (x: term) (i: index)
: Lemma (requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats) =
| match pats with
| [] -> ()
| (hd, b) :: tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd) | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.st_comp_typing_ln | val st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1)) | val st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1)) | let st_comp_typing_ln (#g:_) (#st:_) (d:st_comp_typing g st)
: Lemma (ensures ln_st_comp st (-1)) =
let STC _ {post} x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0 | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 1117,
"start_col": 0,
"start_line": 1110
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1)
#pop-options
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
| VE_Fa g x u b t0' t1' d ->
vprop_equiv_ln d;
let xtm = (term_of_nvar (v_as_nv x)) in
introduce ln t0 ==> ln t1
with _ . (
open_term_ln_inv' t0' xtm 0;
open_term_ln t0' x;
open_term_ln t1' x
);
introduce ln t1 ==> ln t0
with _ . (
open_term_ln_inv' t1' xtm 0;
open_term_ln t1' x;
open_term_ln t0' x
)
let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= match d with
| ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post ->
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
| ST_TotEquiv g t1 t2 u t1_typing eq ->
let t2_typing = Pulse.Typing.Metatheory.Base.rt_equiv_typing eq t1_typing._0 in
tot_or_ghost_typing_ln (E (Ghost.reveal t2_typing))
let prop_valid_must_be_ln (g:env) (t:term) (d:prop_validity g t)
: Lemma (ensures ln t) =
admit()
let rec st_sub_ln #g #c1 #c2 (d:st_sub g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
(decreases d)
= match d with
| STS_Refl _ _ -> ()
| STS_Trans _ _ _ _ d1 d2 ->
st_sub_ln d1;
st_sub_ln d2
| STS_AtomicInvs g stc is1 is2 _ _ tok ->
prop_valid_must_be_ln g (tm_inames_subset is1 is2) tok;
assume (ln (tm_inames_subset is1 is2) ==> ln is2)
let bind_comp_ln #g #x #c1 #c2 #c (d:bind_comp g x c1 c2 c)
: Lemma
(requires ln_c c1 /\ ln_c c2)
(ensures ln_c c)
= () | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.st_comp_typing g st
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln_st_comp st (- 1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.st_comp",
"Pulse.Typing.st_comp_typing",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.vprop",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Pulse.Syntax.Base.Mkst_comp",
"Pulse.Typing.universe_of",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__u",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_term",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Pure.null_var",
"Prims.unit",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Syntax.Pure.tm_type",
"Prims.l_True",
"Prims.squash",
"Pulse.Syntax.Naming.ln_st_comp",
"Prims.op_Minus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1)) =
| let STC _ { post = post } x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0 | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.open_pattern_ln | val open_pattern_ln (p: pattern) (x: term) (i: index)
: Lemma (requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p) | val open_pattern_ln (p: pattern) (x: term) (i: index)
: Lemma (requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p) | let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 56,
"end_line": 213,
"start_col": 0,
"start_line": 190
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Pulse.Syntax.Base.pattern -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_pattern' (Pulse.Typing.LN.open_pattern' p x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_pattern' p i)
(decreases p) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [
"open_pattern_ln",
"open_pattern_args_ln"
] | [
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.constant",
"FStar.Reflection.Typing.pp_name_t",
"FStar.Reflection.Typing.sort_t",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Base.fv",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Pulse.Typing.LN.open_pattern_args_ln",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_pattern'",
"Pulse.Typing.LN.open_pattern'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"mutual recursion"
] | false | false | true | false | false | let rec open_pattern_ln (p: pattern) (x: term) (i: index)
: Lemma (requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p) =
| match p with
| Pat_Constant _ | Pat_Var _ _ | Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) -> open_term_ln' e x i
| Pat_Cons _ subpats -> open_pattern_args_ln subpats x i | false |
LowParse.Tot.Int.fst | LowParse.Tot.Int.parse_u8 | val parse_u8 : LowParse.Spec.Base.tot_parser LowParse.Spec.Int.parse_u8_kind FStar.UInt8.t | let parse_u8 = tot_parse_u8 | {
"file_name": "src/lowparse/LowParse.Tot.Int.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 27,
"end_line": 6,
"start_col": 0,
"start_line": 6
} | module LowParse.Tot.Int
include LowParse.Spec.Int
include LowParse.Tot.Base | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Int.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Int.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Spec.Base.tot_parser LowParse.Spec.Int.parse_u8_kind FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Int.tot_parse_u8"
] | [] | false | false | false | true | false | let parse_u8 =
| tot_parse_u8 | false |
|
LowParse.Tot.Int.fst | LowParse.Tot.Int.serialize_u8 | val serialize_u8 : serializer parse_u8 | val serialize_u8 : serializer parse_u8 | let serialize_u8 =
serialize_ext _ serialize_u8 _ | {
"file_name": "src/lowparse/LowParse.Tot.Int.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 32,
"end_line": 10,
"start_col": 0,
"start_line": 9
} | module LowParse.Tot.Int
include LowParse.Spec.Int
include LowParse.Tot.Base
inline_for_extraction
let parse_u8 = tot_parse_u8 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Int.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Int.fst"
} | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Tot.Base.serializer LowParse.Tot.Int.parse_u8 | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.serialize_ext",
"LowParse.Spec.Int.parse_u8_kind",
"FStar.UInt8.t",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.Int.serialize_u8",
"LowParse.Tot.Int.parse_u8"
] | [] | false | false | false | true | false | let serialize_u8 =
| serialize_ext _ serialize_u8 _ | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.st_equiv_ln | val st_equiv_ln (#g #c1 #c2: _) (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2) | val st_equiv_ln (#g #c1 #c2: _) (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2) | let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= match d with
| ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post ->
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
| ST_TotEquiv g t1 t2 u t1_typing eq ->
let t2_typing = Pulse.Typing.Metatheory.Base.rt_equiv_typing eq t1_typing._0 in
tot_or_ghost_typing_ln (E (Ghost.reveal t2_typing)) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 57,
"end_line": 1082,
"start_col": 0,
"start_line": 1067
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1)
#pop-options
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
| VE_Fa g x u b t0' t1' d ->
vprop_equiv_ln d;
let xtm = (term_of_nvar (v_as_nv x)) in
introduce ln t0 ==> ln t1
with _ . (
open_term_ln_inv' t0' xtm 0;
open_term_ln t0' x;
open_term_ln t1' x
);
introduce ln t1 ==> ln t0
with _ . (
open_term_ln_inv' t1' xtm 0;
open_term_ln t1' x;
open_term_ln t0' x
) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.st_equiv g c1 c2
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c c1)
(ensures Pulse.Syntax.Naming.ln_c c2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_equiv",
"Pulse.Syntax.Base.comp_st",
"Pulse.Typing.st_equiv_pre",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars",
"Pulse.Syntax.Base.comp_post",
"FStar.Reflection.Typing.typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.comp_res",
"Pulse.Syntax.Pure.tm_type",
"Pulse.Syntax.Base.comp_u",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_term",
"FStar.Reflection.Typing.equiv",
"Pulse.Typing.vprop_equiv",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Pure.term_of_no_name_var",
"Prims.unit",
"Pulse.Typing.LN.elab_ln_inverse",
"Pulse.Typing.LN.rt_equiv_ln",
"Pulse.Typing.LN.vprop_equiv_ln",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.universe",
"Pulse.Typing.universe_of",
"FStar.Ghost.erased",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"Pulse.Typing.E",
"FStar.Ghost.reveal",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Typing.Metatheory.Base.rt_equiv_typing",
"FStar.Ghost.hide",
"Pulse.Typing.__proj__E__item___0",
"Pulse.Syntax.Naming.ln_c",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let st_equiv_ln #g #c1 #c2 (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2) =
| match d with
| ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post ->
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
| ST_TotEquiv g t1 t2 u t1_typing eq ->
let t2_typing = Pulse.Typing.Metatheory.Base.rt_equiv_typing eq t1_typing._0 in
tot_or_ghost_typing_ln (E (Ghost.reveal t2_typing)) | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.a_spec | val a_spec : n: Hacl.Spec.Bignum.Definitions.lbignum t len {0 < Hacl.Spec.Bignum.Definitions.bn_v n} -> Type0 | let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n) | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 38,
"start_col": 0,
"start_line": 37
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Hacl.Spec.Bignum.Definitions.lbignum t len {0 < Hacl.Spec.Bignum.Definitions.bn_v n} -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.NatMod.nat_mod"
] | [] | false | false | false | false | true | let a_spec (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len {0 < BD.bn_v n}) =
| Lib.NatMod.nat_mod (BD.bn_v n) | false |
|
FStar.PtrdiffT.fsti | FStar.PtrdiffT.op_Greater_Hat | val op_Greater_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | let op_Greater_Hat = gt | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 111,
"start_col": 7,
"start_line": 111
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.PtrdiffT.gt"
] | [] | false | false | false | false | false | let op_Greater_Hat =
| gt | false |
|
FStar.PtrdiffT.fsti | FStar.PtrdiffT.op_Plus_Hat | val op_Plus_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure FStar.PtrdiffT.t | let op_Plus_Hat = add | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 110,
"start_col": 7,
"start_line": 110
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure FStar.PtrdiffT.t | Prims.Pure | [] | [] | [
"FStar.PtrdiffT.add"
] | [] | false | false | false | false | false | let op_Plus_Hat =
| add | false |
|
FStar.PtrdiffT.fsti | FStar.PtrdiffT.op_Greater_Equals_Hat | val op_Greater_Equals_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | let op_Greater_Equals_Hat = gte | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 112,
"start_col": 7,
"start_line": 112
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *)
unfold let op_Plus_Hat = add | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.PtrdiffT.gte"
] | [] | false | false | false | false | false | let op_Greater_Equals_Hat =
| gte | false |
|
FStar.PtrdiffT.fsti | FStar.PtrdiffT.op_Less_Hat | val op_Less_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | let op_Less_Hat = lt | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 113,
"start_col": 7,
"start_line": 113
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Greater_Hat = gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.PtrdiffT.lt"
] | [] | false | false | false | false | false | let op_Less_Hat =
| lt | false |
|
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.refl | val refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n | val refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n | let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 46,
"start_col": 0,
"start_line": 45
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Hacl.Spec.Bignum.Definitions.lbignum t len {0 < Hacl.Spec.Bignum.Definitions.bn_v n} ->
a: Hacl.Spec.Bignum.Definitions.lbignum t len {Hacl.Bignum.AlmostMontExponentiation.linv n a}
-> Hacl.Bignum.AlmostMontExponentiation.a_spec n | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Bignum.AlmostMontExponentiation.linv",
"Prims.op_Modulus",
"Hacl.Bignum.AlmostMontExponentiation.a_spec"
] | [] | false | false | false | false | false | let refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n =
| BD.bn_v a % BD.bn_v n | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.vprop_equiv_ln | val vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v) | val vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v) | let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
| VE_Fa g x u b t0' t1' d ->
vprop_equiv_ln d;
let xtm = (term_of_nvar (v_as_nv x)) in
introduce ln t0 ==> ln t1
with _ . (
open_term_ln_inv' t0' xtm 0;
open_term_ln t0' x;
open_term_ln t1' x
);
introduce ln t1 ==> ln t0
with _ . (
open_term_ln_inv' t1' xtm 0;
open_term_ln t1' x;
open_term_ln t0' x
) | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 7,
"end_line": 1064,
"start_col": 0,
"start_line": 1030
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1)
#pop-options
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: Pulse.Typing.vprop_equiv g t0 t1
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln t0 <==> Pulse.Syntax.Naming.ln t1)
(decreases v) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.vprop_equiv",
"Pulse.Typing.LN.vprop_equiv_ln",
"Prims.unit",
"FStar.Stubs.Tactics.Types.equiv_token",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.vprop_eq_typing_inversion",
"Pulse.Syntax.Base.var",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Naming.open_term",
"FStar.Classical.Sugar.implies_intro",
"Pulse.Syntax.Naming.ln",
"Prims.squash",
"Pulse.Typing.LN.open_term_ln",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Pure.term_of_nvar",
"Pulse.Syntax.Base.v_as_nv",
"Prims.l_True",
"Prims.l_iff",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v) =
| match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' -> vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
| VE_Fa g x u b t0' t1' d ->
vprop_equiv_ln d;
let xtm = (term_of_nvar (v_as_nv x)) in
introduce ln t0 ==> ln t1
with _. (open_term_ln_inv' t0' xtm 0;
open_term_ln t0' x;
open_term_ln t1' x);
introduce ln t1 ==> ln t0
with _. (open_term_ln_inv' t1' xtm 0;
open_term_ln t1' x;
open_term_ln t0' x) | false |
FStar.PtrdiffT.fsti | FStar.PtrdiffT.op_Less_Equals_Hat | val op_Less_Equals_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | let op_Less_Equals_Hat = lte | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 114,
"start_col": 7,
"start_line": 114
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Greater_Hat = gt
unfold let op_Greater_Equals_Hat = gte | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.PtrdiffT.lte"
] | [] | false | false | false | false | false | let op_Less_Equals_Hat =
| lte | false |
|
FStar.PtrdiffT.fsti | FStar.PtrdiffT.zero | val zero:(zero_ptrdiff: t{v zero_ptrdiff == 0}) | val zero:(zero_ptrdiff: t{v zero_ptrdiff == 0}) | let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 48,
"start_col": 0,
"start_line": 47
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | zero_ptrdiff: FStar.PtrdiffT.t{FStar.PtrdiffT.v zero_ptrdiff == 0} | Prims.Tot | [
"total"
] | [] | [
"FStar.PtrdiffT.mk",
"FStar.Int16.__int_to_t"
] | [] | false | false | false | false | false | let zero:(zero_ptrdiff: t{v zero_ptrdiff == 0}) =
| mk 0s | false |
FStar.PtrdiffT.fsti | FStar.PtrdiffT.mod_spec | val mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n}) | val mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n}) | let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 74,
"start_col": 0,
"start_line": 70
} | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Int64",
"short_module": "I64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.int{FStar.PtrdiffT.fits a} -> b: Prims.int{FStar.PtrdiffT.fits b /\ b <> 0}
-> Prims.GTot (n: Prims.int{FStar.PtrdiffT.fits n}) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.int",
"FStar.PtrdiffT.fits",
"Prims.l_and",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.unit",
"FStar.PtrdiffT.fits_lt",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.op_Division"
] | [] | false | false | false | false | false | let mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n}) =
| let open FStar.Mul in
let res = a - ((a / b) * b) in
fits_lt res b;
res | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.linv | val linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0 | val linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0 | let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len) | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 42,
"start_col": 0,
"start_line": 41
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits"
] | [] | false | false | false | false | true | let linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0 =
| BD.bn_v a < pow2 (bits t * len) | false |
Pulse.Typing.LN.fst | Pulse.Typing.LN.comp_typing_ln | val comp_typing_ln (#g:_) (#c:_) (#u:_)
(d:comp_typing g c u)
: Lemma (ln_c c) | val comp_typing_ln (#g:_) (#c:_) (#u:_)
(d:comp_typing g c u)
: Lemma (ln_c c) | let comp_typing_ln (#g:_) (#c:_) (#u:_) (d:comp_typing g c u)
: Lemma (ensures ln_c c) =
match d with
| CT_Tot _ _ _ t_typing -> tot_or_ghost_typing_ln t_typing
| CT_ST _ _ st_typing
| CT_STGhost _ _ st_typing -> st_comp_typing_ln st_typing
| CT_STAtomic _ _ _ _ inames_typing st_typing ->
tot_or_ghost_typing_ln inames_typing;
st_comp_typing_ln st_typing | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 1128,
"start_col": 0,
"start_line": 1119
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
open_term_ln' p x i
| Tm_Pure p ->
open_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s
| C_STGhost s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' ln' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' ln' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let map_opt_lemma_2 ($f: (x:'a -> y:'b -> z:'c -> Lemma (requires 'p x y z) (ensures 'q x y z)))
(x:option 'a)
(y:'b)
(z:'c)
: Lemma (requires Some? x ==> 'p (Some?.v x) y z)
(ensures Some? x ==> 'q (Some?.v x) y z)
= match x with
| None -> ()
| Some x -> f x y z
#push-options "--z3rlimit 20"
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { expected_type; term = e } ->
open_term_ln' expected_type x i;
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln' c.elaborated x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln' name x i;
open_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln' b.binder_ty x i;
open_term_ln' r x (i + 1)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
ln_weakening p i j
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
#pop-options
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s
| C_STGhost s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n _ s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' ln' t i /\ i <= j)
(ensures ln_opt' ln' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| WILD
| SHOW_PROOF_STATE _ -> ()
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
ln_weakening expected_type i j;
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
map_opt_lemma_2 ln_weakening_comp c.annotated (i + 1) (j + 1);
map_opt_lemma_2 ln_weakening_comp c.elaborated (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
| Tm_WithInv { name; body; returns_inv } ->
ln_weakening name i j;
ln_weakening_st body i j;
match returns_inv with
| None -> ()
| Some (b, r) ->
ln_weakening b.binder_ty i j;
ln_weakening r (i + 1) (j + 1)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Inv p ->
open_term_ln_inv' p x i
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_AddInv l r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s
| C_STGhost s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n _ s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' ln' t i)
(ensures ln_opt' ln' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
open_term_ln_inv' expected_type x i;
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
map_opt_lemma_2 open_comp_ln_inv' c.annotated x (i + 1);
map_opt_lemma_2 open_comp_ln_inv' c.elaborated x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
open_term_ln_inv' name x i;
open_term_ln_inv_st' body x i;
match returns_inv with
| None -> ()
| Some (b, r) ->
open_term_ln_inv' b.binder_ty x i;
open_term_ln_inv' r x (i + 1)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Inv p ->
close_term_ln' p x i
| Tm_Pure p ->
close_term_ln' p x i
| Tm_AddInv l r
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s
| C_STGhost s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n _ s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' ln' t (i - 1))
(ensures ln_opt' ln' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
| WILD
| SHOW_PROOF_STATE _ -> ()
#push-options "--query_stats --fuel 2 --ifuel 2 --z3rlimit_factor 2"
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { expected_type; term } ->
close_term_ln' expected_type x i;
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
map_opt_lemma_2 close_comp_ln' c.annotated x (i + 1);
map_opt_lemma_2 close_comp_ln' c.elaborated x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Unreachable -> ()
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
| Tm_WithInv { name; body; returns_inv } ->
close_term_ln' name x i;
close_st_term_ln' body x i;
match returns_inv with
| None -> ()
| Some (ret_ty, returns_inv) ->
close_term_ln' ret_ty.binder_ty x i;
close_term_ln' returns_inv x (i + 1)
#pop-options
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
| VE_Fa g x u b t0' t1' d ->
vprop_equiv_ln d;
let xtm = (term_of_nvar (v_as_nv x)) in
introduce ln t0 ==> ln t1
with _ . (
open_term_ln_inv' t0' xtm 0;
open_term_ln t0' x;
open_term_ln t1' x
);
introduce ln t1 ==> ln t0
with _ . (
open_term_ln_inv' t1' xtm 0;
open_term_ln t1' x;
open_term_ln t0' x
)
let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= match d with
| ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post ->
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
| ST_TotEquiv g t1 t2 u t1_typing eq ->
let t2_typing = Pulse.Typing.Metatheory.Base.rt_equiv_typing eq t1_typing._0 in
tot_or_ghost_typing_ln (E (Ghost.reveal t2_typing))
let prop_valid_must_be_ln (g:env) (t:term) (d:prop_validity g t)
: Lemma (ensures ln t) =
admit()
let rec st_sub_ln #g #c1 #c2 (d:st_sub g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
(decreases d)
= match d with
| STS_Refl _ _ -> ()
| STS_Trans _ _ _ _ d1 d2 ->
st_sub_ln d1;
st_sub_ln d2
| STS_AtomicInvs g stc is1 is2 _ _ tok ->
prop_valid_must_be_ln g (tm_inames_subset is1 is2) tok;
assume (ln (tm_inames_subset is1 is2) ==> ln is2)
let bind_comp_ln #g #x #c1 #c2 #c (d:bind_comp g x c1 c2 c)
: Lemma
(requires ln_c c1 /\ ln_c c2)
(ensures ln_c c)
= ()
let st_comp_typing_ln (#g:_) (#st:_) (d:st_comp_typing g st)
: Lemma (ensures ln_st_comp st (-1)) =
let STC _ {post} x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0 | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Metatheory.Base.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.comp_typing g c u488 -> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln_c c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.universe",
"Pulse.Typing.comp_typing",
"Pulse.Syntax.Base.term",
"Pulse.Typing.universe_of",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"Pulse.Syntax.Pure.tm_type",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Syntax.Base.st_comp",
"Pulse.Typing.st_comp_typing",
"Pulse.Typing.LN.st_comp_typing_ln",
"Pulse.Syntax.Base.observability",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_inames",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let comp_typing_ln (#g #c #u: _) (d: comp_typing g c u) : Lemma (ensures ln_c c) =
| match d with
| CT_Tot _ _ _ t_typing -> tot_or_ghost_typing_ln t_typing
| CT_ST _ _ st_typing | CT_STGhost _ _ st_typing -> st_comp_typing_ln st_typing
| CT_STAtomic _ _ _ _ inames_typing st_typing ->
tot_or_ghost_typing_ln inames_typing;
st_comp_typing_ln st_typing | false |
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_codegen_success_InnerMemcpy | val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool | val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool | let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ()))))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 88,
"end_line": 36,
"start_col": 0,
"start_line": 29
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsMem.va_codegen_success_Load64_buffer",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rR9",
"Vale.X64.InsMem.va_codegen_success_Store64_buffer",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | false | false | false | true | false | let va_codegen_success_InnerMemcpy () =
| (va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx)
0
Secret)
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx)
8
Secret)
(va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax)
0
Secret)
(va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9)
8
Secret)
(va_ttrue ()))))) | false |
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_code_InnerMemcpy | val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code | val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code | let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ())))))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 25,
"start_col": 0,
"start_line": 18
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | va_dummy: Prims.unit -> Vale.X64.Decls.va_code | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsMem.va_code_Load64_buffer",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rR9",
"Vale.X64.InsMem.va_code_Store64_buffer",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | false | false | false | true | false | let va_code_InnerMemcpy () =
| (va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx)
0
Secret)
(va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx)
8
Secret)
(va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax)
0
Secret)
(va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9)
8
Secret)
(va_CNil ())))))) | false |
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_wp_InnerMemcpy | val va_wp_InnerMemcpy (dst src: buffer64) (va_s0: va_state) (va_k: (va_state -> unit -> Type0))
: Type0 | val va_wp_InnerMemcpy (dst src: buffer64) (va_s0: va_state) (va_k: (va_state -> unit -> Type0))
: Type0 | let va_wp_InnerMemcpy (dst:buffer64) (src:buffer64) (va_s0:va_state) (va_k:(va_state -> unit ->
Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64
rRdx va_s0) src 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64
(va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret
/\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 dst == 2 /\ (forall (va_x_mem:vale_heap)
(va_x_rax:nat64) (va_x_rcx:nat64) (va_x_r9:nat64) (va_x_heap1:vale_heap) . let va_sM =
va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rRcx va_x_rcx
(va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))) in va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) ==> va_k va_sM (()))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 83,
"end_line": 111,
"start_col": 0,
"start_line": 98
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ())))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_InnerMemcpy (va_mods:va_mods_t) (dst:buffer64) (src:buffer64) : (va_quickCode unit
(va_code_InnerMemcpy ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 38 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx) 0 Secret src 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 39 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret src 1) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 40 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax) 0 Secret dst 0) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 41 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9) 8 Secret dst 1) (fun (va_s:va_state) _ -> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 42 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_s) dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_s) src))
(va_QEmpty (()))))))))
val va_lemma_InnerMemcpy : va_b0:va_code -> va_s0:va_state -> dst:buffer64 -> src:buffer64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_InnerMemcpy ()) va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rRdx va_s0) src 2
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64 (va_get_mem_heaplet 1 va_s0)
(va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\ Vale.X64.Decls.buffer_length
#Vale.X64.Memory.vuint64 dst == 2))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_state_eq va_sM
(va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))
[@"opaque_to_smt"]
let va_lemma_InnerMemcpy va_b0 va_s0 dst src =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_InnerMemcpy va_mods dst src in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_InnerMemcpy ()) va_qc va_s0 (fun va_s0
va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 21 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_get_ok va_sM) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 35 column 63 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 36 column 57 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_ok; va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
dst: Vale.X64.Memory.buffer64 ->
src: Vale.X64.Memory.buffer64 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Memory.buffer64",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.Decls.validSrcAddrs64",
"Vale.X64.Decls.va_get_mem_heaplet",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.Decls.va_get_mem_layout",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.validDstAddrs64",
"Vale.X64.Machine_s.rRcx",
"Prims.eq2",
"Prims.int",
"Vale.X64.Decls.buffer_length",
"Vale.X64.Memory.vuint64",
"Prims.l_Forall",
"Vale.X64.InsBasic.vale_heap",
"Vale.X64.Memory.nat64",
"Prims.l_imp",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.base_typ_as_vale_type",
"Vale.X64.Memory.buffer_as_seq",
"Vale.X64.Decls.modifies_mem",
"Vale.X64.Decls.loc_buffer",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_mem_heaplet",
"Vale.X64.Decls.va_upd_reg64",
"Vale.X64.Machine_s.rR9",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_upd_mem"
] | [] | false | false | false | true | true | let va_wp_InnerMemcpy (dst src: buffer64) (va_s0: va_state) (va_k: (va_state -> unit -> Type0))
: Type0 =
| (va_get_ok va_s0 /\
Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0)
(va_get_reg64 rRdx va_s0)
src
2
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs64 (va_get_mem_heaplet 1 va_s0)
(va_get_reg64 rRcx va_s0)
dst
2
(va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 dst == 2 /\
(forall (va_x_mem: vale_heap)
(va_x_rax: nat64)
(va_x_rcx: nat64)
(va_x_r9: nat64)
(va_x_heap1: vale_heap).
let va_sM =
va_upd_mem_heaplet 1
va_x_heap1
(va_upd_reg64 rR9
va_x_r9
(va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0))))
in
va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) ==>
va_k va_sM (()))) | false |
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_qcode_InnerMemcpy | val va_qcode_InnerMemcpy (va_mods: va_mods_t) (dst src: buffer64)
: (va_quickCode unit (va_code_InnerMemcpy ())) | val va_qcode_InnerMemcpy (va_mods: va_mods_t) (dst src: buffer64)
: (va_quickCode unit (va_code_InnerMemcpy ())) | let va_qcode_InnerMemcpy (va_mods:va_mods_t) (dst:buffer64) (src:buffer64) : (va_quickCode unit
(va_code_InnerMemcpy ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 38 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx) 0 Secret src 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 39 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret src 1) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 40 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax) 0 Secret dst 0) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 41 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9) 8 Secret dst 1) (fun (va_s:va_state) _ -> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 42 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_s) dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_s) src))
(va_QEmpty (())))))))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 58,
"start_col": 0,
"start_line": 39
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ()))))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_mods: Vale.X64.QuickCode.va_mods_t ->
dst: Vale.X64.Memory.buffer64 ->
src: Vale.X64.Memory.buffer64
-> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.Test.X64.Vale_memcpy.va_code_InnerMemcpy ()) | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.QuickCode.va_mods_t",
"Vale.X64.Memory.buffer64",
"Vale.X64.QuickCodes.qblock",
"Prims.unit",
"Prims.Cons",
"Vale.X64.Decls.va_code",
"Vale.X64.InsMem.va_code_Load64_buffer",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rR9",
"Vale.X64.InsMem.va_code_Store64_buffer",
"Vale.X64.Machine_s.rRcx",
"Prims.Nil",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.va_QSeq",
"Vale.X64.QuickCodes.va_range1",
"Vale.X64.InsMem.va_quick_Load64_buffer",
"Vale.X64.InsMem.va_quick_Store64_buffer",
"Vale.X64.QuickCodes.va_QBind",
"Vale.X64.QuickCodes.va_qAssert",
"FStar.Seq.Base.equal",
"Vale.X64.Memory.base_typ_as_vale_type",
"Vale.X64.Memory.vuint64",
"Vale.X64.Memory.buffer_as_seq",
"Vale.X64.Decls.va_get_mem_heaplet",
"Vale.X64.QuickCodes.va_QEmpty",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.va_quickCode",
"Vale.Test.X64.Vale_memcpy.va_code_InnerMemcpy"
] | [] | false | false | false | false | false | let va_qcode_InnerMemcpy (va_mods: va_mods_t) (dst src: buffer64)
: (va_quickCode unit (va_code_InnerMemcpy ())) =
| (qblock va_mods
(fun (va_s: va_state) ->
let va_old_s:va_state = va_s in
va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 38 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx)
0
Secret
src
0)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 39 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx)
8
Secret
src
1)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 40 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax)
0
Secret
dst
0)
(va_QBind va_range1
"***** PRECONDITION NOT MET AT line 41 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9)
8
Secret
dst
1)
(fun (va_s: va_state) _ ->
va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 42 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64
)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64
(va_get_mem_heaplet 1 va_s)
dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64
(va_get_mem_heaplet 0 va_s)
src))
(va_QEmpty (())))))))) | false |
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_codegen_success_Memcpy | val va_codegen_success_Memcpy : win:bool -> Tot va_pbool | val va_codegen_success_Memcpy : win:bool -> Tot va_pbool | let va_codegen_success_Memcpy win =
(va_pbool_and (va_codegen_success_CreateHeaplets ()) (va_pbool_and (if win then va_pbool_and
(va_codegen_success_InnerMemcpy ()) (va_ttrue ()) else va_pbool_and
(va_codegen_success_Mem64_lemma ()) (va_pbool_and (va_codegen_success_Mov64
(va_op_dst_opr64_reg64 rRax) (va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi) 0 Secret)) (va_pbool_and (va_codegen_success_Mem64_lemma ())
(va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRcx) (va_opr_code_Mem64
(va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 8 Secret)) (va_pbool_and
(va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax) 0 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_reg_opr64_reg64 rRcx) 8
Secret) (va_ttrue ()))))))) (va_pbool_and (va_codegen_success_DestroyHeaplets ()) (va_ttrue
())))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 167,
"start_col": 0,
"start_line": 155
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ())))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_InnerMemcpy (va_mods:va_mods_t) (dst:buffer64) (src:buffer64) : (va_quickCode unit
(va_code_InnerMemcpy ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 38 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx) 0 Secret src 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 39 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret src 1) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 40 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax) 0 Secret dst 0) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 41 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9) 8 Secret dst 1) (fun (va_s:va_state) _ -> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 42 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_s) dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_s) src))
(va_QEmpty (()))))))))
val va_lemma_InnerMemcpy : va_b0:va_code -> va_s0:va_state -> dst:buffer64 -> src:buffer64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_InnerMemcpy ()) va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rRdx va_s0) src 2
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64 (va_get_mem_heaplet 1 va_s0)
(va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\ Vale.X64.Decls.buffer_length
#Vale.X64.Memory.vuint64 dst == 2))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_state_eq va_sM
(va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))
[@"opaque_to_smt"]
let va_lemma_InnerMemcpy va_b0 va_s0 dst src =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_InnerMemcpy va_mods dst src in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_InnerMemcpy ()) va_qc va_s0 (fun va_s0
va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 21 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_get_ok va_sM) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 35 column 63 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 36 column 57 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_ok; va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_InnerMemcpy (dst:buffer64) (src:buffer64) (va_s0:va_state) (va_k:(va_state -> unit ->
Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64
rRdx va_s0) src 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64
(va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret
/\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 dst == 2 /\ (forall (va_x_mem:vale_heap)
(va_x_rax:nat64) (va_x_rcx:nat64) (va_x_r9:nat64) (va_x_heap1:vale_heap) . let va_sM =
va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rRcx va_x_rcx
(va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))) in va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) ==> va_k va_sM (())))
val va_wpProof_InnerMemcpy : dst:buffer64 -> src:buffer64 -> va_s0:va_state -> va_k:(va_state ->
unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_InnerMemcpy dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_InnerMemcpy ()) ([va_Mod_mem_heaplet
1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM,
va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_InnerMemcpy dst src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_InnerMemcpy (va_code_InnerMemcpy ()) va_s0 dst src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM
(va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0)))))));
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_mem]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_InnerMemcpy (dst:buffer64) (src:buffer64) : (va_quickCode unit (va_code_InnerMemcpy
())) =
(va_QProc (va_code_InnerMemcpy ()) ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_InnerMemcpy dst src) (va_wpProof_InnerMemcpy dst src))
//--
//-- Memcpy
[@ "opaque_to_smt" va_qattr]
let va_code_Memcpy win =
(va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (if win then va_Block (va_CCons
(va_code_InnerMemcpy ()) (va_CNil ())) else va_Block (va_CCons (va_code_Mem64_lemma ())
(va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_opr_code_Mem64
(va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 0 Secret)) (va_CCons
(va_code_Mem64_lemma ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRcx)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 8 Secret)) (va_CCons
(va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_reg_opr64_reg64 rRcx) 8
Secret) (va_CNil ())))))))) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ()))))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | win: Prims.bool -> Vale.X64.Decls.va_pbool | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsMem.va_codegen_success_CreateHeaplets",
"Vale.Test.X64.Vale_memcpy.va_codegen_success_InnerMemcpy",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.InsMem.va_codegen_success_Mem64_lemma",
"Vale.X64.InsBasic.va_codegen_success_Mov64",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_opr_code_Mem64",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_reg64_reg64",
"Vale.X64.Machine_s.rRsi",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.InsMem.va_codegen_success_Store64_buffer",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdi",
"Vale.X64.Decls.va_pbool",
"Vale.X64.InsMem.va_codegen_success_DestroyHeaplets"
] | [] | false | false | false | true | false | let va_codegen_success_Memcpy win =
| (va_pbool_and (va_codegen_success_CreateHeaplets ())
(va_pbool_and (if win
then va_pbool_and (va_codegen_success_InnerMemcpy ()) (va_ttrue ())
else
va_pbool_and (va_codegen_success_Mem64_lemma ())
(va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRax)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
0
Secret))
(va_pbool_and (va_codegen_success_Mem64_lemma ())
(va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRcx)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
8
Secret))
(va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet
1)
(va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax)
0
Secret)
(va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet
1)
(va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRcx)
8
Secret)
(va_ttrue ())))))))
(va_pbool_and (va_codegen_success_DestroyHeaplets ()) (va_ttrue ())))) | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st | val bn_exp_almost_mont_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 214,
"start_col": 0,
"start_line": 197
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_pre",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.loc",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Bignum.Definitions.bn_v",
"Lib.Exponentiation.Definition.pow",
"Lib.NatMod.nat_mod",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.SEC"
] | [] | false | false | false | false | true | let bn_exp_almost_mont_st (t: limb_t) (len: BN.meta_len t) =
|
n: lbignum t len ->
mu: limb t ->
r2: lbignum t len ->
aM: lbignum t len ->
bBits: size_t ->
b: lbignum t (blocks0 bBits (size (bits t))) ->
resM: lbignum t len
-> Stack unit
(requires
fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\ disjoint resM aM /\
disjoint resM b /\ disjoint resM n /\ disjoint n aM /\ disjoint resM r2 /\ disjoint aM r2 /\
disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures
fun h0 _ h1 ->
modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) | false |
|
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_code_Memcpy | val va_code_Memcpy : win:bool -> Tot va_code | val va_code_Memcpy : win:bool -> Tot va_code | let va_code_Memcpy win =
(va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (if win then va_Block (va_CCons
(va_code_InnerMemcpy ()) (va_CNil ())) else va_Block (va_CCons (va_code_Mem64_lemma ())
(va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_opr_code_Mem64
(va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 0 Secret)) (va_CCons
(va_code_Mem64_lemma ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRcx)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 8 Secret)) (va_CCons
(va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_reg_opr64_reg64 rRcx) 8
Secret) (va_CNil ())))))))) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ()))))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 87,
"end_line": 152,
"start_col": 0,
"start_line": 142
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ())))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_InnerMemcpy (va_mods:va_mods_t) (dst:buffer64) (src:buffer64) : (va_quickCode unit
(va_code_InnerMemcpy ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 38 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx) 0 Secret src 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 39 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret src 1) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 40 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax) 0 Secret dst 0) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 41 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9) 8 Secret dst 1) (fun (va_s:va_state) _ -> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 42 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_s) dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_s) src))
(va_QEmpty (()))))))))
val va_lemma_InnerMemcpy : va_b0:va_code -> va_s0:va_state -> dst:buffer64 -> src:buffer64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_InnerMemcpy ()) va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rRdx va_s0) src 2
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64 (va_get_mem_heaplet 1 va_s0)
(va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\ Vale.X64.Decls.buffer_length
#Vale.X64.Memory.vuint64 dst == 2))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_state_eq va_sM
(va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))
[@"opaque_to_smt"]
let va_lemma_InnerMemcpy va_b0 va_s0 dst src =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_InnerMemcpy va_mods dst src in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_InnerMemcpy ()) va_qc va_s0 (fun va_s0
va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 21 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_get_ok va_sM) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 35 column 63 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 36 column 57 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_ok; va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_InnerMemcpy (dst:buffer64) (src:buffer64) (va_s0:va_state) (va_k:(va_state -> unit ->
Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64
rRdx va_s0) src 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64
(va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret
/\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 dst == 2 /\ (forall (va_x_mem:vale_heap)
(va_x_rax:nat64) (va_x_rcx:nat64) (va_x_r9:nat64) (va_x_heap1:vale_heap) . let va_sM =
va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rRcx va_x_rcx
(va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))) in va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) ==> va_k va_sM (())))
val va_wpProof_InnerMemcpy : dst:buffer64 -> src:buffer64 -> va_s0:va_state -> va_k:(va_state ->
unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_InnerMemcpy dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_InnerMemcpy ()) ([va_Mod_mem_heaplet
1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM,
va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_InnerMemcpy dst src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_InnerMemcpy (va_code_InnerMemcpy ()) va_s0 dst src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM
(va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0)))))));
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_mem]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_InnerMemcpy (dst:buffer64) (src:buffer64) : (va_quickCode unit (va_code_InnerMemcpy
())) =
(va_QProc (va_code_InnerMemcpy ()) ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_InnerMemcpy dst src) (va_wpProof_InnerMemcpy dst src))
//--
//-- Memcpy | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | win: Prims.bool -> Vale.X64.Decls.va_code | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsMem.va_code_CreateHeaplets",
"Vale.Test.X64.Vale_memcpy.va_code_InnerMemcpy",
"Vale.X64.Decls.va_CNil",
"Vale.X64.InsMem.va_code_Mem64_lemma",
"Vale.X64.InsBasic.va_code_Mov64",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_opr_code_Mem64",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_reg64_reg64",
"Vale.X64.Machine_s.rRsi",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.InsMem.va_code_Store64_buffer",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdi",
"Vale.X64.Decls.va_code",
"Vale.X64.InsMem.va_code_DestroyHeaplets"
] | [] | false | false | false | true | false | let va_code_Memcpy win =
| (va_Block (va_CCons (va_code_CreateHeaplets ())
(va_CCons (if win
then va_Block (va_CCons (va_code_InnerMemcpy ()) (va_CNil ()))
else
va_Block (va_CCons (va_code_Mem64_lemma ())
(va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
0
Secret))
(va_CCons (va_code_Mem64_lemma ())
(va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRcx)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
8
Secret))
(va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax)
0
Secret)
(va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1
)
(va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRcx)
8
Secret)
(va_CNil ()))))))))
(va_CCons (va_code_DestroyHeaplets ()) (va_CNil ()))))) | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid | val mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) | val mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) | let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
} | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 1,
"end_line": 69,
"start_col": 0,
"start_line": 57
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Hacl.Bignum.Definitions.limb_t ->
len: Hacl.Bignum.meta_len t ->
n: Hacl.Spec.Bignum.Definitions.lbignum t (Lib.IntTypes.v len) ->
mu: Hacl.Bignum.Definitions.limb t {Hacl.Spec.Bignum.Montgomery.bn_mont_pre n mu}
-> Hacl.Impl.Exponentiation.Definitions.to_comm_monoid t len (len +! len) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"Hacl.Impl.Exponentiation.Definitions.Mkto_comm_monoid",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontExponentiation.a_spec",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.SEC",
"Hacl.Bignum.AlmostMontExponentiation.linv_ctx",
"Hacl.Bignum.AlmostMontExponentiation.linv",
"Hacl.Bignum.AlmostMontExponentiation.refl",
"Hacl.Impl.Exponentiation.Definitions.to_comm_monoid"
] | [] | false | false | false | false | false | let mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
| {
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n
} | false |
Vale.Test.X64.Vale_memcpy.fst | Vale.Test.X64.Vale_memcpy.va_qcode_Memcpy | val va_qcode_Memcpy (va_mods: va_mods_t) (win: bool) (dst src: buffer64)
: (va_quickCode unit (va_code_Memcpy win)) | val va_qcode_Memcpy (va_mods: va_mods_t) (win: bool) (dst src: buffer64)
: (va_quickCode unit (va_code_Memcpy win)) | let va_qcode_Memcpy (va_mods:va_mods_t) (win:bool) (dst:buffer64) (src:buffer64) : (va_quickCode
unit (va_code_Memcpy win)) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QBind va_range1
"***** PRECONDITION NOT MET AT line 67 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_CreateHeaplets ([declare_buffer64 src 0 Secret Immutable; declare_buffer64 dst 1
Secret Mutable])) (fun (va_s:va_state) _ -> va_QBind va_range1
"***** PRECONDITION NOT MET AT line 71 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 73 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_InnerMemcpy dst src) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) ->
va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 77 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mem64_lemma (va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 0 src 0 Secret)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 77 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mov64 (va_op_dst_opr64_reg64 rRax) (va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi) 0 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 78 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mem64_lemma (va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 8 src 1 Secret)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 78 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mov64 (va_op_dst_opr64_reg64 rRcx) (va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi) 8 Secret)) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 79 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax) 0 Secret dst 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 80 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRcx) 8 Secret dst 1) (va_QEmpty (())))))))))) (fun (va_s:va_state) va_g
-> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 82 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_s) dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_s) src))
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 84 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_DestroyHeaplets ()) (va_QEmpty (()))))))) | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 206,
"start_col": 0,
"start_line": 170
} | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ())))))
[@ "opaque_to_smt" va_qattr]
let va_qcode_InnerMemcpy (va_mods:va_mods_t) (dst:buffer64) (src:buffer64) : (va_quickCode unit
(va_code_InnerMemcpy ())) =
(qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 38 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx) 0 Secret src 0) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 39 column 18 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret src 1) (va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 40 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax) 0 Secret dst 0) (va_QBind va_range1
"***** PRECONDITION NOT MET AT line 41 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9) 8 Secret dst 1) (fun (va_s:va_state) _ -> va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 42 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_s) dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_s) src))
(va_QEmpty (()))))))))
val va_lemma_InnerMemcpy : va_b0:va_code -> va_s0:va_state -> dst:buffer64 -> src:buffer64
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_InnerMemcpy ()) va_s0 /\ va_get_ok va_s0 /\
Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rRdx va_s0) src 2
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64 (va_get_mem_heaplet 1 va_s0)
(va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\ Vale.X64.Decls.buffer_length
#Vale.X64.Memory.vuint64 dst == 2))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_state_eq va_sM
(va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))
[@"opaque_to_smt"]
let va_lemma_InnerMemcpy va_b0 va_s0 dst src =
let (va_mods:va_mods_t) = [va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_ok; va_Mod_mem] in
let va_qc = va_qcode_InnerMemcpy va_mods dst src in
let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_InnerMemcpy ()) va_qc va_s0 (fun va_s0
va_sM va_g -> let () = va_g in label va_range1
"***** POSTCONDITION NOT MET AT line 21 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_get_ok va_sM) /\ label va_range1
"***** POSTCONDITION NOT MET AT line 35 column 63 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src) /\
label va_range1
"***** POSTCONDITION NOT MET AT line 36 column 57 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM))) in
assert_norm (va_qc.mods == va_mods);
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_ok; va_Mod_mem]) va_sM va_s0;
(va_sM, va_fM)
[@ va_qattr]
let va_wp_InnerMemcpy (dst:buffer64) (src:buffer64) (va_s0:va_state) (va_k:(va_state -> unit ->
Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.X64.Decls.validSrcAddrs64 (va_get_mem_heaplet 0 va_s0) (va_get_reg64
rRdx va_s0) src 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs64
(va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRcx va_s0) dst 2 (va_get_mem_layout va_s0) Secret
/\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 src == 2 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint64 dst == 2 /\ (forall (va_x_mem:vale_heap)
(va_x_rax:nat64) (va_x_rcx:nat64) (va_x_r9:nat64) (va_x_heap1:vale_heap) . let va_sM =
va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rRcx va_x_rcx
(va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))) in va_get_ok va_sM /\
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 1 va_sM) dst ==
Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64 (va_get_mem_heaplet 0 va_sM) src /\
Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint64 dst)
(va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) ==> va_k va_sM (())))
val va_wpProof_InnerMemcpy : dst:buffer64 -> src:buffer64 -> va_s0:va_state -> va_k:(va_state ->
unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_InnerMemcpy dst src va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_InnerMemcpy ()) ([va_Mod_mem_heaplet
1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM,
va_f0, va_g))))
[@"opaque_to_smt"]
let va_wpProof_InnerMemcpy dst src va_s0 va_k =
let (va_sM, va_f0) = va_lemma_InnerMemcpy (va_code_InnerMemcpy ()) va_s0 dst src in
va_lemma_upd_update va_sM;
assert (va_state_eq va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR9 va_sM
(va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0)))))));
va_lemma_norm_mods ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx; va_Mod_reg64
rRax; va_Mod_mem]) va_sM va_s0;
let va_g = () in
(va_sM, va_f0, va_g)
[@ "opaque_to_smt" va_qattr]
let va_quick_InnerMemcpy (dst:buffer64) (src:buffer64) : (va_quickCode unit (va_code_InnerMemcpy
())) =
(va_QProc (va_code_InnerMemcpy ()) ([va_Mod_mem_heaplet 1; va_Mod_reg64 rR9; va_Mod_reg64 rRcx;
va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_InnerMemcpy dst src) (va_wpProof_InnerMemcpy dst src))
//--
//-- Memcpy
[@ "opaque_to_smt" va_qattr]
let va_code_Memcpy win =
(va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (if win then va_Block (va_CCons
(va_code_InnerMemcpy ()) (va_CNil ())) else va_Block (va_CCons (va_code_Mem64_lemma ())
(va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_opr_code_Mem64
(va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 0 Secret)) (va_CCons
(va_code_Mem64_lemma ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRcx)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 8 Secret)) (va_CCons
(va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_reg_opr64_reg64 rRcx) 8
Secret) (va_CNil ())))))))) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ())))))
[@ "opaque_to_smt" va_qattr]
let va_codegen_success_Memcpy win =
(va_pbool_and (va_codegen_success_CreateHeaplets ()) (va_pbool_and (if win then va_pbool_and
(va_codegen_success_InnerMemcpy ()) (va_ttrue ()) else va_pbool_and
(va_codegen_success_Mem64_lemma ()) (va_pbool_and (va_codegen_success_Mov64
(va_op_dst_opr64_reg64 rRax) (va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi) 0 Secret)) (va_pbool_and (va_codegen_success_Mem64_lemma ())
(va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRcx) (va_opr_code_Mem64
(va_op_heaplet_mem_heaplet 0) (va_op_reg64_reg64 rRsi) 8 Secret)) (va_pbool_and
(va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax) 0 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_reg_opr64_reg64 rRcx) 8
Secret) (va_ttrue ()))))))) (va_pbool_and (va_codegen_success_DestroyHeaplets ()) (va_ttrue
())))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_mods: Vale.X64.QuickCode.va_mods_t ->
win: Prims.bool ->
dst: Vale.X64.Memory.buffer64 ->
src: Vale.X64.Memory.buffer64
-> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.Test.X64.Vale_memcpy.va_code_Memcpy win) | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.QuickCode.va_mods_t",
"Prims.bool",
"Vale.X64.Memory.buffer64",
"Vale.X64.QuickCodes.qblock",
"Prims.unit",
"Prims.Cons",
"Vale.X64.Decls.va_code",
"Vale.X64.InsMem.va_code_CreateHeaplets",
"Vale.X64.QuickCodes.if_code",
"Vale.X64.QuickCodes.block",
"Vale.Test.X64.Vale_memcpy.va_code_InnerMemcpy",
"Prims.Nil",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.InsMem.va_code_Mem64_lemma",
"Vale.X64.InsBasic.va_code_Mov64",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_opr_code_Mem64",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_reg64_reg64",
"Vale.X64.Machine_s.rRsi",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.InsMem.va_code_Store64_buffer",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdi",
"Vale.X64.InsMem.va_code_DestroyHeaplets",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.va_QBind",
"Vale.X64.QuickCodes.va_range1",
"Vale.X64.InsMem.va_quick_CreateHeaplets",
"Vale.Arch.HeapImpl.buffer_info",
"Vale.X64.InsMem.declare_buffer64",
"Vale.Arch.HeapImpl.Immutable",
"Vale.Arch.HeapImpl.Mutable",
"Vale.X64.QuickCodes.va_qInlineIf",
"Vale.X64.QuickCodes.va_QSeq",
"Vale.Test.X64.Vale_memcpy.va_quick_InnerMemcpy",
"Vale.X64.QuickCodes.va_QEmpty",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.InsMem.va_quick_Mem64_lemma",
"Vale.X64.InsBasic.va_quick_Mov64",
"Vale.X64.InsMem.va_quick_Store64_buffer",
"Vale.X64.QuickCodes.va_qAssert",
"FStar.Seq.Base.equal",
"Vale.X64.Memory.base_typ_as_vale_type",
"Vale.X64.Memory.vuint64",
"Vale.X64.Memory.buffer_as_seq",
"Vale.X64.Decls.va_get_mem_heaplet",
"Vale.X64.InsMem.va_quick_DestroyHeaplets",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.va_quickCode",
"Vale.Test.X64.Vale_memcpy.va_code_Memcpy"
] | [] | false | false | false | false | false | let va_qcode_Memcpy (va_mods: va_mods_t) (win: bool) (dst src: buffer64)
: (va_quickCode unit (va_code_Memcpy win)) =
| (qblock va_mods
(fun (va_s: va_state) ->
let va_old_s:va_state = va_s in
va_QBind va_range1
"***** PRECONDITION NOT MET AT line 67 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_CreateHeaplets ([
declare_buffer64 src 0 Secret Immutable;
declare_buffer64 dst 1 Secret Mutable
]))
(fun (va_s: va_state) _ ->
va_QBind va_range1
"***** PRECONDITION NOT MET AT line 71 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_qInlineIf va_mods
win
(qblock va_mods
(fun (va_s: va_state) ->
va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 73 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_InnerMemcpy dst src)
(va_QEmpty (()))))
(qblock va_mods
(fun (va_s: va_state) ->
va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 77 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mem64_lemma (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
0
src
0
Secret)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 77 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mov64 (va_op_dst_opr64_reg64 rRax)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
0
Secret))
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 78 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mem64_lemma (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
8
src
1
Secret)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 78 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Mov64 (va_op_dst_opr64_reg64 rRcx)
(va_opr_code_Mem64 (va_op_heaplet_mem_heaplet 0)
(va_op_reg64_reg64 rRsi)
8
Secret))
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 79 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRax)
0
Secret
dst
0)
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 80 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_Store64_buffer (va_op_heaplet_mem_heaplet
1)
(va_op_reg_opr64_reg64 rRdi)
(va_op_reg_opr64_reg64 rRcx)
8
Secret
dst
1)
(va_QEmpty (()))))))))))
(fun (va_s: va_state) va_g ->
va_qAssert va_range1
"***** PRECONDITION NOT MET AT line 82 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(FStar.Seq.Base.equal #(Vale.X64.Memory.base_typ_as_vale_type Vale.X64.Memory.vuint64
)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64
(va_get_mem_heaplet 1 va_s)
dst)
(Vale.X64.Memory.buffer_as_seq #Vale.X64.Memory.vuint64
(va_get_mem_heaplet 0 va_s)
src))
(va_QSeq va_range1
"***** PRECONDITION NOT MET AT line 84 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Vale_memcpy.vaf *****"
(va_quick_DestroyHeaplets ())
(va_QEmpty (()))))))) | false |
FStar.IntegerIntervals.fst | FStar.IntegerIntervals.interval_condition | val interval_condition : x: Prims.int -> y: Prims.int -> t: Prims.int -> Prims.bool | let interval_condition (x y t: int) = (x <= t) && (t < y) | {
"file_name": "ulib/FStar.IntegerIntervals.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 33,
"start_col": 0,
"start_line": 33
} | (*
Copyright 2008-2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
module FStar.IntegerIntervals
(* Aliases to all kinds of integer intervals *)
(* general infinite integer intervals *)
type less_than (k: int) = x:int{x<k}
type greater_than (k: int) = x:int{x>k}
type not_less_than (x: int) = greater_than (x-1)
type not_greater_than (x: int) = less_than (x+1)
(* Type coercion. While supposed to be absolutely trivial,
might still be invoked directly under extremely low rlimits *)
let coerce_to_less_than #n (x: not_greater_than n) : less_than (n+1) = x
let coerce_to_not_less_than #n (x: greater_than n) : not_less_than (n+1) = x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IntegerIntervals.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.int -> t: Prims.int -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.bool"
] | [] | false | false | false | true | false | let interval_condition (x y t: int) =
| (x <= t) && (t < y) | false |
|
FStar.IntegerIntervals.fst | FStar.IntegerIntervals.coerce_to_less_than | val coerce_to_less_than (#n: _) (x: not_greater_than n) : less_than (n + 1) | val coerce_to_less_than (#n: _) (x: not_greater_than n) : less_than (n + 1) | let coerce_to_less_than #n (x: not_greater_than n) : less_than (n+1) = x | {
"file_name": "ulib/FStar.IntegerIntervals.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 30,
"start_col": 0,
"start_line": 30
} | (*
Copyright 2008-2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
module FStar.IntegerIntervals
(* Aliases to all kinds of integer intervals *)
(* general infinite integer intervals *)
type less_than (k: int) = x:int{x<k}
type greater_than (k: int) = x:int{x>k}
type not_less_than (x: int) = greater_than (x-1)
type not_greater_than (x: int) = less_than (x+1)
(* Type coercion. While supposed to be absolutely trivial, | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IntegerIntervals.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.IntegerIntervals.not_greater_than n -> FStar.IntegerIntervals.less_than (n + 1) | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.IntegerIntervals.not_greater_than",
"FStar.IntegerIntervals.less_than",
"Prims.op_Addition"
] | [] | false | false | false | false | false | let coerce_to_less_than #n (x: not_greater_than n) : less_than (n + 1) =
| x | false |
FStar.IntegerIntervals.fst | FStar.IntegerIntervals.closed_interval_size | val closed_interval_size (x y: int) : nat | val closed_interval_size (x y: int) : nat | let closed_interval_size (x y: int) : nat = interval_size (ifrom_ito x y) | {
"file_name": "ulib/FStar.IntegerIntervals.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 73,
"end_line": 61,
"start_col": 0,
"start_line": 61
} | (*
Copyright 2008-2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
module FStar.IntegerIntervals
(* Aliases to all kinds of integer intervals *)
(* general infinite integer intervals *)
type less_than (k: int) = x:int{x<k}
type greater_than (k: int) = x:int{x>k}
type not_less_than (x: int) = greater_than (x-1)
type not_greater_than (x: int) = less_than (x+1)
(* Type coercion. While supposed to be absolutely trivial,
might still be invoked directly under extremely low rlimits *)
let coerce_to_less_than #n (x: not_greater_than n) : less_than (n+1) = x
let coerce_to_not_less_than #n (x: greater_than n) : not_less_than (n+1) = x
let interval_condition (x y t: int) = (x <= t) && (t < y)
type interval_type (x y:int) = z : Type0{ z == t:int{interval_condition x y t} }
(* Default interval is half-open, which is the most frequently used case *)
type interval (x y: int) : interval_type x y = t:int{interval_condition x y t}
(* general finite integer intervals *)
type efrom_eto (x y: int) = interval (x+1) y
type efrom_ito (x y: int) = interval (x+1) (y+1)
type ifrom_eto (x y: int) = interval x y
type ifrom_ito (x y: int) = interval x (y+1)
(* Special case for naturals under k, to use in sequences, lists, arrays, etc *)
type under (k: nat) = interval 0 k
(* If we define our intervals this way, then the following lemma comes for free: *)
private let closed_interval_lemma (x y:int) : Lemma (interval x (y+1) == ifrom_ito x y) = ()
(* how many numbers fall into an interval? *)
let interval_size (#x #y: int) (interval: interval_type x y) : nat
= if y >= x then y-x else 0
(* when we want a zero-based index that runs over an interval, we use this *)
type counter_for (#x #y:int) (interval: interval_type x y) = under (interval_size interval) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IntegerIntervals.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.int -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.IntegerIntervals.interval_size",
"Prims.op_Addition",
"FStar.IntegerIntervals.ifrom_ito",
"Prims.nat"
] | [] | false | false | false | true | false | let closed_interval_size (x y: int) : nat =
| interval_size (ifrom_ito x y) | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.mk_bn_almost_mont_concrete_ops | val mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) | val mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) | let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
} | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 1,
"end_line": 146,
"start_col": 0,
"start_line": 135
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t: Hacl.Bignum.Definitions.limb_t ->
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
n:
FStar.Ghost.erased (Hacl.Spec.Bignum.Definitions.lbignum t
(Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)))) ->
mu:
Hacl.Bignum.Definitions.limb t
{Hacl.Spec.Bignum.Montgomery.bn_mont_pre (FStar.Ghost.reveal n) mu}
-> Hacl.Impl.Exponentiation.Definitions.concrete_ops t
(Mkbn?.len (Mkalmost_mont?.bn k))
(Mkbn?.len (Mkalmost_mont?.bn k) +! Mkbn?.len (Mkalmost_mont?.bn k)) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"FStar.Ghost.erased",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"FStar.Ghost.reveal",
"Hacl.Impl.Exponentiation.Definitions.Mkconcrete_ops",
"Lib.IntTypes.op_Plus_Bang",
"FStar.Ghost.hide",
"Hacl.Impl.Exponentiation.Definitions.to_comm_monoid",
"Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid",
"Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_one",
"Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_mul",
"Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_sqr",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops"
] | [] | false | false | false | false | false | let mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
| {
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu
} | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_vartime | val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | let bn_exp_almost_mont_vartime #t k n mu r2 aM bBits b resM =
if bBits <. size ME.bn_exp_mont_vartime_threshold then
bn_exp_almost_mont_bm_vartime k n mu r2 aM bBits b resM
else
bn_exp_almost_mont_fw_vartime k 4ul n mu r2 aM bBits b resM | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 309,
"start_col": 0,
"start_line": 305
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_consttime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
///////////////////////////////////////////////
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Hacl.Bignum.AlmostMontgomery.almost_mont t
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"Lib.IntTypes.op_Less_Dot",
"Lib.IntTypes.U32",
"Hacl.Spec.Bignum.MontExponentiation.bn_exp_mont_vartime_threshold",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_bm_vartime",
"Prims.unit",
"Prims.bool",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_fw_vartime",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | false | false | let bn_exp_almost_mont_vartime #t k n mu r2 aM bBits b resM =
| if bBits <. size ME.bn_exp_mont_vartime_threshold
then bn_exp_almost_mont_bm_vartime k n mu r2 aM bBits b resM
else bn_exp_almost_mont_fw_vartime k 4ul n mu r2 aM bBits b resM | false |
Spec.Agile.HKDF.fsti | Spec.Agile.HKDF.expand_output_length_pred | val expand_output_length_pred : a: Spec.Hash.Definitions.fixed_len_alg -> len: Prims.nat -> Prims.bool | let expand_output_length_pred (a:fixed_len_alg) (len:nat) =
len <= 255 * hash_length a | {
"file_name": "specs/Spec.Agile.HKDF.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 25,
"start_col": 0,
"start_line": 24
} | module Spec.Agile.HKDF
open FStar.Mul
open Spec.Hash.Definitions
let lbytes (l:nat) = b:bytes {Seq.length b = l}
let extract_ikm_length_pred (a:hash_alg) (ikm_length:nat) =
(ikm_length + block_length a) `less_than_max_input_length` a
val extract:
a: fixed_len_alg ->
key: bytes ->
data: bytes ->
Pure (lbytes (hash_length a))
(requires
Spec.Agile.HMAC.keysized a (Seq.length key) /\
extract_ikm_length_pred a (Seq.length data))
(ensures fun _ -> True)
let expand_info_length_pred (a:fixed_len_alg) (info_length:nat) =
(hash_length a + info_length + 1 + block_length a) `less_than_max_input_length` a | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.HKDF.fsti"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.fixed_len_alg -> len: Prims.nat -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.fixed_len_alg",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Spec.Hash.Definitions.hash_length",
"Prims.bool"
] | [] | false | false | false | true | false | let expand_output_length_pred (a: fixed_len_alg) (len: nat) =
| len <= 255 * hash_length a | false |
|
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_pre | val bn_exp_almost_mont_pre : n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
aM: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t))
-> Prims.logical | let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 193,
"start_col": 0,
"start_line": 180
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
aM: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t))
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.logical"
] | [] | false | false | false | false | true | let bn_exp_almost_mont_pre
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len)
(mu: limb t)
(r2 aM: BD.lbignum t len)
(bBits: size_nat)
(b: BD.lbignum t (BD.blocks0 bBits (bits t)))
=
| SM.bn_mont_pre n mu /\ BD.bn_v r2 == pow2 ((2 * bits t) * len) % BD.bn_v n /\ BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n | false |
|
Spec.Agile.HKDF.fsti | Spec.Agile.HKDF.expand_info_length_pred | val expand_info_length_pred : a: Spec.Hash.Definitions.fixed_len_alg -> info_length: Prims.nat -> Prims.bool | let expand_info_length_pred (a:fixed_len_alg) (info_length:nat) =
(hash_length a + info_length + 1 + block_length a) `less_than_max_input_length` a | {
"file_name": "specs/Spec.Agile.HKDF.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 83,
"end_line": 22,
"start_col": 0,
"start_line": 21
} | module Spec.Agile.HKDF
open FStar.Mul
open Spec.Hash.Definitions
let lbytes (l:nat) = b:bytes {Seq.length b = l}
let extract_ikm_length_pred (a:hash_alg) (ikm_length:nat) =
(ikm_length + block_length a) `less_than_max_input_length` a
val extract:
a: fixed_len_alg ->
key: bytes ->
data: bytes ->
Pure (lbytes (hash_length a))
(requires
Spec.Agile.HMAC.keysized a (Seq.length key) /\
extract_ikm_length_pred a (Seq.length data))
(ensures fun _ -> True) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.HKDF.fsti"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.fixed_len_alg -> info_length: Prims.nat -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.fixed_len_alg",
"Prims.nat",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Spec.Hash.Definitions.block_length",
"Prims.bool"
] | [] | false | false | false | true | false | let expand_info_length_pred (a: fixed_len_alg) (info_length: nat) =
| (hash_length a + info_length + 1 + block_length a) `less_than_max_input_length` a | false |
|
FStar.IntegerIntervals.fst | FStar.IntegerIntervals.coerce_to_not_less_than | val coerce_to_not_less_than (#n: _) (x: greater_than n) : not_less_than (n + 1) | val coerce_to_not_less_than (#n: _) (x: greater_than n) : not_less_than (n + 1) | let coerce_to_not_less_than #n (x: greater_than n) : not_less_than (n+1) = x | {
"file_name": "ulib/FStar.IntegerIntervals.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 76,
"end_line": 31,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2008-2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
module FStar.IntegerIntervals
(* Aliases to all kinds of integer intervals *)
(* general infinite integer intervals *)
type less_than (k: int) = x:int{x<k}
type greater_than (k: int) = x:int{x>k}
type not_less_than (x: int) = greater_than (x-1)
type not_greater_than (x: int) = less_than (x+1)
(* Type coercion. While supposed to be absolutely trivial,
might still be invoked directly under extremely low rlimits *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IntegerIntervals.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.IntegerIntervals.greater_than n -> FStar.IntegerIntervals.not_less_than (n + 1) | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.IntegerIntervals.greater_than",
"FStar.IntegerIntervals.not_less_than",
"Prims.op_Addition"
] | [] | false | false | false | false | false | let coerce_to_not_less_than #n (x: greater_than n) : not_less_than (n + 1) =
| x | false |
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.linv_ctx | val linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0 | val linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0 | let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 71,
"end_line": 53,
"start_col": 0,
"start_line": 49
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
ctx: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Addition",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub"
] | [] | false | false | false | false | true | let linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0 =
| let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\ 0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 ((2 * bits t) * len) % BD.bn_v n | false |
FStar.IntegerIntervals.fst | FStar.IntegerIntervals.interval_size | val interval_size (#x #y: int) (interval: interval_type x y) : nat | val interval_size (#x #y: int) (interval: interval_type x y) : nat | let interval_size (#x #y: int) (interval: interval_type x y) : nat
= if y >= x then y-x else 0 | {
"file_name": "ulib/FStar.IntegerIntervals.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 55,
"start_col": 0,
"start_line": 54
} | (*
Copyright 2008-2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Author: A. Rozanov
*)
module FStar.IntegerIntervals
(* Aliases to all kinds of integer intervals *)
(* general infinite integer intervals *)
type less_than (k: int) = x:int{x<k}
type greater_than (k: int) = x:int{x>k}
type not_less_than (x: int) = greater_than (x-1)
type not_greater_than (x: int) = less_than (x+1)
(* Type coercion. While supposed to be absolutely trivial,
might still be invoked directly under extremely low rlimits *)
let coerce_to_less_than #n (x: not_greater_than n) : less_than (n+1) = x
let coerce_to_not_less_than #n (x: greater_than n) : not_less_than (n+1) = x
let interval_condition (x y t: int) = (x <= t) && (t < y)
type interval_type (x y:int) = z : Type0{ z == t:int{interval_condition x y t} }
(* Default interval is half-open, which is the most frequently used case *)
type interval (x y: int) : interval_type x y = t:int{interval_condition x y t}
(* general finite integer intervals *)
type efrom_eto (x y: int) = interval (x+1) y
type efrom_ito (x y: int) = interval (x+1) (y+1)
type ifrom_eto (x y: int) = interval x y
type ifrom_ito (x y: int) = interval x (y+1)
(* Special case for naturals under k, to use in sequences, lists, arrays, etc *)
type under (k: nat) = interval 0 k
(* If we define our intervals this way, then the following lemma comes for free: *)
private let closed_interval_lemma (x y:int) : Lemma (interval x (y+1) == ifrom_ito x y) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IntegerIntervals.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | interval: FStar.IntegerIntervals.interval_type x y -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.IntegerIntervals.interval_type",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.nat"
] | [] | false | false | false | false | false | let interval_size (#x #y: int) (interval: interval_type x y) : nat =
| if y >= x then y - x else 0 | false |
Spec.Agile.HKDF.fsti | Spec.Agile.HKDF.extract_ikm_length_pred | val extract_ikm_length_pred : a: Spec.Hash.Definitions.hash_alg -> ikm_length: Prims.nat -> Prims.bool | let extract_ikm_length_pred (a:hash_alg) (ikm_length:nat) =
(ikm_length + block_length a) `less_than_max_input_length` a | {
"file_name": "specs/Spec.Agile.HKDF.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 9,
"start_col": 0,
"start_line": 8
} | module Spec.Agile.HKDF
open FStar.Mul
open Spec.Hash.Definitions
let lbytes (l:nat) = b:bytes {Seq.length b = l} | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.HKDF.fsti"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.hash_alg -> ikm_length: Prims.nat -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.nat",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.op_Addition",
"Spec.Hash.Definitions.block_length",
"Prims.bool"
] | [] | false | false | false | true | false | let extract_ikm_length_pred (a: hash_alg) (ikm_length: nat) =
| (ikm_length + block_length a) `less_than_max_input_length` a | false |
|
Hacl.Bignum.AlmostMontExponentiation.fst | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_consttime | val bn_exp_almost_mont_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | val bn_exp_almost_mont_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | let bn_exp_almost_mont_consttime #t k n mu r2 aM bBits b resM =
if bBits <. size ME.bn_exp_mont_consttime_threshold then
bn_exp_almost_mont_bm_consttime k n mu r2 aM bBits b resM
else
bn_exp_almost_mont_fw_consttime k 4ul n mu r2 aM bBits b resM | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 65,
"end_line": 319,
"start_col": 0,
"start_line": 315
} | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_consttime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
///////////////////////////////////////////////
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_vartime #t k n mu r2 aM bBits b resM =
if bBits <. size ME.bn_exp_mont_vartime_threshold then
bn_exp_almost_mont_bm_vartime k n mu r2 aM bBits b resM
else
bn_exp_almost_mont_fw_vartime k 4ul n mu r2 aM bBits b resM
// This function is constant-time on the exponent b.
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Hacl.Bignum.AlmostMontgomery.almost_mont t
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"Lib.IntTypes.op_Less_Dot",
"Lib.IntTypes.U32",
"Hacl.Spec.Bignum.MontExponentiation.bn_exp_mont_consttime_threshold",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_bm_consttime",
"Prims.unit",
"Prims.bool",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_fw_consttime",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | false | false | let bn_exp_almost_mont_consttime #t k n mu r2 aM bBits b resM =
| if bBits <. size ME.bn_exp_mont_consttime_threshold
then bn_exp_almost_mont_bm_consttime k n mu r2 aM bBits b resM
else bn_exp_almost_mont_fw_consttime k 4ul n mu r2 aM bBits b resM | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.