file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pulse.Typing.fst | Pulse.Typing.lift_typing_to_ghost_typing | val lift_typing_to_ghost_typing
(#g: env)
(#e: term)
(#eff: T.tot_or_ghost)
(#t: term)
(d: typing g e eff t)
: ghost_typing g e t | val lift_typing_to_ghost_typing
(#g: env)
(#e: term)
(#eff: T.tot_or_ghost)
(#t: term)
(d: typing g e eff t)
: ghost_typing g e t | let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _)) | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 55,
"end_line": 508,
"start_col": 0,
"start_line": 502
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.typing g e eff t -> Pulse.Typing.ghost_typing g e t | Prims.Tot | [
"total"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"Pulse.Typing.typing",
"Prims.op_Equality",
"FStar.Stubs.TypeChecker.Core.E_Ghost",
"Prims.bool",
"FStar.Reflection.Typing.typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.Types.typ",
"Pulse.Typing.E",
"FStar.Reflection.Typing.T_Sub",
"FStar.Reflection.Typing.Relc_total_ghost",
"Pulse.Typing.ghost_typing"
] | [] | false | false | false | false | false | let lift_typing_to_ghost_typing
(#g: env)
(#e: term)
(#eff: T.tot_or_ghost)
(#t: term)
(d: typing g e eff t)
: ghost_typing g e t =
| if eff = T.E_Ghost
then d
else
let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _)) | false |
Pulse.Typing.fst | Pulse.Typing.non_informative_c | val non_informative_c : g: Pulse.Typing.Env.env -> c: Pulse.Syntax.Base.comp_st -> Type0 | let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c) | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 45,
"end_line": 517,
"start_col": 0,
"start_line": 516
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | g: Pulse.Typing.Env.env -> c: Pulse.Syntax.Base.comp_st -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.comp_st",
"Pulse.Typing.non_informative_t",
"Pulse.Syntax.Base.comp_u",
"Pulse.Syntax.Base.comp_res"
] | [] | false | false | false | true | true | let non_informative_c (g: env) (c: comp_st) =
| non_informative_t g (comp_u c) (comp_res c) | false |
|
Pulse.Typing.fst | Pulse.Typing.add_iname_at_least_unobservable | val add_iname_at_least_unobservable : s: Pulse.Syntax.Base.comp_st{C_STAtomic? s} ->
inv_vprop: Pulse.Syntax.Base.term ->
inv_tm: Pulse.Syntax.Base.term
-> Pulse.Syntax.Base.comp | let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 62,
"end_line": 252,
"start_col": 0,
"start_line": 246
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Pulse.Syntax.Base.comp_st{C_STAtomic? s} ->
inv_vprop: Pulse.Syntax.Base.term ->
inv_tm: Pulse.Syntax.Base.term
-> Pulse.Syntax.Base.comp | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.comp_st",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_C_STAtomic",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.observability",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.C_STAtomic",
"Pulse.Typing.join_obs",
"Pulse.Syntax.Base.Unobservable",
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.tm_fstar",
"Pulse.Reflection.Util.add_inv_tm",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkterm__item__range"
] | [] | false | false | false | false | false | let add_iname_at_least_unobservable (s: comp_st{C_STAtomic? s}) (inv_vprop inv_tm: term) =
| let add_inv_tm (inames: term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop)
(elab_term inames)
(elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s | false |
|
Pulse.Typing.fst | Pulse.Typing.tr_binding | val tr_binding (vt: var & typ) : Tot R.binding | val tr_binding (vt: var & typ) : Tot R.binding | let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
} | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 2,
"end_line": 670,
"start_col": 0,
"start_line": 664
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | vt: (Pulse.Syntax.Base.var * Pulse.Syntax.Base.typ) -> FStar.Stubs.Reflection.V2.Data.binding | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.typ",
"FStar.Stubs.Reflection.V2.Data.Mkbinding",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkppname__item__name",
"Pulse.Syntax.Base.ppname_default",
"FStar.Stubs.Reflection.V2.Data.binding"
] | [] | false | false | false | true | false | let tr_binding (vt: var & typ) : Tot R.binding =
| let v, t = vt in
{ uniq = v; sort = elab_term t; ppname = ppname_default.name } | false |
Pulse.Typing.fst | Pulse.Typing.wr | val wr (ct: comp_st) (t: st_term') : st_term | val wr (ct: comp_st) (t: st_term') : st_term | let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) } | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 136,
"end_line": 634,
"start_col": 0,
"start_line": 634
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c)) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ct: Pulse.Syntax.Base.comp_st -> t: Pulse.Syntax.Base.st_term' -> Pulse.Syntax.Base.st_term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.comp_st",
"Pulse.Syntax.Base.st_term'",
"Pulse.Syntax.Base.Mkst_term",
"FStar.Range.range_0",
"Pulse.Syntax.Base.as_effect_hint",
"Pulse.Syntax.Base.ctag_of_comp_st",
"Pulse.Syntax.Base.st_term"
] | [] | false | false | false | true | false | let wr (ct: comp_st) (t: st_term') : st_term =
| { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) } | false |
Pulse.Typing.fst | Pulse.Typing.sub_observability | val sub_observability : o1: Pulse.Syntax.Base.observability -> o2: Pulse.Syntax.Base.observability -> Prims.bool | let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 88,
"end_line": 578,
"start_col": 0,
"start_line": 578
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o1: Pulse.Syntax.Base.observability -> o2: Pulse.Syntax.Base.observability -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.observability",
"Prims.op_BarBar",
"Prims.op_Equality",
"Pulse.Syntax.Base.Neutral",
"Pulse.Syntax.Base.Observable",
"Prims.bool"
] | [] | false | false | false | true | false | let sub_observability (o1 o2: observability) =
| o1 = Neutral || o1 = o2 || o2 = Observable | false |
|
Pulse.Typing.fst | Pulse.Typing.wtag | val wtag (ct: option ctag) (t: st_term') : st_term | val wtag (ct: option ctag) (t: st_term') : st_term | let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct } | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 128,
"end_line": 635,
"start_col": 0,
"start_line": 635
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c)) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ct: FStar.Pervasives.Native.option Pulse.Syntax.Base.ctag -> t: Pulse.Syntax.Base.st_term'
-> Pulse.Syntax.Base.st_term | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.ctag",
"Pulse.Syntax.Base.st_term'",
"Pulse.Syntax.Base.Mkst_term",
"FStar.Range.range_0",
"FStar.Sealed.seal",
"Pulse.Syntax.Base.st_term"
] | [] | false | false | false | true | false | let wtag (ct: option ctag) (t: st_term') : st_term =
| { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct } | false |
Pulse.Typing.fst | Pulse.Typing.inv_disjointness | val inv_disjointness : inv_p: Pulse.Syntax.Base.term -> inames: Pulse.Syntax.Base.term -> inv: Pulse.Syntax.Base.term
-> Pulse.Syntax.Base.term | let inv_disjointness (inv_p inames inv:term) =
let g = Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv) in
tm_fstar g inv.range | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 22,
"end_line": 724,
"start_col": 0,
"start_line": 722
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2)
let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
}
let tr_bindings = L.map tr_binding
[@@ no_auto_projectors]
noeq
type comp_typing : env -> comp -> universe -> Type =
| CT_Tot :
g:env ->
t:term ->
u:universe ->
universe_of g t u ->
comp_typing g (C_Tot t) u
| CT_ST :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_ST st) (universe_of_comp (C_ST st))
| CT_STAtomic :
g:env ->
inames:term ->
obs:observability ->
st:st_comp ->
tot_typing g inames tm_inames ->
st_comp_typing g st ->
comp_typing g (C_STAtomic inames obs st) (universe_of_comp (C_STAtomic inames obs st))
| CT_STGhost :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_STGhost st) (universe_of_comp (C_STGhost st))
let comp_typing_u (e:env) (c:comp_st) = comp_typing e c (universe_of_comp c)
let subtyping_token g t1 t2 =
T.subtyping_token (elab_env g) (elab_term t1) (elab_term t2)
val readback_binding : R.binding -> binding
let readback_binding b =
assume (host_term == R.term); // fixme! expose this fact
match readback_ty b.sort with
| Some sort -> (b.uniq, sort)
| None ->
let sort : term = {t=Tm_FStar b.sort; range=T.range_of_term b.sort} in
(b.uniq, sort)
let non_informative (g:env) (c:comp) =
my_erased (RT.non_informative (elab_env g) (elab_comp c)) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | inv_p: Pulse.Syntax.Base.term -> inames: Pulse.Syntax.Base.term -> inv: Pulse.Syntax.Base.term
-> Pulse.Syntax.Base.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.tm_fstar",
"Pulse.Syntax.Base.__proj__Mkterm__item__range",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Reflection.Util.inv_disjointness_goal",
"Pulse.Elaborate.Pure.elab_term"
] | [] | false | false | false | true | false | let inv_disjointness (inv_p inames inv: term) =
| let g =
Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv)
in
tm_fstar g inv.range | false |
|
Pulse.Typing.fst | Pulse.Typing.tm_join_inames | val tm_join_inames (inames1 inames2: term) : term | val tm_join_inames (inames1 inames2: term) : term | let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1) | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 38,
"end_line": 530,
"start_col": 0,
"start_line": 520
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | inames1: Pulse.Syntax.Base.term -> inames2: Pulse.Syntax.Base.term -> Pulse.Syntax.Base.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.eq_tm",
"Pulse.Syntax.Base.tm_emp_inames",
"Prims.bool",
"Pulse.Syntax.Base.with_range",
"Pulse.Syntax.Base.Tm_FStar",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.term",
"Prims.Nil",
"FStar.Stubs.Reflection.V2.Builtins.range_of_term",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_FVar",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"Prims.list",
"Prims.string",
"Pulse.Reflection.Util.mk_pulse_lib_core_lid",
"Pulse.Elaborate.Pure.elab_term"
] | [] | false | false | false | true | false | let tm_join_inames (inames1 inames2: term) : term =
| if eq_tm inames1 tm_emp_inames
then inames2
else
if eq_tm inames2 tm_emp_inames
then inames1
else
if eq_tm inames1 inames2
then inames1
else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join:R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2])) (T.range_of_term inames1) | false |
Pulse.Typing.fst | Pulse.Typing.comp_post_matches_hint | val comp_post_matches_hint : c: Pulse.Syntax.Base.comp_st -> post_hint: FStar.Pervasives.Native.option Pulse.Typing.post_hint_t
-> Prims.logical | let comp_post_matches_hint (c:comp_st) (post_hint:option post_hint_t) =
match post_hint with
| None -> True
| Some post_hint ->
comp_res c == post_hint.ret_ty /\
comp_u c == post_hint.u /\
comp_post c == post_hint.post /\
effect_annot_matches c post_hint.effect_annot | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 1208,
"start_col": 0,
"start_line": 1201
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2)
let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
}
let tr_bindings = L.map tr_binding
[@@ no_auto_projectors]
noeq
type comp_typing : env -> comp -> universe -> Type =
| CT_Tot :
g:env ->
t:term ->
u:universe ->
universe_of g t u ->
comp_typing g (C_Tot t) u
| CT_ST :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_ST st) (universe_of_comp (C_ST st))
| CT_STAtomic :
g:env ->
inames:term ->
obs:observability ->
st:st_comp ->
tot_typing g inames tm_inames ->
st_comp_typing g st ->
comp_typing g (C_STAtomic inames obs st) (universe_of_comp (C_STAtomic inames obs st))
| CT_STGhost :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_STGhost st) (universe_of_comp (C_STGhost st))
let comp_typing_u (e:env) (c:comp_st) = comp_typing e c (universe_of_comp c)
let subtyping_token g t1 t2 =
T.subtyping_token (elab_env g) (elab_term t1) (elab_term t2)
val readback_binding : R.binding -> binding
let readback_binding b =
assume (host_term == R.term); // fixme! expose this fact
match readback_ty b.sort with
| Some sort -> (b.uniq, sort)
| None ->
let sort : term = {t=Tm_FStar b.sort; range=T.range_of_term b.sort} in
(b.uniq, sort)
let non_informative (g:env) (c:comp) =
my_erased (RT.non_informative (elab_env g) (elab_comp c))
let inv_disjointness (inv_p inames inv:term) =
let g = Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv) in
tm_fstar g inv.range
let eff_of_ctag = function
| STT_Ghost -> T.E_Ghost
| _ -> T.E_Total
[@@ no_auto_projectors]
noeq
type st_typing : env -> st_term -> comp -> Type =
| T_Abs:
g:env ->
x:var { None? (lookup g x) } ->
q:option qualifier ->
b:binder ->
u:universe ->
body:st_term {~ (x `Set.mem` freevars_st body) } ->
c:comp ->
tot_typing g b.binder_ty (tm_type u) ->
st_typing (push_binding g x ppname_default b.binder_ty) (open_st_term_nv body (b.binder_ppname, x)) c ->
st_typing g (wtag None (Tm_Abs { b; q; body; ascription=empty_ascription}))
(C_Tot (tm_arrow b q (close_comp c x)))
| T_STApp :
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
tot_typing g head (tm_arrow (as_binder ty) q res) ->
tot_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
//
// this rule requires a non-informative judgment
// for C_STGhost, this will always be the case
// however, when doing the soundness proof,
// we cannot call into the reflection API to get the token
// may be there is another way to make it so that we can get this once-and-for-all
// for C_STGhost
//
| T_STGhostApp:
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars_comp res) } ->
ghost_typing g head (tm_arrow (as_binder ty) q res) ->
non_informative (push_binding g x ppname_default ty)
(open_comp_with res (null_var x)) ->
ghost_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
| T_Return:
g:env ->
c:ctag ->
use_eq:bool ->
u:universe ->
t:term ->
e:term ->
post:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars post) } ->
universe_of g t u ->
typing g e (eff_of_ctag c) t ->
tot_typing (push_binding g x ppname_default t) (open_term post x) tm_vprop ->
st_typing g (wtag (Some c) (Tm_Return { expected_type=tm_unknown; insert_eq=use_eq; term=e }))
(comp_return c use_eq u t e post x)
| T_Lift:
g:env ->
e:st_term ->
c1:comp_st ->
c2:comp_st ->
st_typing g e c1 ->
lift_comp g c1 c2 ->
st_typing g e c2
| T_Bind:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp_st ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
c:comp ->
st_typing g e1 c1 ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
bind_comp g x c1 c2 c ->
st_typing g (wr c (Tm_Bind { binder=b; head=e1; body=e2 })) c
| T_BindFn:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp { C_Tot? c1 } ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
st_typing g e1 c1 ->
u:Ghost.erased universe ->
tot_typing g (comp_res c1) (tm_type u) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
comp_typing_u g c2 ->
st_typing g (wr c2 (Tm_Bind { binder=b; head=e1; body=e2 })) c2
| T_If:
g:env ->
b:term ->
e1:st_term ->
e2:st_term ->
c:comp_st ->
(* This is a little weird, we introduce a name hyp in the environment,
but the branches are not allowed to use it (except perhaps in a silent way for proofs).
Maybe more natural to have one free var in e1,e2 and to open it with hyp?
But that's also a change to FStar.Reflection.Typing
*)
hyp:var { None? (lookup g hyp) /\
~(hyp `Set.mem` (freevars_st e1 `Set.union` freevars_st e2))
} ->
tot_typing g b tm_bool ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_true)) e1 c ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_false)) e2 c ->
my_erased (comp_typing_u g c) ->
st_typing g (wr c (Tm_If { b; then_=e1; else_=e2; post=None })) c
| T_Match :
g:env ->
sc_u:universe ->
sc_ty:typ ->
sc:term ->
tot_typing g sc_ty (tm_type sc_u) ->
tot_typing g sc sc_ty ->
c:comp_st ->
my_erased (comp_typing_u g c) ->
brs:list (pattern & st_term) ->
brs_typing g sc_u sc_ty sc brs c ->
pats_complete g sc sc_ty (L.map (fun (p, _) -> elab_pat p) brs) ->
st_typing g (wr c (Tm_Match {sc; returns_=None; brs})) c
| T_Frame:
g:env ->
e:st_term ->
c:comp_st ->
frame:term ->
tot_typing g frame tm_vprop ->
st_typing g e c ->
st_typing g e (add_frame c frame)
| T_Equiv:
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_equiv g c c' ->
st_typing g e c'
| T_Sub :
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_sub g c c' ->
st_typing g e c'
| T_IntroPure:
g:env ->
p:term ->
tot_typing g p tm_prop ->
prop_validity g p ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroPure { p }))
(comp_intro_pure p)
| T_ElimExists:
g:env ->
u:universe ->
t:term ->
p:term ->
x:var { None? (lookup g x) } ->
tot_typing g t (tm_type u) ->
tot_typing g (tm_exists_sl u (as_binder t) p) tm_vprop ->
st_typing g (wtag (Some STT_Ghost) (Tm_ElimExists { p = tm_exists_sl u (as_binder t) p }))
(comp_elim_exists u t p (v_as_nv x))
| T_IntroExists:
g:env ->
u:universe ->
b:binder ->
p:term ->
e:term ->
tot_typing g b.binder_ty (tm_type u) ->
tot_typing g (tm_exists_sl u b p) tm_vprop ->
ghost_typing g e b.binder_ty ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroExists { p = tm_exists_sl u b p;
witnesses= [e] }))
(comp_intro_exists u b p e)
| T_While:
g:env ->
inv:term ->
cond:st_term ->
body:st_term ->
tot_typing g (tm_exists_sl u0 (as_binder tm_bool) inv) tm_vprop ->
st_typing g cond (comp_while_cond ppname_default inv) ->
st_typing g body (comp_while_body ppname_default inv) ->
st_typing g (wtag (Some STT) (Tm_While { invariant = inv;
condition = cond;
body;
condition_var = ppname_default } ))
(comp_while ppname_default inv)
| T_Par:
g:env ->
eL:st_term ->
cL:comp { C_ST? cL } ->
eR:st_term ->
cR:comp { C_ST? cR /\ comp_u cL == comp_u cR } ->
x:var { None? (lookup g x) } ->
// TODO: can comp_typing come from inversion of eL : cL and eR : cR?
comp_typing_u g cL ->
comp_typing_u g cR ->
st_typing g eL cL ->
st_typing g eR cR ->
st_typing g (wr cL (Tm_Par { pre1=tm_unknown; body1=eL; post1=tm_unknown;
pre2=tm_unknown; body2=eR; post2=tm_unknown }))
(comp_par cL cR x)
| T_WithLocal:
g:env ->
binder_ppname:ppname ->
init:term ->
body:st_term ->
init_t:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g init init_t ->
universe_of g init_t u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_ref init_t))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_body x init_t init c) ->
st_typing g (wr c (Tm_WithLocal { binder = mk_binder_ppname (mk_ref init_t) binder_ppname; initializer=init; body } )) c
| T_WithLocalArray:
g:env ->
binder_ppname:ppname ->
initializer:term ->
length:term ->
body:st_term ->
a:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g initializer a ->
tot_typing g length tm_szt ->
universe_of g a u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_array a))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_array_body x a initializer length c) ->
st_typing g (wr c (Tm_WithLocalArray { binder = mk_binder_ppname (mk_array a) binder_ppname; initializer; length; body } )) c
| T_Rewrite:
g:env ->
p:vprop ->
q:vprop ->
tot_typing g p tm_vprop ->
vprop_equiv g p q ->
st_typing g (wtag (Some STT_Ghost) (Tm_Rewrite { t1=p; t2=q } ))
(comp_rewrite p q)
| T_Admit:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
st_typing g (wtag (Some c) (Tm_Admit { ctag=c; u=s.u; typ=s.res; post=None }))
(comp_admit c s)
| T_Unreachable:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
prop_validity g (tm_fstar (`False) FStar.Range.range_0) ->
st_typing g (wtag (Some c) Tm_Unreachable) (comp_admit c s)
(* This limits the body to be atomic, rather than also allowing unobservable *)
| T_WithInv:
g:env ->
inv_tm : term ->
inv_vprop : vprop ->
inv_vprop_typing : tot_typing g inv_vprop tm_vprop -> // could be ghost
inv_typing : tot_typing g inv_tm (tm_inv inv_vprop) ->
body : st_term ->
c : comp_st { C_STAtomic? c } ->
body_typing : st_typing g body (add_frame c inv_vprop) ->
inv_disjointness_token:prop_validity g (inv_disjointness inv_vprop (comp_inames c) inv_tm) ->
st_typing g (wtag (Some STT_Atomic) (Tm_WithInv {name=inv_tm; body; returns_inv=None}))
(add_iname_at_least_unobservable c inv_vprop inv_tm)
and pats_complete : env -> term -> typ -> list R.pattern -> Type0 =
// just check the elaborated term with the core tc
| PC_Elab :
g:env ->
sc:term ->
sc_ty:typ ->
pats:list R.pattern ->
bnds:list (list R.binding) ->
RT.match_is_complete (elab_env g) (elab_term sc) (elab_term sc_ty) pats bnds ->
pats_complete g sc sc_ty pats
and brs_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) : list branch -> comp_st -> Type =
| TBRS_0 :
c:comp_st ->
brs_typing g sc_u sc_ty sc [] c
| TBRS_1 :
c:comp_st ->
p:pattern ->
e:st_term ->
br_typing g sc_u sc_ty sc p e c ->
rest:list branch ->
brs_typing g sc_u sc_ty sc rest c ->
brs_typing g sc_u sc_ty sc ((p,e)::rest) c
and br_typing : env -> universe -> typ -> term -> pattern -> st_term -> comp_st -> Type =
| TBR :
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc:term ->
c:comp_st ->
p:pattern ->
e:st_term ->
bs:(list R.binding){RT.bindings_ok_for_pat (fstar_env g) bs (elab_pat p)} ->
_ : squash (all_fresh g (L.map readback_binding bs)) ->
_ : squash (Some? (RT.elaborate_pat (elab_pat p) bs)) ->
_ : squash (~(R.Tv_Unknown? (R.inspect_ln (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs)))))) -> // should be provable from defn of elaborate_pat
hyp:var {freshv (push_bindings g (L.map readback_binding bs)) hyp} ->
st_typing (
push_binding (push_bindings g (L.map readback_binding bs))
hyp
({name=Sealed.seal "branch equality"; range=FStar.Range.range_0})
(mk_sq_eq2 sc_u sc_ty sc (tm_fstar (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs))) Range.range_0))
) e c ->
br_typing g sc_u sc_ty sc p (close_st_term_n e (L.map fst (L.map readback_binding bs))) c
(* this requires some metatheory on FStar.Reflection.Typing
G |- fv e : t
G(fv) = t0 -> t1
G |- e : t0
G |- t1 <: t
G |- e0 e1 : t ==>
exists t0 t1.
G |- e0 : t0 -> t1 /\
G |- e1 : t0
*)
let star_typing_inversion_l (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t0 tm_vprop
= admit ()
let star_typing_inversion_r (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t1 tm_vprop
= admit ()
let star_typing_inversion (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: GTot (tot_typing g t0 tm_vprop & tot_typing g t1 tm_vprop)
= admit ()
let vprop_eq_typing_inversion g (t0 t1:term)
(token:FTB.equiv_token (elab_env g)
(elab_term t0)
(elab_term t1))
: GTot (tot_typing g t0 tm_vprop &
tot_typing g t1 tm_vprop)
= admit ()
(* These I can easily prove *)
let star_typing (#g:_) (#t0 #t1:term)
(d0:tot_typing g t0 tm_vprop)
(d1:tot_typing g t1 tm_vprop)
: tot_typing g (tm_star t0 t1) tm_vprop
= admit ()
let emp_typing (#g:_)
: tot_typing g tm_emp tm_vprop
= admit ()
let fresh_wrt (x:var) (g:env) (vars:_) =
None? (lookup g x) /\ ~(x `Set.mem` vars)
let effect_annot_typing (g:env) (e:effect_annot) =
match e with
| EffectAnnotAtomic { opens } ->
tot_typing g opens tm_inames
| _ ->
unit
noeq
type post_hint_t = {
g:env;
effect_annot:effect_annot;
effect_annot_typing:effect_annot_typing g effect_annot;
ret_ty:term;
u:universe;
ty_typing:universe_of g ret_ty u;
post:term;
x:(x:var { fresh_wrt x g (freevars post) });
post_typing_src:tot_typing (push_binding g x ppname_default ret_ty) (open_term post x) tm_vprop;
post_typing:
FStar.Ghost.erased (RT.tot_typing (elab_env g)
(RT.(mk_abs (elab_term ret_ty) T.Q_Explicit (elab_term post)))
(RT.mk_arrow (elab_term ret_ty) T.Q_Explicit (elab_term tm_vprop)))
}
let post_hint_for_env_p (g:env) (p:post_hint_t) = g `env_extends` p.g
let post_hint_for_env_extends (g:env) (p:post_hint_t) (x:var { ~ (Set.mem x (dom g)) }) (b:typ)
: Lemma
(requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)]
= env_extends_push g x ppname_default b
let post_hint_for_env (g:env) = p:post_hint_t { post_hint_for_env_p g p }
let post_hint_opt (g:env) = o:option post_hint_t { None? o \/ post_hint_for_env_p g (Some?.v o) }
noeq
type post_hint_typing_t (g:env) (p:post_hint_t) (x:var { ~ (Set.mem x (dom g)) }) = {
effect_annot_typing:effect_annot_typing g p.effect_annot;
ty_typing:universe_of g p.ret_ty p.u;
post_typing:tot_typing (push_binding g x ppname_default p.ret_ty) (open_term p.post x) tm_vprop
}
irreducible
let post_hint_typing (g:env)
(p:post_hint_for_env g)
(x:var { fresh_wrt x g (freevars p.post) })
: post_hint_typing_t g p x
= let effect_annot_typing : effect_annot_typing g p.effect_annot =
match p.effect_annot with
| EffectAnnotAtomic { opens } ->
let opens_typing : tot_typing g opens tm_inames = RU.magic () in //weakening
opens_typing
| _ ->
()
in
{
effect_annot_typing;
ty_typing = RU.magic (); //weakening
post_typing = RU.magic ();
}
let effect_annot_matches c (effect_annot:effect_annot) : prop =
match c, effect_annot with
| C_ST _, EffectAnnotSTT
| C_STGhost _, EffectAnnotGhost -> True
| C_STAtomic inames' _ _, EffectAnnotAtomic { opens } ->
inames' == opens
| _ -> False | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp_st -> post_hint: FStar.Pervasives.Native.option Pulse.Typing.post_hint_t
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.comp_st",
"FStar.Pervasives.Native.option",
"Pulse.Typing.post_hint_t",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.comp_res",
"Pulse.Typing.__proj__Mkpost_hint_t__item__ret_ty",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.comp_u",
"Pulse.Typing.__proj__Mkpost_hint_t__item__u",
"Pulse.Syntax.Base.comp_post",
"Pulse.Typing.__proj__Mkpost_hint_t__item__post",
"Pulse.Typing.effect_annot_matches",
"Pulse.Typing.__proj__Mkpost_hint_t__item__effect_annot",
"Prims.logical"
] | [] | false | false | false | true | true | let comp_post_matches_hint (c: comp_st) (post_hint: option post_hint_t) =
| match post_hint with
| None -> True
| Some post_hint ->
comp_res c == post_hint.ret_ty /\ comp_u c == post_hint.u /\ comp_post c == post_hint.post /\
effect_annot_matches c post_hint.effect_annot | false |
|
Pulse.Typing.fst | Pulse.Typing.fresh_wrt | val fresh_wrt : x: Pulse.Syntax.Base.var -> g: Pulse.Typing.Env.env -> vars: FStar.Set.set Pulse.Syntax.Base.var
-> Prims.logical | let fresh_wrt (x:var) (g:env) (vars:_) =
None? (lookup g x) /\ ~(x `Set.mem` vars) | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 1127,
"start_col": 0,
"start_line": 1126
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2)
let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
}
let tr_bindings = L.map tr_binding
[@@ no_auto_projectors]
noeq
type comp_typing : env -> comp -> universe -> Type =
| CT_Tot :
g:env ->
t:term ->
u:universe ->
universe_of g t u ->
comp_typing g (C_Tot t) u
| CT_ST :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_ST st) (universe_of_comp (C_ST st))
| CT_STAtomic :
g:env ->
inames:term ->
obs:observability ->
st:st_comp ->
tot_typing g inames tm_inames ->
st_comp_typing g st ->
comp_typing g (C_STAtomic inames obs st) (universe_of_comp (C_STAtomic inames obs st))
| CT_STGhost :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_STGhost st) (universe_of_comp (C_STGhost st))
let comp_typing_u (e:env) (c:comp_st) = comp_typing e c (universe_of_comp c)
let subtyping_token g t1 t2 =
T.subtyping_token (elab_env g) (elab_term t1) (elab_term t2)
val readback_binding : R.binding -> binding
let readback_binding b =
assume (host_term == R.term); // fixme! expose this fact
match readback_ty b.sort with
| Some sort -> (b.uniq, sort)
| None ->
let sort : term = {t=Tm_FStar b.sort; range=T.range_of_term b.sort} in
(b.uniq, sort)
let non_informative (g:env) (c:comp) =
my_erased (RT.non_informative (elab_env g) (elab_comp c))
let inv_disjointness (inv_p inames inv:term) =
let g = Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv) in
tm_fstar g inv.range
let eff_of_ctag = function
| STT_Ghost -> T.E_Ghost
| _ -> T.E_Total
[@@ no_auto_projectors]
noeq
type st_typing : env -> st_term -> comp -> Type =
| T_Abs:
g:env ->
x:var { None? (lookup g x) } ->
q:option qualifier ->
b:binder ->
u:universe ->
body:st_term {~ (x `Set.mem` freevars_st body) } ->
c:comp ->
tot_typing g b.binder_ty (tm_type u) ->
st_typing (push_binding g x ppname_default b.binder_ty) (open_st_term_nv body (b.binder_ppname, x)) c ->
st_typing g (wtag None (Tm_Abs { b; q; body; ascription=empty_ascription}))
(C_Tot (tm_arrow b q (close_comp c x)))
| T_STApp :
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
tot_typing g head (tm_arrow (as_binder ty) q res) ->
tot_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
//
// this rule requires a non-informative judgment
// for C_STGhost, this will always be the case
// however, when doing the soundness proof,
// we cannot call into the reflection API to get the token
// may be there is another way to make it so that we can get this once-and-for-all
// for C_STGhost
//
| T_STGhostApp:
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars_comp res) } ->
ghost_typing g head (tm_arrow (as_binder ty) q res) ->
non_informative (push_binding g x ppname_default ty)
(open_comp_with res (null_var x)) ->
ghost_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
| T_Return:
g:env ->
c:ctag ->
use_eq:bool ->
u:universe ->
t:term ->
e:term ->
post:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars post) } ->
universe_of g t u ->
typing g e (eff_of_ctag c) t ->
tot_typing (push_binding g x ppname_default t) (open_term post x) tm_vprop ->
st_typing g (wtag (Some c) (Tm_Return { expected_type=tm_unknown; insert_eq=use_eq; term=e }))
(comp_return c use_eq u t e post x)
| T_Lift:
g:env ->
e:st_term ->
c1:comp_st ->
c2:comp_st ->
st_typing g e c1 ->
lift_comp g c1 c2 ->
st_typing g e c2
| T_Bind:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp_st ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
c:comp ->
st_typing g e1 c1 ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
bind_comp g x c1 c2 c ->
st_typing g (wr c (Tm_Bind { binder=b; head=e1; body=e2 })) c
| T_BindFn:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp { C_Tot? c1 } ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
st_typing g e1 c1 ->
u:Ghost.erased universe ->
tot_typing g (comp_res c1) (tm_type u) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
comp_typing_u g c2 ->
st_typing g (wr c2 (Tm_Bind { binder=b; head=e1; body=e2 })) c2
| T_If:
g:env ->
b:term ->
e1:st_term ->
e2:st_term ->
c:comp_st ->
(* This is a little weird, we introduce a name hyp in the environment,
but the branches are not allowed to use it (except perhaps in a silent way for proofs).
Maybe more natural to have one free var in e1,e2 and to open it with hyp?
But that's also a change to FStar.Reflection.Typing
*)
hyp:var { None? (lookup g hyp) /\
~(hyp `Set.mem` (freevars_st e1 `Set.union` freevars_st e2))
} ->
tot_typing g b tm_bool ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_true)) e1 c ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_false)) e2 c ->
my_erased (comp_typing_u g c) ->
st_typing g (wr c (Tm_If { b; then_=e1; else_=e2; post=None })) c
| T_Match :
g:env ->
sc_u:universe ->
sc_ty:typ ->
sc:term ->
tot_typing g sc_ty (tm_type sc_u) ->
tot_typing g sc sc_ty ->
c:comp_st ->
my_erased (comp_typing_u g c) ->
brs:list (pattern & st_term) ->
brs_typing g sc_u sc_ty sc brs c ->
pats_complete g sc sc_ty (L.map (fun (p, _) -> elab_pat p) brs) ->
st_typing g (wr c (Tm_Match {sc; returns_=None; brs})) c
| T_Frame:
g:env ->
e:st_term ->
c:comp_st ->
frame:term ->
tot_typing g frame tm_vprop ->
st_typing g e c ->
st_typing g e (add_frame c frame)
| T_Equiv:
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_equiv g c c' ->
st_typing g e c'
| T_Sub :
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_sub g c c' ->
st_typing g e c'
| T_IntroPure:
g:env ->
p:term ->
tot_typing g p tm_prop ->
prop_validity g p ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroPure { p }))
(comp_intro_pure p)
| T_ElimExists:
g:env ->
u:universe ->
t:term ->
p:term ->
x:var { None? (lookup g x) } ->
tot_typing g t (tm_type u) ->
tot_typing g (tm_exists_sl u (as_binder t) p) tm_vprop ->
st_typing g (wtag (Some STT_Ghost) (Tm_ElimExists { p = tm_exists_sl u (as_binder t) p }))
(comp_elim_exists u t p (v_as_nv x))
| T_IntroExists:
g:env ->
u:universe ->
b:binder ->
p:term ->
e:term ->
tot_typing g b.binder_ty (tm_type u) ->
tot_typing g (tm_exists_sl u b p) tm_vprop ->
ghost_typing g e b.binder_ty ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroExists { p = tm_exists_sl u b p;
witnesses= [e] }))
(comp_intro_exists u b p e)
| T_While:
g:env ->
inv:term ->
cond:st_term ->
body:st_term ->
tot_typing g (tm_exists_sl u0 (as_binder tm_bool) inv) tm_vprop ->
st_typing g cond (comp_while_cond ppname_default inv) ->
st_typing g body (comp_while_body ppname_default inv) ->
st_typing g (wtag (Some STT) (Tm_While { invariant = inv;
condition = cond;
body;
condition_var = ppname_default } ))
(comp_while ppname_default inv)
| T_Par:
g:env ->
eL:st_term ->
cL:comp { C_ST? cL } ->
eR:st_term ->
cR:comp { C_ST? cR /\ comp_u cL == comp_u cR } ->
x:var { None? (lookup g x) } ->
// TODO: can comp_typing come from inversion of eL : cL and eR : cR?
comp_typing_u g cL ->
comp_typing_u g cR ->
st_typing g eL cL ->
st_typing g eR cR ->
st_typing g (wr cL (Tm_Par { pre1=tm_unknown; body1=eL; post1=tm_unknown;
pre2=tm_unknown; body2=eR; post2=tm_unknown }))
(comp_par cL cR x)
| T_WithLocal:
g:env ->
binder_ppname:ppname ->
init:term ->
body:st_term ->
init_t:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g init init_t ->
universe_of g init_t u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_ref init_t))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_body x init_t init c) ->
st_typing g (wr c (Tm_WithLocal { binder = mk_binder_ppname (mk_ref init_t) binder_ppname; initializer=init; body } )) c
| T_WithLocalArray:
g:env ->
binder_ppname:ppname ->
initializer:term ->
length:term ->
body:st_term ->
a:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g initializer a ->
tot_typing g length tm_szt ->
universe_of g a u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_array a))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_array_body x a initializer length c) ->
st_typing g (wr c (Tm_WithLocalArray { binder = mk_binder_ppname (mk_array a) binder_ppname; initializer; length; body } )) c
| T_Rewrite:
g:env ->
p:vprop ->
q:vprop ->
tot_typing g p tm_vprop ->
vprop_equiv g p q ->
st_typing g (wtag (Some STT_Ghost) (Tm_Rewrite { t1=p; t2=q } ))
(comp_rewrite p q)
| T_Admit:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
st_typing g (wtag (Some c) (Tm_Admit { ctag=c; u=s.u; typ=s.res; post=None }))
(comp_admit c s)
| T_Unreachable:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
prop_validity g (tm_fstar (`False) FStar.Range.range_0) ->
st_typing g (wtag (Some c) Tm_Unreachable) (comp_admit c s)
(* This limits the body to be atomic, rather than also allowing unobservable *)
| T_WithInv:
g:env ->
inv_tm : term ->
inv_vprop : vprop ->
inv_vprop_typing : tot_typing g inv_vprop tm_vprop -> // could be ghost
inv_typing : tot_typing g inv_tm (tm_inv inv_vprop) ->
body : st_term ->
c : comp_st { C_STAtomic? c } ->
body_typing : st_typing g body (add_frame c inv_vprop) ->
inv_disjointness_token:prop_validity g (inv_disjointness inv_vprop (comp_inames c) inv_tm) ->
st_typing g (wtag (Some STT_Atomic) (Tm_WithInv {name=inv_tm; body; returns_inv=None}))
(add_iname_at_least_unobservable c inv_vprop inv_tm)
and pats_complete : env -> term -> typ -> list R.pattern -> Type0 =
// just check the elaborated term with the core tc
| PC_Elab :
g:env ->
sc:term ->
sc_ty:typ ->
pats:list R.pattern ->
bnds:list (list R.binding) ->
RT.match_is_complete (elab_env g) (elab_term sc) (elab_term sc_ty) pats bnds ->
pats_complete g sc sc_ty pats
and brs_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) : list branch -> comp_st -> Type =
| TBRS_0 :
c:comp_st ->
brs_typing g sc_u sc_ty sc [] c
| TBRS_1 :
c:comp_st ->
p:pattern ->
e:st_term ->
br_typing g sc_u sc_ty sc p e c ->
rest:list branch ->
brs_typing g sc_u sc_ty sc rest c ->
brs_typing g sc_u sc_ty sc ((p,e)::rest) c
and br_typing : env -> universe -> typ -> term -> pattern -> st_term -> comp_st -> Type =
| TBR :
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc:term ->
c:comp_st ->
p:pattern ->
e:st_term ->
bs:(list R.binding){RT.bindings_ok_for_pat (fstar_env g) bs (elab_pat p)} ->
_ : squash (all_fresh g (L.map readback_binding bs)) ->
_ : squash (Some? (RT.elaborate_pat (elab_pat p) bs)) ->
_ : squash (~(R.Tv_Unknown? (R.inspect_ln (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs)))))) -> // should be provable from defn of elaborate_pat
hyp:var {freshv (push_bindings g (L.map readback_binding bs)) hyp} ->
st_typing (
push_binding (push_bindings g (L.map readback_binding bs))
hyp
({name=Sealed.seal "branch equality"; range=FStar.Range.range_0})
(mk_sq_eq2 sc_u sc_ty sc (tm_fstar (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs))) Range.range_0))
) e c ->
br_typing g sc_u sc_ty sc p (close_st_term_n e (L.map fst (L.map readback_binding bs))) c
(* this requires some metatheory on FStar.Reflection.Typing
G |- fv e : t
G(fv) = t0 -> t1
G |- e : t0
G |- t1 <: t
G |- e0 e1 : t ==>
exists t0 t1.
G |- e0 : t0 -> t1 /\
G |- e1 : t0
*)
let star_typing_inversion_l (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t0 tm_vprop
= admit ()
let star_typing_inversion_r (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t1 tm_vprop
= admit ()
let star_typing_inversion (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: GTot (tot_typing g t0 tm_vprop & tot_typing g t1 tm_vprop)
= admit ()
let vprop_eq_typing_inversion g (t0 t1:term)
(token:FTB.equiv_token (elab_env g)
(elab_term t0)
(elab_term t1))
: GTot (tot_typing g t0 tm_vprop &
tot_typing g t1 tm_vprop)
= admit ()
(* These I can easily prove *)
let star_typing (#g:_) (#t0 #t1:term)
(d0:tot_typing g t0 tm_vprop)
(d1:tot_typing g t1 tm_vprop)
: tot_typing g (tm_star t0 t1) tm_vprop
= admit ()
let emp_typing (#g:_)
: tot_typing g tm_emp tm_vprop
= admit () | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Pulse.Syntax.Base.var -> g: Pulse.Typing.Env.env -> vars: FStar.Set.set Pulse.Syntax.Base.var
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.var",
"Pulse.Typing.Env.env",
"FStar.Set.set",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Prims.logical"
] | [] | false | false | false | true | true | let fresh_wrt (x: var) (g: env) (vars: _) =
| None? (lookup g x) /\ ~(x `Set.mem` vars) | false |
|
Pulse.Typing.fst | Pulse.Typing.tm_inames_subset | val tm_inames_subset (inames1 inames2: term) : term | val tm_inames_subset (inames1 inames2: term) : term | let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1) | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 38,
"end_line": 538,
"start_col": 0,
"start_line": 532
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | inames1: Pulse.Syntax.Base.term -> inames2: Pulse.Syntax.Base.term -> Pulse.Syntax.Base.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.with_range",
"Pulse.Syntax.Base.Tm_FStar",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.term",
"Prims.Nil",
"FStar.Stubs.Reflection.V2.Builtins.range_of_term",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_FVar",
"FStar.Stubs.Reflection.V2.Builtins.pack_fv",
"Prims.list",
"Prims.string",
"Pulse.Reflection.Util.mk_pulse_lib_core_lid",
"Pulse.Elaborate.Pure.elab_term"
] | [] | false | false | false | true | false | let tm_inames_subset (inames1 inames2: term) : term =
| let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join:R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2])) (T.range_of_term inames1) | false |
TwoLockQueue.fst | TwoLockQueue.enqueue | val enqueue (#a: _) (hdl: t a) (x: a) : SteelT unit emp (fun _ -> emp) | val enqueue (#a: _) (hdl: t a) (x: a) : SteelT unit emp (fun _ -> emp) | let enqueue (#a:_) (hdl:t a) (x:a)
: SteelT unit emp (fun _ -> emp)
= // Blocks until it can acquire the tail lock corresponding to the enqueuer
Steel.SpinLock.acquire hdl.tail.lock;
let cell = Q.({ data = x; next = null} ) in
let v:erased (Q.t a) = open_exists () in
let tl = read_pt hdl.tail.ptr in
// Creates a new cell for the enqueued element
let node = alloc_pt cell in
// Core, atomic enqueue function, calling the concrete enqueue function while also
// modifying ghost state to preserve the invariants
let enqueue_core #u ()
: SteelAtomicT unit u
(queue_invariant hdl.head hdl.tail `star`
(ghost_pts_to hdl.tail.ghost half tl `star` pts_to node full cell))
(fun _ -> queue_invariant hdl.head hdl.tail `star`
ghost_pts_to hdl.tail.ghost half node)
= let open FStar.Ghost in
let h = open_exists () in
let t = open_exists () in
ghost_gather tl hdl.tail.ghost;
Q.enqueue tl node;
ghost_write_pt hdl.tail.ghost node;
ghost_share_pt #_ #_ hdl.tail.ghost;
pack_queue_invariant h (hide node) hdl.head hdl.tail;
return ()
in
// Actually executing the atomic enqueue operation while preserving the global queue invariant
let r1 = with_invariant hdl.inv enqueue_core in
// Updates the queue tail pointer
let r2 = write_pt hdl.tail.ptr node in
// Updates the queue tail ghost state
let r3 = intro_exists
_
(fun (n:(Q.t a)) -> pts_to hdl.tail.ptr full_perm n `star`
ghost_pts_to hdl.tail.ghost half n) in
// Releases the tail lock corresponding to the enqueuer
Steel.SpinLock.release hdl.tail.lock | {
"file_name": "share/steel/examples/steel/TwoLockQueue.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 40,
"end_line": 207,
"start_col": 0,
"start_line": 167
} | module TwoLockQueue
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
module L = FStar.List.Tot
module U = Steel.Utils
module Q = Queue
/// This module provides an implementation of Michael and Scott's two lock queue, using the
/// abstract interface for queues provided in Queue.fsti.
/// This implementation allows an enqueue and a dequeue operation to safely operate in parallel.
/// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation,
/// ensuring that at most one enqueue (resp. dequeue) is happening at any time
/// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue
#push-options "--ide_id_info_off"
/// Adding the definition of the vprop equivalence to the context, for proof purposes
let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) =
Classical.forall_intro_2 reveal_equiv
(* Some wrappers to reduce clutter in the code *)
[@@__reduce__]
let full = full_perm
[@@__reduce__]
let half = half_perm full
(* Wrappers around fst and snd to avoid overnormalization.
TODO: The frame inference tactic should not normalize fst and snd *)
let fst x = fst x
let snd x = snd x
(* Some wrappers around Steel functions which are easier to use inside this module *)
let ghost_gather (#a:Type) (#u:_)
(#p0 #p1:perm) (#p:perm{p == sum_perm p0 p1})
(x0 #x1:erased a)
(r:ghost_ref a)
: SteelGhost unit u
(ghost_pts_to r p0 x0 `star`
ghost_pts_to r p1 x1)
(fun _ -> ghost_pts_to r p x0)
(requires fun _ -> True)
(ensures fun _ _ _ -> x0 == x1)
= let _ = ghost_gather_pt #a #u #p0 #p1 r in ()
let rewrite #u (p q:vprop)
: SteelGhost unit u p (fun _ -> q)
(requires fun _ -> p `equiv` q)
(ensures fun _ _ _ -> True)
= rewrite_slprop p q (fun _ -> reveal_equiv p q)
let elim_pure (#p:prop) #u ()
: SteelGhost unit u
(pure p) (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ _ _ -> p)
= let _ = Steel.Effect.Atomic.elim_pure p in ()
let open_exists (#a:Type) (#opened_invariants:_) (#p:a -> vprop) (_:unit)
: SteelGhostT (Ghost.erased a) opened_invariants
(h_exists p) (fun r -> p (reveal r))
= let v : erased a = witness_exists () in
v
(*** Queue invariant ***)
/// The invariant associated to the lock. Basically a variant of the
/// Owicki-Gries invariant, but applied to queues
[@@__reduce__]
let lock_inv #a (ptr:ref (Q.t a)) (ghost:ghost_ref (Q.t a)) =
h_exists (fun (v:Q.t a) ->
pts_to ptr full v `star`
ghost_pts_to ghost half v)
let intro_lock_inv #a #u (ptr:ref (Q.t a)) (ghost:ghost_ref (Q.t a))
: SteelGhostT unit u
(h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v))
(fun _ -> lock_inv ptr ghost)
= assert_spinoff
(h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v) == lock_inv ptr ghost);
rewrite_slprop
(h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v))
(lock_inv _ _)
(fun _ -> ())
/// The type of a queue pointer.
/// Contains the concrete pointer [ptr], the pointer to ghost state [ghost],
/// and a lock [lock] protecting the invariant relating the concrete and ghost states
noeq
type q_ptr (a:Type) = {
ptr : ref (Q.t a);
ghost: ghost_ref (Q.t a);
lock: lock (lock_inv ptr ghost);
}
/// The global queue invariant, which will be shared by the enqueuer and the dequeuer.
/// Again, inspired by the Owicki-Gries counter: It contains half the permission for the ghost
/// state of the enqueuer and dequeuer, while ensuring that the concrete queue always remains
/// a valid queue
let queue_invariant (#a:_) ([@@@smt_fallback]head:q_ptr a) ([@@@smt_fallback] tail:q_ptr a) =
h_exists (fun (h:Q.t a) ->
h_exists (fun (t:Q.t a) ->
ghost_pts_to head.ghost half h `star`
ghost_pts_to tail.ghost half t `star`
Q.queue h t))
let pack_queue_invariant (#a:_) (#u:_) (x:erased (Q.t a)) (y:erased (Q.t a)) (head tail:q_ptr a)
: SteelGhostT unit u
(ghost_pts_to head.ghost half x `star`
ghost_pts_to tail.ghost half y `star`
Q.queue x y)
(fun _ -> queue_invariant head tail)
= intro_exists (reveal y) (fun y -> ghost_pts_to head.ghost half x `star`
ghost_pts_to tail.ghost half y `star`
Q.queue x y);
intro_exists (reveal x) (fun x -> h_exists (fun y -> ghost_pts_to head.ghost half x `star`
ghost_pts_to tail.ghost half y `star`
Q.queue x y))
/// The type of a queue. It contains a head and tail pointers, each with their own ghost state,
/// as well as the global queue invariant [inv]. Note that compared to the locks in the head and tail
/// pointers with type `q_ptr`, since invariant is a true Steel invariant, only accessible inside
/// atomic computations
noeq
type t (a:Type0) = {
head : q_ptr a;
tail : q_ptr a;
inv : inv (queue_invariant head tail)
}
/// Creating a new queue.
let new_queue (#a:_) (x:a)
: SteelT (t a) emp (fun _ -> emp)
= let new_qptr (#a:_) (q:Q.t a)
: SteelT (q_ptr a) emp (fun qp -> ghost_pts_to qp.ghost half q)
= // Allocates the concrete pointer.
let ptr = alloc_pt q in
// Allocates the ghost state, and sets the corresponding lock invariant
let ghost = ghost_alloc_pt q in
ghost_share_pt ghost;
intro_exists _ (fun q -> pts_to ptr full q `star` ghost_pts_to ghost half q);
let lock = Steel.SpinLock.new_lock _ in
{ ptr; ghost; lock}
in
// Creating a concrete queue
let hd = Q.new_queue x in
// Creating the head and queue pointers
let head = new_qptr hd in
let tail = new_qptr hd in
// Creating the global queue invariant
pack_queue_invariant (hide hd) (hide hd) head tail;
let inv = new_invariant _ in
// Packing the different components to return a queue, as defined in type `t`
return ({ head; tail; inv })
#restart-solver | {
"checked_file": "/",
"dependencies": [
"Steel.Utils.fst.checked",
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"Queue.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "TwoLockQueue.fst"
} | [
{
"abbrev": true,
"full_module": "Queue",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "Steel.Utils",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hdl: TwoLockQueue.t a -> x: a -> Steel.Effect.SteelT Prims.unit | Steel.Effect.SteelT | [] | [] | [
"TwoLockQueue.t",
"Steel.SpinLock.release",
"TwoLockQueue.lock_inv",
"TwoLockQueue.__proj__Mkq_ptr__item__ptr",
"TwoLockQueue.__proj__Mkt__item__tail",
"TwoLockQueue.__proj__Mkq_ptr__item__ghost",
"TwoLockQueue.__proj__Mkq_ptr__item__lock",
"Prims.unit",
"Steel.Effect.Atomic.intro_exists",
"Queue.Def.t",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Steel.Effect.Common.star",
"Steel.Reference.pts_to",
"Steel.FractionalPermission.full_perm",
"Steel.Reference.ghost_pts_to",
"TwoLockQueue.half",
"Steel.Effect.Common.vprop",
"Steel.Reference.write_pt",
"Steel.Effect.Atomic.with_invariant",
"Queue.Def.cell",
"TwoLockQueue.full",
"Steel.Effect.Common.Observable",
"TwoLockQueue.queue_invariant",
"TwoLockQueue.__proj__Mkt__item__head",
"TwoLockQueue.__proj__Mkt__item__inv",
"Steel.Effect.Common.add_inv",
"Steel.Memory.inames",
"FStar.Ghost.reveal",
"FStar.Ghost.return",
"TwoLockQueue.pack_queue_invariant",
"Steel.Reference.ghost_share_pt",
"Steel.Reference.ghost_write_pt",
"Queue.enqueue",
"TwoLockQueue.ghost_gather",
"Steel.FractionalPermission.half_perm",
"FStar.Ghost.erased",
"TwoLockQueue.open_exists",
"Steel.Effect.Common.VStar",
"Queue.queue",
"Steel.Effect.Atomic.h_exists",
"Steel.Reference.ref",
"Steel.Reference.alloc_pt",
"Steel.Reference.read_pt",
"Queue.Def.Mkcell",
"Steel.Reference.null",
"Steel.SpinLock.acquire",
"Steel.Effect.Common.emp"
] | [] | false | true | false | false | false | let enqueue (#a: _) (hdl: t a) (x: a) : SteelT unit emp (fun _ -> emp) =
| Steel.SpinLock.acquire hdl.tail.lock;
let cell = let open Q in { data = x; next = null } in
let v:erased (Q.t a) = open_exists () in
let tl = read_pt hdl.tail.ptr in
let node = alloc_pt cell in
let enqueue_core #u ()
: SteelAtomicT unit
u
((queue_invariant hdl.head hdl.tail)
`star`
((ghost_pts_to hdl.tail.ghost half tl) `star` (pts_to node full cell)))
(fun _ -> (queue_invariant hdl.head hdl.tail) `star` (ghost_pts_to hdl.tail.ghost half node))
=
let open FStar.Ghost in
let h = open_exists () in
let t = open_exists () in
ghost_gather tl hdl.tail.ghost;
Q.enqueue tl node;
ghost_write_pt hdl.tail.ghost node;
ghost_share_pt #_ #_ hdl.tail.ghost;
pack_queue_invariant h (hide node) hdl.head hdl.tail;
return ()
in
let r1 = with_invariant hdl.inv enqueue_core in
let r2 = write_pt hdl.tail.ptr node in
let r3 =
intro_exists _
(fun (n: (Q.t a)) ->
(pts_to hdl.tail.ptr full_perm n) `star` (ghost_pts_to hdl.tail.ghost half n))
in
Steel.SpinLock.release hdl.tail.lock | false |
Pulse.Typing.fst | Pulse.Typing.post_hint_opt | val post_hint_opt : g: Pulse.Typing.Env.env -> Type0 | let post_hint_opt (g:env) = o:option post_hint_t { None? o \/ post_hint_for_env_p g (Some?.v o) } | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 97,
"end_line": 1164,
"start_col": 0,
"start_line": 1164
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2)
let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
}
let tr_bindings = L.map tr_binding
[@@ no_auto_projectors]
noeq
type comp_typing : env -> comp -> universe -> Type =
| CT_Tot :
g:env ->
t:term ->
u:universe ->
universe_of g t u ->
comp_typing g (C_Tot t) u
| CT_ST :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_ST st) (universe_of_comp (C_ST st))
| CT_STAtomic :
g:env ->
inames:term ->
obs:observability ->
st:st_comp ->
tot_typing g inames tm_inames ->
st_comp_typing g st ->
comp_typing g (C_STAtomic inames obs st) (universe_of_comp (C_STAtomic inames obs st))
| CT_STGhost :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_STGhost st) (universe_of_comp (C_STGhost st))
let comp_typing_u (e:env) (c:comp_st) = comp_typing e c (universe_of_comp c)
let subtyping_token g t1 t2 =
T.subtyping_token (elab_env g) (elab_term t1) (elab_term t2)
val readback_binding : R.binding -> binding
let readback_binding b =
assume (host_term == R.term); // fixme! expose this fact
match readback_ty b.sort with
| Some sort -> (b.uniq, sort)
| None ->
let sort : term = {t=Tm_FStar b.sort; range=T.range_of_term b.sort} in
(b.uniq, sort)
let non_informative (g:env) (c:comp) =
my_erased (RT.non_informative (elab_env g) (elab_comp c))
let inv_disjointness (inv_p inames inv:term) =
let g = Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv) in
tm_fstar g inv.range
let eff_of_ctag = function
| STT_Ghost -> T.E_Ghost
| _ -> T.E_Total
[@@ no_auto_projectors]
noeq
type st_typing : env -> st_term -> comp -> Type =
| T_Abs:
g:env ->
x:var { None? (lookup g x) } ->
q:option qualifier ->
b:binder ->
u:universe ->
body:st_term {~ (x `Set.mem` freevars_st body) } ->
c:comp ->
tot_typing g b.binder_ty (tm_type u) ->
st_typing (push_binding g x ppname_default b.binder_ty) (open_st_term_nv body (b.binder_ppname, x)) c ->
st_typing g (wtag None (Tm_Abs { b; q; body; ascription=empty_ascription}))
(C_Tot (tm_arrow b q (close_comp c x)))
| T_STApp :
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
tot_typing g head (tm_arrow (as_binder ty) q res) ->
tot_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
//
// this rule requires a non-informative judgment
// for C_STGhost, this will always be the case
// however, when doing the soundness proof,
// we cannot call into the reflection API to get the token
// may be there is another way to make it so that we can get this once-and-for-all
// for C_STGhost
//
| T_STGhostApp:
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars_comp res) } ->
ghost_typing g head (tm_arrow (as_binder ty) q res) ->
non_informative (push_binding g x ppname_default ty)
(open_comp_with res (null_var x)) ->
ghost_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
| T_Return:
g:env ->
c:ctag ->
use_eq:bool ->
u:universe ->
t:term ->
e:term ->
post:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars post) } ->
universe_of g t u ->
typing g e (eff_of_ctag c) t ->
tot_typing (push_binding g x ppname_default t) (open_term post x) tm_vprop ->
st_typing g (wtag (Some c) (Tm_Return { expected_type=tm_unknown; insert_eq=use_eq; term=e }))
(comp_return c use_eq u t e post x)
| T_Lift:
g:env ->
e:st_term ->
c1:comp_st ->
c2:comp_st ->
st_typing g e c1 ->
lift_comp g c1 c2 ->
st_typing g e c2
| T_Bind:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp_st ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
c:comp ->
st_typing g e1 c1 ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
bind_comp g x c1 c2 c ->
st_typing g (wr c (Tm_Bind { binder=b; head=e1; body=e2 })) c
| T_BindFn:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp { C_Tot? c1 } ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
st_typing g e1 c1 ->
u:Ghost.erased universe ->
tot_typing g (comp_res c1) (tm_type u) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
comp_typing_u g c2 ->
st_typing g (wr c2 (Tm_Bind { binder=b; head=e1; body=e2 })) c2
| T_If:
g:env ->
b:term ->
e1:st_term ->
e2:st_term ->
c:comp_st ->
(* This is a little weird, we introduce a name hyp in the environment,
but the branches are not allowed to use it (except perhaps in a silent way for proofs).
Maybe more natural to have one free var in e1,e2 and to open it with hyp?
But that's also a change to FStar.Reflection.Typing
*)
hyp:var { None? (lookup g hyp) /\
~(hyp `Set.mem` (freevars_st e1 `Set.union` freevars_st e2))
} ->
tot_typing g b tm_bool ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_true)) e1 c ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_false)) e2 c ->
my_erased (comp_typing_u g c) ->
st_typing g (wr c (Tm_If { b; then_=e1; else_=e2; post=None })) c
| T_Match :
g:env ->
sc_u:universe ->
sc_ty:typ ->
sc:term ->
tot_typing g sc_ty (tm_type sc_u) ->
tot_typing g sc sc_ty ->
c:comp_st ->
my_erased (comp_typing_u g c) ->
brs:list (pattern & st_term) ->
brs_typing g sc_u sc_ty sc brs c ->
pats_complete g sc sc_ty (L.map (fun (p, _) -> elab_pat p) brs) ->
st_typing g (wr c (Tm_Match {sc; returns_=None; brs})) c
| T_Frame:
g:env ->
e:st_term ->
c:comp_st ->
frame:term ->
tot_typing g frame tm_vprop ->
st_typing g e c ->
st_typing g e (add_frame c frame)
| T_Equiv:
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_equiv g c c' ->
st_typing g e c'
| T_Sub :
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_sub g c c' ->
st_typing g e c'
| T_IntroPure:
g:env ->
p:term ->
tot_typing g p tm_prop ->
prop_validity g p ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroPure { p }))
(comp_intro_pure p)
| T_ElimExists:
g:env ->
u:universe ->
t:term ->
p:term ->
x:var { None? (lookup g x) } ->
tot_typing g t (tm_type u) ->
tot_typing g (tm_exists_sl u (as_binder t) p) tm_vprop ->
st_typing g (wtag (Some STT_Ghost) (Tm_ElimExists { p = tm_exists_sl u (as_binder t) p }))
(comp_elim_exists u t p (v_as_nv x))
| T_IntroExists:
g:env ->
u:universe ->
b:binder ->
p:term ->
e:term ->
tot_typing g b.binder_ty (tm_type u) ->
tot_typing g (tm_exists_sl u b p) tm_vprop ->
ghost_typing g e b.binder_ty ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroExists { p = tm_exists_sl u b p;
witnesses= [e] }))
(comp_intro_exists u b p e)
| T_While:
g:env ->
inv:term ->
cond:st_term ->
body:st_term ->
tot_typing g (tm_exists_sl u0 (as_binder tm_bool) inv) tm_vprop ->
st_typing g cond (comp_while_cond ppname_default inv) ->
st_typing g body (comp_while_body ppname_default inv) ->
st_typing g (wtag (Some STT) (Tm_While { invariant = inv;
condition = cond;
body;
condition_var = ppname_default } ))
(comp_while ppname_default inv)
| T_Par:
g:env ->
eL:st_term ->
cL:comp { C_ST? cL } ->
eR:st_term ->
cR:comp { C_ST? cR /\ comp_u cL == comp_u cR } ->
x:var { None? (lookup g x) } ->
// TODO: can comp_typing come from inversion of eL : cL and eR : cR?
comp_typing_u g cL ->
comp_typing_u g cR ->
st_typing g eL cL ->
st_typing g eR cR ->
st_typing g (wr cL (Tm_Par { pre1=tm_unknown; body1=eL; post1=tm_unknown;
pre2=tm_unknown; body2=eR; post2=tm_unknown }))
(comp_par cL cR x)
| T_WithLocal:
g:env ->
binder_ppname:ppname ->
init:term ->
body:st_term ->
init_t:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g init init_t ->
universe_of g init_t u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_ref init_t))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_body x init_t init c) ->
st_typing g (wr c (Tm_WithLocal { binder = mk_binder_ppname (mk_ref init_t) binder_ppname; initializer=init; body } )) c
| T_WithLocalArray:
g:env ->
binder_ppname:ppname ->
initializer:term ->
length:term ->
body:st_term ->
a:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g initializer a ->
tot_typing g length tm_szt ->
universe_of g a u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_array a))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_array_body x a initializer length c) ->
st_typing g (wr c (Tm_WithLocalArray { binder = mk_binder_ppname (mk_array a) binder_ppname; initializer; length; body } )) c
| T_Rewrite:
g:env ->
p:vprop ->
q:vprop ->
tot_typing g p tm_vprop ->
vprop_equiv g p q ->
st_typing g (wtag (Some STT_Ghost) (Tm_Rewrite { t1=p; t2=q } ))
(comp_rewrite p q)
| T_Admit:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
st_typing g (wtag (Some c) (Tm_Admit { ctag=c; u=s.u; typ=s.res; post=None }))
(comp_admit c s)
| T_Unreachable:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
prop_validity g (tm_fstar (`False) FStar.Range.range_0) ->
st_typing g (wtag (Some c) Tm_Unreachable) (comp_admit c s)
(* This limits the body to be atomic, rather than also allowing unobservable *)
| T_WithInv:
g:env ->
inv_tm : term ->
inv_vprop : vprop ->
inv_vprop_typing : tot_typing g inv_vprop tm_vprop -> // could be ghost
inv_typing : tot_typing g inv_tm (tm_inv inv_vprop) ->
body : st_term ->
c : comp_st { C_STAtomic? c } ->
body_typing : st_typing g body (add_frame c inv_vprop) ->
inv_disjointness_token:prop_validity g (inv_disjointness inv_vprop (comp_inames c) inv_tm) ->
st_typing g (wtag (Some STT_Atomic) (Tm_WithInv {name=inv_tm; body; returns_inv=None}))
(add_iname_at_least_unobservable c inv_vprop inv_tm)
and pats_complete : env -> term -> typ -> list R.pattern -> Type0 =
// just check the elaborated term with the core tc
| PC_Elab :
g:env ->
sc:term ->
sc_ty:typ ->
pats:list R.pattern ->
bnds:list (list R.binding) ->
RT.match_is_complete (elab_env g) (elab_term sc) (elab_term sc_ty) pats bnds ->
pats_complete g sc sc_ty pats
and brs_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) : list branch -> comp_st -> Type =
| TBRS_0 :
c:comp_st ->
brs_typing g sc_u sc_ty sc [] c
| TBRS_1 :
c:comp_st ->
p:pattern ->
e:st_term ->
br_typing g sc_u sc_ty sc p e c ->
rest:list branch ->
brs_typing g sc_u sc_ty sc rest c ->
brs_typing g sc_u sc_ty sc ((p,e)::rest) c
and br_typing : env -> universe -> typ -> term -> pattern -> st_term -> comp_st -> Type =
| TBR :
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc:term ->
c:comp_st ->
p:pattern ->
e:st_term ->
bs:(list R.binding){RT.bindings_ok_for_pat (fstar_env g) bs (elab_pat p)} ->
_ : squash (all_fresh g (L.map readback_binding bs)) ->
_ : squash (Some? (RT.elaborate_pat (elab_pat p) bs)) ->
_ : squash (~(R.Tv_Unknown? (R.inspect_ln (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs)))))) -> // should be provable from defn of elaborate_pat
hyp:var {freshv (push_bindings g (L.map readback_binding bs)) hyp} ->
st_typing (
push_binding (push_bindings g (L.map readback_binding bs))
hyp
({name=Sealed.seal "branch equality"; range=FStar.Range.range_0})
(mk_sq_eq2 sc_u sc_ty sc (tm_fstar (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs))) Range.range_0))
) e c ->
br_typing g sc_u sc_ty sc p (close_st_term_n e (L.map fst (L.map readback_binding bs))) c
(* this requires some metatheory on FStar.Reflection.Typing
G |- fv e : t
G(fv) = t0 -> t1
G |- e : t0
G |- t1 <: t
G |- e0 e1 : t ==>
exists t0 t1.
G |- e0 : t0 -> t1 /\
G |- e1 : t0
*)
let star_typing_inversion_l (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t0 tm_vprop
= admit ()
let star_typing_inversion_r (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t1 tm_vprop
= admit ()
let star_typing_inversion (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: GTot (tot_typing g t0 tm_vprop & tot_typing g t1 tm_vprop)
= admit ()
let vprop_eq_typing_inversion g (t0 t1:term)
(token:FTB.equiv_token (elab_env g)
(elab_term t0)
(elab_term t1))
: GTot (tot_typing g t0 tm_vprop &
tot_typing g t1 tm_vprop)
= admit ()
(* These I can easily prove *)
let star_typing (#g:_) (#t0 #t1:term)
(d0:tot_typing g t0 tm_vprop)
(d1:tot_typing g t1 tm_vprop)
: tot_typing g (tm_star t0 t1) tm_vprop
= admit ()
let emp_typing (#g:_)
: tot_typing g tm_emp tm_vprop
= admit ()
let fresh_wrt (x:var) (g:env) (vars:_) =
None? (lookup g x) /\ ~(x `Set.mem` vars)
let effect_annot_typing (g:env) (e:effect_annot) =
match e with
| EffectAnnotAtomic { opens } ->
tot_typing g opens tm_inames
| _ ->
unit
noeq
type post_hint_t = {
g:env;
effect_annot:effect_annot;
effect_annot_typing:effect_annot_typing g effect_annot;
ret_ty:term;
u:universe;
ty_typing:universe_of g ret_ty u;
post:term;
x:(x:var { fresh_wrt x g (freevars post) });
post_typing_src:tot_typing (push_binding g x ppname_default ret_ty) (open_term post x) tm_vprop;
post_typing:
FStar.Ghost.erased (RT.tot_typing (elab_env g)
(RT.(mk_abs (elab_term ret_ty) T.Q_Explicit (elab_term post)))
(RT.mk_arrow (elab_term ret_ty) T.Q_Explicit (elab_term tm_vprop)))
}
let post_hint_for_env_p (g:env) (p:post_hint_t) = g `env_extends` p.g
let post_hint_for_env_extends (g:env) (p:post_hint_t) (x:var { ~ (Set.mem x (dom g)) }) (b:typ)
: Lemma
(requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)]
= env_extends_push g x ppname_default b | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | g: Pulse.Typing.Env.env -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Pulse.Typing.Env.env",
"FStar.Pervasives.Native.option",
"Pulse.Typing.post_hint_t",
"Prims.l_or",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Typing.post_hint_for_env_p",
"FStar.Pervasives.Native.__proj__Some__item__v"
] | [] | false | false | false | true | true | let post_hint_opt (g: env) =
| o: option post_hint_t {None? o \/ post_hint_for_env_p g (Some?.v o)} | false |
|
Pulse.Typing.fst | Pulse.Typing.post_hint_for_env_extends | val post_hint_for_env_extends (g: env) (p: post_hint_t) (x: var{~(Set.mem x (dom g))}) (b: typ)
: Lemma (requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)] | val post_hint_for_env_extends (g: env) (p: post_hint_t) (x: var{~(Set.mem x (dom g))}) (b: typ)
: Lemma (requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)] | let post_hint_for_env_extends (g:env) (p:post_hint_t) (x:var { ~ (Set.mem x (dom g)) }) (b:typ)
: Lemma
(requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)]
= env_extends_push g x ppname_default b | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 41,
"end_line": 1161,
"start_col": 0,
"start_line": 1156
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2)
let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
}
let tr_bindings = L.map tr_binding
[@@ no_auto_projectors]
noeq
type comp_typing : env -> comp -> universe -> Type =
| CT_Tot :
g:env ->
t:term ->
u:universe ->
universe_of g t u ->
comp_typing g (C_Tot t) u
| CT_ST :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_ST st) (universe_of_comp (C_ST st))
| CT_STAtomic :
g:env ->
inames:term ->
obs:observability ->
st:st_comp ->
tot_typing g inames tm_inames ->
st_comp_typing g st ->
comp_typing g (C_STAtomic inames obs st) (universe_of_comp (C_STAtomic inames obs st))
| CT_STGhost :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_STGhost st) (universe_of_comp (C_STGhost st))
let comp_typing_u (e:env) (c:comp_st) = comp_typing e c (universe_of_comp c)
let subtyping_token g t1 t2 =
T.subtyping_token (elab_env g) (elab_term t1) (elab_term t2)
val readback_binding : R.binding -> binding
let readback_binding b =
assume (host_term == R.term); // fixme! expose this fact
match readback_ty b.sort with
| Some sort -> (b.uniq, sort)
| None ->
let sort : term = {t=Tm_FStar b.sort; range=T.range_of_term b.sort} in
(b.uniq, sort)
let non_informative (g:env) (c:comp) =
my_erased (RT.non_informative (elab_env g) (elab_comp c))
let inv_disjointness (inv_p inames inv:term) =
let g = Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv) in
tm_fstar g inv.range
let eff_of_ctag = function
| STT_Ghost -> T.E_Ghost
| _ -> T.E_Total
[@@ no_auto_projectors]
noeq
type st_typing : env -> st_term -> comp -> Type =
| T_Abs:
g:env ->
x:var { None? (lookup g x) } ->
q:option qualifier ->
b:binder ->
u:universe ->
body:st_term {~ (x `Set.mem` freevars_st body) } ->
c:comp ->
tot_typing g b.binder_ty (tm_type u) ->
st_typing (push_binding g x ppname_default b.binder_ty) (open_st_term_nv body (b.binder_ppname, x)) c ->
st_typing g (wtag None (Tm_Abs { b; q; body; ascription=empty_ascription}))
(C_Tot (tm_arrow b q (close_comp c x)))
| T_STApp :
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
tot_typing g head (tm_arrow (as_binder ty) q res) ->
tot_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
//
// this rule requires a non-informative judgment
// for C_STGhost, this will always be the case
// however, when doing the soundness proof,
// we cannot call into the reflection API to get the token
// may be there is another way to make it so that we can get this once-and-for-all
// for C_STGhost
//
| T_STGhostApp:
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars_comp res) } ->
ghost_typing g head (tm_arrow (as_binder ty) q res) ->
non_informative (push_binding g x ppname_default ty)
(open_comp_with res (null_var x)) ->
ghost_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
| T_Return:
g:env ->
c:ctag ->
use_eq:bool ->
u:universe ->
t:term ->
e:term ->
post:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars post) } ->
universe_of g t u ->
typing g e (eff_of_ctag c) t ->
tot_typing (push_binding g x ppname_default t) (open_term post x) tm_vprop ->
st_typing g (wtag (Some c) (Tm_Return { expected_type=tm_unknown; insert_eq=use_eq; term=e }))
(comp_return c use_eq u t e post x)
| T_Lift:
g:env ->
e:st_term ->
c1:comp_st ->
c2:comp_st ->
st_typing g e c1 ->
lift_comp g c1 c2 ->
st_typing g e c2
| T_Bind:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp_st ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
c:comp ->
st_typing g e1 c1 ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
bind_comp g x c1 c2 c ->
st_typing g (wr c (Tm_Bind { binder=b; head=e1; body=e2 })) c
| T_BindFn:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp { C_Tot? c1 } ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
st_typing g e1 c1 ->
u:Ghost.erased universe ->
tot_typing g (comp_res c1) (tm_type u) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
comp_typing_u g c2 ->
st_typing g (wr c2 (Tm_Bind { binder=b; head=e1; body=e2 })) c2
| T_If:
g:env ->
b:term ->
e1:st_term ->
e2:st_term ->
c:comp_st ->
(* This is a little weird, we introduce a name hyp in the environment,
but the branches are not allowed to use it (except perhaps in a silent way for proofs).
Maybe more natural to have one free var in e1,e2 and to open it with hyp?
But that's also a change to FStar.Reflection.Typing
*)
hyp:var { None? (lookup g hyp) /\
~(hyp `Set.mem` (freevars_st e1 `Set.union` freevars_st e2))
} ->
tot_typing g b tm_bool ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_true)) e1 c ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_false)) e2 c ->
my_erased (comp_typing_u g c) ->
st_typing g (wr c (Tm_If { b; then_=e1; else_=e2; post=None })) c
| T_Match :
g:env ->
sc_u:universe ->
sc_ty:typ ->
sc:term ->
tot_typing g sc_ty (tm_type sc_u) ->
tot_typing g sc sc_ty ->
c:comp_st ->
my_erased (comp_typing_u g c) ->
brs:list (pattern & st_term) ->
brs_typing g sc_u sc_ty sc brs c ->
pats_complete g sc sc_ty (L.map (fun (p, _) -> elab_pat p) brs) ->
st_typing g (wr c (Tm_Match {sc; returns_=None; brs})) c
| T_Frame:
g:env ->
e:st_term ->
c:comp_st ->
frame:term ->
tot_typing g frame tm_vprop ->
st_typing g e c ->
st_typing g e (add_frame c frame)
| T_Equiv:
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_equiv g c c' ->
st_typing g e c'
| T_Sub :
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_sub g c c' ->
st_typing g e c'
| T_IntroPure:
g:env ->
p:term ->
tot_typing g p tm_prop ->
prop_validity g p ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroPure { p }))
(comp_intro_pure p)
| T_ElimExists:
g:env ->
u:universe ->
t:term ->
p:term ->
x:var { None? (lookup g x) } ->
tot_typing g t (tm_type u) ->
tot_typing g (tm_exists_sl u (as_binder t) p) tm_vprop ->
st_typing g (wtag (Some STT_Ghost) (Tm_ElimExists { p = tm_exists_sl u (as_binder t) p }))
(comp_elim_exists u t p (v_as_nv x))
| T_IntroExists:
g:env ->
u:universe ->
b:binder ->
p:term ->
e:term ->
tot_typing g b.binder_ty (tm_type u) ->
tot_typing g (tm_exists_sl u b p) tm_vprop ->
ghost_typing g e b.binder_ty ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroExists { p = tm_exists_sl u b p;
witnesses= [e] }))
(comp_intro_exists u b p e)
| T_While:
g:env ->
inv:term ->
cond:st_term ->
body:st_term ->
tot_typing g (tm_exists_sl u0 (as_binder tm_bool) inv) tm_vprop ->
st_typing g cond (comp_while_cond ppname_default inv) ->
st_typing g body (comp_while_body ppname_default inv) ->
st_typing g (wtag (Some STT) (Tm_While { invariant = inv;
condition = cond;
body;
condition_var = ppname_default } ))
(comp_while ppname_default inv)
| T_Par:
g:env ->
eL:st_term ->
cL:comp { C_ST? cL } ->
eR:st_term ->
cR:comp { C_ST? cR /\ comp_u cL == comp_u cR } ->
x:var { None? (lookup g x) } ->
// TODO: can comp_typing come from inversion of eL : cL and eR : cR?
comp_typing_u g cL ->
comp_typing_u g cR ->
st_typing g eL cL ->
st_typing g eR cR ->
st_typing g (wr cL (Tm_Par { pre1=tm_unknown; body1=eL; post1=tm_unknown;
pre2=tm_unknown; body2=eR; post2=tm_unknown }))
(comp_par cL cR x)
| T_WithLocal:
g:env ->
binder_ppname:ppname ->
init:term ->
body:st_term ->
init_t:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g init init_t ->
universe_of g init_t u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_ref init_t))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_body x init_t init c) ->
st_typing g (wr c (Tm_WithLocal { binder = mk_binder_ppname (mk_ref init_t) binder_ppname; initializer=init; body } )) c
| T_WithLocalArray:
g:env ->
binder_ppname:ppname ->
initializer:term ->
length:term ->
body:st_term ->
a:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g initializer a ->
tot_typing g length tm_szt ->
universe_of g a u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_array a))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_array_body x a initializer length c) ->
st_typing g (wr c (Tm_WithLocalArray { binder = mk_binder_ppname (mk_array a) binder_ppname; initializer; length; body } )) c
| T_Rewrite:
g:env ->
p:vprop ->
q:vprop ->
tot_typing g p tm_vprop ->
vprop_equiv g p q ->
st_typing g (wtag (Some STT_Ghost) (Tm_Rewrite { t1=p; t2=q } ))
(comp_rewrite p q)
| T_Admit:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
st_typing g (wtag (Some c) (Tm_Admit { ctag=c; u=s.u; typ=s.res; post=None }))
(comp_admit c s)
| T_Unreachable:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
prop_validity g (tm_fstar (`False) FStar.Range.range_0) ->
st_typing g (wtag (Some c) Tm_Unreachable) (comp_admit c s)
(* This limits the body to be atomic, rather than also allowing unobservable *)
| T_WithInv:
g:env ->
inv_tm : term ->
inv_vprop : vprop ->
inv_vprop_typing : tot_typing g inv_vprop tm_vprop -> // could be ghost
inv_typing : tot_typing g inv_tm (tm_inv inv_vprop) ->
body : st_term ->
c : comp_st { C_STAtomic? c } ->
body_typing : st_typing g body (add_frame c inv_vprop) ->
inv_disjointness_token:prop_validity g (inv_disjointness inv_vprop (comp_inames c) inv_tm) ->
st_typing g (wtag (Some STT_Atomic) (Tm_WithInv {name=inv_tm; body; returns_inv=None}))
(add_iname_at_least_unobservable c inv_vprop inv_tm)
and pats_complete : env -> term -> typ -> list R.pattern -> Type0 =
// just check the elaborated term with the core tc
| PC_Elab :
g:env ->
sc:term ->
sc_ty:typ ->
pats:list R.pattern ->
bnds:list (list R.binding) ->
RT.match_is_complete (elab_env g) (elab_term sc) (elab_term sc_ty) pats bnds ->
pats_complete g sc sc_ty pats
and brs_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) : list branch -> comp_st -> Type =
| TBRS_0 :
c:comp_st ->
brs_typing g sc_u sc_ty sc [] c
| TBRS_1 :
c:comp_st ->
p:pattern ->
e:st_term ->
br_typing g sc_u sc_ty sc p e c ->
rest:list branch ->
brs_typing g sc_u sc_ty sc rest c ->
brs_typing g sc_u sc_ty sc ((p,e)::rest) c
and br_typing : env -> universe -> typ -> term -> pattern -> st_term -> comp_st -> Type =
| TBR :
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc:term ->
c:comp_st ->
p:pattern ->
e:st_term ->
bs:(list R.binding){RT.bindings_ok_for_pat (fstar_env g) bs (elab_pat p)} ->
_ : squash (all_fresh g (L.map readback_binding bs)) ->
_ : squash (Some? (RT.elaborate_pat (elab_pat p) bs)) ->
_ : squash (~(R.Tv_Unknown? (R.inspect_ln (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs)))))) -> // should be provable from defn of elaborate_pat
hyp:var {freshv (push_bindings g (L.map readback_binding bs)) hyp} ->
st_typing (
push_binding (push_bindings g (L.map readback_binding bs))
hyp
({name=Sealed.seal "branch equality"; range=FStar.Range.range_0})
(mk_sq_eq2 sc_u sc_ty sc (tm_fstar (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs))) Range.range_0))
) e c ->
br_typing g sc_u sc_ty sc p (close_st_term_n e (L.map fst (L.map readback_binding bs))) c
(* this requires some metatheory on FStar.Reflection.Typing
G |- fv e : t
G(fv) = t0 -> t1
G |- e : t0
G |- t1 <: t
G |- e0 e1 : t ==>
exists t0 t1.
G |- e0 : t0 -> t1 /\
G |- e1 : t0
*)
let star_typing_inversion_l (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t0 tm_vprop
= admit ()
let star_typing_inversion_r (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t1 tm_vprop
= admit ()
let star_typing_inversion (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: GTot (tot_typing g t0 tm_vprop & tot_typing g t1 tm_vprop)
= admit ()
let vprop_eq_typing_inversion g (t0 t1:term)
(token:FTB.equiv_token (elab_env g)
(elab_term t0)
(elab_term t1))
: GTot (tot_typing g t0 tm_vprop &
tot_typing g t1 tm_vprop)
= admit ()
(* These I can easily prove *)
let star_typing (#g:_) (#t0 #t1:term)
(d0:tot_typing g t0 tm_vprop)
(d1:tot_typing g t1 tm_vprop)
: tot_typing g (tm_star t0 t1) tm_vprop
= admit ()
let emp_typing (#g:_)
: tot_typing g tm_emp tm_vprop
= admit ()
let fresh_wrt (x:var) (g:env) (vars:_) =
None? (lookup g x) /\ ~(x `Set.mem` vars)
let effect_annot_typing (g:env) (e:effect_annot) =
match e with
| EffectAnnotAtomic { opens } ->
tot_typing g opens tm_inames
| _ ->
unit
noeq
type post_hint_t = {
g:env;
effect_annot:effect_annot;
effect_annot_typing:effect_annot_typing g effect_annot;
ret_ty:term;
u:universe;
ty_typing:universe_of g ret_ty u;
post:term;
x:(x:var { fresh_wrt x g (freevars post) });
post_typing_src:tot_typing (push_binding g x ppname_default ret_ty) (open_term post x) tm_vprop;
post_typing:
FStar.Ghost.erased (RT.tot_typing (elab_env g)
(RT.(mk_abs (elab_term ret_ty) T.Q_Explicit (elab_term post)))
(RT.mk_arrow (elab_term ret_ty) T.Q_Explicit (elab_term tm_vprop)))
}
let post_hint_for_env_p (g:env) (p:post_hint_t) = g `env_extends` p.g | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
p: Pulse.Typing.post_hint_t ->
x: Pulse.Syntax.Base.var{~(FStar.Set.mem x (Pulse.Typing.Env.dom g))} ->
b: Pulse.Syntax.Base.typ
-> FStar.Pervasives.Lemma (requires Pulse.Typing.post_hint_for_env_p g p)
(ensures
Pulse.Typing.post_hint_for_env_p (Pulse.Typing.Env.push_binding g
x
Pulse.Syntax.Base.ppname_default
b)
p)
[
SMTPat (Pulse.Typing.post_hint_for_env_p (Pulse.Typing.Env.push_binding g
x
Pulse.Syntax.Base.ppname_default
b)
p)
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Typing.post_hint_t",
"Pulse.Syntax.Base.var",
"Prims.l_not",
"Prims.b2t",
"FStar.Set.mem",
"Pulse.Typing.Env.dom",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.env_extends_push",
"Pulse.Syntax.Base.ppname_default",
"Prims.unit",
"Pulse.Typing.post_hint_for_env_p",
"Prims.squash",
"Pulse.Typing.Env.push_binding",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.logical",
"Prims.Nil"
] | [] | true | false | true | false | false | let post_hint_for_env_extends (g: env) (p: post_hint_t) (x: var{~(Set.mem x (dom g))}) (b: typ)
: Lemma (requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)] =
| env_extends_push g x ppname_default b | false |
Pulse.Typing.fst | Pulse.Typing.post_hint_typing | val post_hint_typing (g: env) (p: post_hint_for_env g) (x: var{fresh_wrt x g (freevars p.post)})
: post_hint_typing_t g p x | val post_hint_typing (g: env) (p: post_hint_for_env g) (x: var{fresh_wrt x g (freevars p.post)})
: post_hint_typing_t g p x | let post_hint_typing (g:env)
(p:post_hint_for_env g)
(x:var { fresh_wrt x g (freevars p.post) })
: post_hint_typing_t g p x
= let effect_annot_typing : effect_annot_typing g p.effect_annot =
match p.effect_annot with
| EffectAnnotAtomic { opens } ->
let opens_typing : tot_typing g opens tm_inames = RU.magic () in //weakening
opens_typing
| _ ->
()
in
{
effect_annot_typing;
ty_typing = RU.magic (); //weakening
post_typing = RU.magic ();
} | {
"file_name": "lib/steel/pulse/Pulse.Typing.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 3,
"end_line": 1191,
"start_col": 0,
"start_line": 1175
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
open Pulse.Reflection.Util
open FStar.List.Tot
open Pulse.Syntax
module L = FStar.List.Tot
module FTB = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
module T= FStar.Tactics.V2
include Pulse.Typing.Env
let debug_log (level:string) (g:env) (f: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) level
then T.print (Printf.sprintf "Debug@%s:{ %s }\n" level (f ()))
let tm_unit = tm_fvar (as_fv unit_lid)
let tm_bool = tm_fvar (as_fv bool_lid)
let tm_int = tm_fvar (as_fv int_lid)
let tm_nat = tm_fvar (as_fv nat_lid)
let tm_szt = tm_fvar (as_fv szt_lid)
let tm_true = tm_constant R.C_True
let tm_false = tm_constant R.C_False
let tm_prop = with_range (Tm_FStar FStar.Reflection.Typing.tm_prop) Range.range_0
let mk_erased (u:universe) (t:term) : term =
let hd = tm_uinst (as_fv erased_lid) [u] in
tm_pureapp hd None t
let mk_reveal (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv reveal_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_hide (u:universe) (t:term) (e:term) : term =
let hd = tm_uinst (as_fv hide_lid) [u] in
let hd = tm_pureapp hd (Some Implicit) t in
tm_pureapp hd None e
let mk_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= tm_pureapp
(tm_pureapp (tm_pureapp (tm_uinst (as_fv R.eq2_qn) [u]) (Some Implicit) t)
None e0) None e1
let mk_sq_eq2 (u:universe)
(t:term)
(e0 e1:term)
: term
= let eq = mk_eq2 u t e0 e1 in
(tm_pureapp (tm_uinst (as_fv R.squash_qn) [u]) None eq)
let mk_vprop_eq (e0 e1:term) : term =
mk_eq2 u2 tm_vprop e0 e1
let mk_ref (t:term) : term = tm_pureapp (tm_fvar (as_fv ref_lid)) None t
let mk_pts_to (ty:term) (r:term) (v:term) : term =
let t = tm_fvar (as_fv pts_to_lid) in
let t = tm_pureapp t (Some Implicit) ty in
let t = tm_pureapp t None r in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
let comp_return (c:ctag) (use_eq:bool) (u:universe) (t:term) (e:term) (post:term) (x:var)
: comp =
let post_maybe_eq =
if use_eq
then let post = open_term' post (null_var x) 0 in
let post = tm_star post (tm_pure (mk_eq2 u t (null_var x) e)) in
close_term post x
else post in
match c with
| STT ->
C_ST { u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Atomic ->
C_STAtomic tm_emp_inames Neutral
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
| STT_Ghost ->
C_STGhost
{ u; res = t; pre = open_term' post e 0; post = post_maybe_eq }
module L = FStar.List.Tot
let extend_env_l (f:R.env) (g:env_bindings) : R.env =
L.fold_right
(fun (x, b) g ->
let t = elab_term b in
RT.extend_env g x t)
g
f
let elab_env (e:env) : R.env = extend_env_l (fstar_env e) (bindings e)
(*
* If I call this fresh, I get:
* Pulse.Typing.fst(545,0-546,20): (Error 162) The qualifier list "[assume]" is not permissible for this element: definitions cannot be assumed or marked with equality qualifiers
* What!?!? Oh.. there's a fresh in Pulse.Typing.Env, which is *included*...
*)
let freshv (g:env) (x:var) : prop =
None? (lookup g x)
let rec all_fresh (g:env) (xs:list binding) : Tot prop (decreases xs) =
match xs with
| [] -> True
| x::xs -> freshv g (fst x) /\ all_fresh (push_binding g (fst x) ppname_default (snd x)) xs
let rec push_bindings (g:env) (bs:list binding{all_fresh g bs}) : Tot (g':env{env_extends g' g}) (decreases bs) =
match bs with
| [] -> g
| (x,t)::bs -> push_bindings (push_binding g x ppname_default t) bs
let elab_push_binding (g:env) (x:var { ~ (Set.mem x (dom g)) }) (t:typ)
: Lemma (elab_env (push_binding g x ppname_default t) ==
RT.extend_env (elab_env g) x (elab_term t)) = ()
[@@ erasable; no_auto_projectors]
noeq
type vprop_equiv : env -> term -> term -> Type =
| VE_Refl:
g:env ->
t:term ->
vprop_equiv g t t
| VE_Sym:
g:env ->
t1:term ->
t2:term ->
vprop_equiv g t1 t2 ->
vprop_equiv g t2 t1
| VE_Trans:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g t0 t1 ->
vprop_equiv g t1 t2 ->
vprop_equiv g t0 t2
| VE_Ctxt:
g:env ->
t0:term ->
t1:term ->
t0':term ->
t1':term ->
vprop_equiv g t0 t0' ->
vprop_equiv g t1 t1' ->
vprop_equiv g (tm_star t0 t1) (tm_star t0' t1')
| VE_Unit: (* *)
g:env ->
t:term ->
vprop_equiv g (tm_star tm_emp t) t
| VE_Comm:
g:env ->
t0:term ->
t1:term ->
vprop_equiv g (tm_star t0 t1) (tm_star t1 t0)
| VE_Assoc:
g:env ->
t0:term ->
t1:term ->
t2:term ->
vprop_equiv g (tm_star t0 (tm_star t1 t2)) (tm_star (tm_star t0 t1) t2)
| VE_Ext:
g:env ->
t0:term ->
t1:term ->
FTB.equiv_token (elab_env g) (elab_term t0) (elab_term t1) ->
vprop_equiv g t0 t1
// | VE_Ex:
// g:env ->
// x:var { None? (lookup_ty g x) } ->
// ty:term ->
// t0:term ->
// t1:term ->
// vprop_equiv f ((x, Inl ty)::g) (open_term t0 x) (open_term t1 x) ->
// vprop_equiv f g (tm_exists_sl ty t0) (tm_exists_sl ty t1)
| VE_Fa:
g:env ->
x:var { None? (lookup g x) } ->
u:universe ->
b:binder ->
t0:term { ~(x `Set.mem` freevars t0 ) } ->
t1:term { ~(x `Set.mem` freevars t1 ) } ->
vprop_equiv (push_binding g x ppname_default b.binder_ty) (open_term t0 x) (open_term t1 x) ->
vprop_equiv g (tm_forall_sl u b t0) (tm_forall_sl u b t1)
let add_frame (s:comp_st) (frame:term)
: comp_st
= let add_frame_s (s:st_comp) : st_comp =
{ s with pre = tm_star s.pre frame;
post = tm_star s.post frame }
in
match s with
| C_ST s -> C_ST (add_frame_s s)
| C_STAtomic inames obs s -> C_STAtomic inames obs (add_frame_s s)
| C_STGhost s -> C_STGhost (add_frame_s s)
let add_inv (s:comp_st) (v:vprop)
: comp_st
= add_frame s v
let at_most_one_observable o1 o2 =
match o1, o2 with
| Observable, Observable -> false
| _ -> true
let join_obs (o1 o2:observability) : observability =
match o1, o2 with
| Neutral, o
| o, Neutral -> o
| Observable, _ -> Observable
| _, Observable -> Observable
| Unobservable, Unobservable -> Unobservable
let add_iname_at_least_unobservable (s:comp_st {C_STAtomic? s}) (inv_vprop inv_tm:term) =
let add_inv_tm (inames:term) =
tm_fstar (Pulse.Reflection.Util.add_inv_tm (elab_term inv_vprop) (elab_term inames) (elab_term inv_tm))
inames.range
in
let C_STAtomic inames obs s = s in
C_STAtomic (add_inv_tm inames) (join_obs obs Unobservable) s
let bind_comp_compatible (c1 c2:comp_st)
: prop
= match c1, c2 with
| C_ST _, C_ST _
| C_STGhost _, C_STGhost _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ at_most_one_observable obs1 obs2
| _, _ -> False
let bind_comp_pre (x:var) (c1 c2:comp_st)
: prop
= open_term (comp_post c1) x == comp_pre c2 /\
(~ (x `Set.mem` freevars (comp_post c2))) /\ //x doesn't escape in the result type
bind_comp_compatible c1 c2
let bind_comp_out (c1:comp_st) (c2:comp_st{bind_comp_compatible c1 c2})
: comp_st
= let s : st_comp = {u=comp_u c2; res=comp_res c2; pre=comp_pre c1; post=comp_post c2} in
match c1, c2 with
| C_STGhost _, C_STGhost _ -> C_STGhost s
| C_STAtomic inames obs1 _, C_STAtomic _ obs2 _ ->
C_STAtomic inames (join_obs obs1 obs2) s
| C_ST _, C_ST _ -> C_ST s
let st_equiv_pre (c1 c2:comp_st)
: prop
= comp_u c1 == comp_u c2 /\
(match c1, c2 with
| C_ST _, C_ST _ -> True
| C_STAtomic inames1 obs1 _, C_STAtomic inames2 obs2 _ ->
inames1 == inames2 /\ obs1 == obs2
| C_STGhost _, C_STGhost _ ->
True
| _, _ -> False)
let non_informative_witness_t (u:universe) (t:term)
: term
= tm_pureapp (tm_uinst (as_fv non_informative_witness_lid) [u])
None
t
let elim_exists_post (u:universe) (t:term) (p:term) (x:nvar)
: term
= let x_tm = term_of_nvar x in
let p = open_term' p (mk_reveal u t x_tm) 0 in
close_term p (snd x)
let comp_elim_exists (u:universe) (t:term) (p:term) (x:nvar)
: comp
= C_STGhost {
u=u;
res=mk_erased u t;
pre=tm_exists_sl u (as_binder t) p;
post=elim_exists_post u t p x
}
let comp_intro_pure (p:term) =
C_STGhost {
u=u_zero;
res=tm_unit;
pre=tm_emp;
post=tm_pure p
}
let named_binder (x:ppname) (t:term) = mk_binder_ppname t x
let comp_intro_exists (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p e 0;
post=tm_exists_sl u b p
}
let comp_intro_exists_erased (u:universe) (b:binder) (p:term) (e:term)
: comp
= C_STGhost {
u=u0;
res=tm_unit;
pre=open_term' p (mk_reveal u b.binder_ty e) 0;
post=tm_exists_sl u b p
}
let comp_while_cond (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_bool;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=inv
}
let comp_while_body (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=open_term' inv tm_true 0;
post=tm_exists_sl u0 (named_binder x tm_bool) inv
}
let comp_while (x:ppname) (inv:term)
: comp
= C_ST {
u=u0;
res=tm_unit;
pre=tm_exists_sl u0 (named_binder x tm_bool) inv;
post=open_term' inv tm_false 0
}
let mk_tuple2 (u1 u2:universe) (t1 t2:term) : term =
tm_pureapp (tm_pureapp (tm_uinst (as_fv tuple2_lid) [u1; u2])
None
t1)
None t2
let mk_fst (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv fst_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let mk_snd (u1 u2:universe) (a1 a2 e:term) : term =
tm_pureapp (tm_pureapp (tm_pureapp (tm_uinst (as_fv snd_lid) [u1; u2]) (Some Implicit) a1)
(Some Implicit) a2)
None
e
let par_post (uL uR:universe) (aL aR postL postR:term) (x:var) : term =
let x_tm = term_of_no_name_var x in
let postL = open_term' postL (mk_fst uL uR aL aR x_tm) 0 in
let postR = open_term' postR (mk_snd uL uR aL aR x_tm) 0 in
let post = tm_star postL postR in
close_term post x
let comp_par (cL:comp{C_ST? cL}) (cR:comp{C_ST? cR}) (x:var) : comp =
let uL = comp_u cL in
let uR = comp_u cR in
let aL = comp_res cL in
let aR = comp_res cR in
let post = par_post uL uR aL aR (comp_post cL) (comp_post cR) x in
C_ST {
u = uL;
res = mk_tuple2 uL uR aL aR;
pre = tm_star (comp_pre cL) (comp_pre cR);
post
}
let comp_withlocal_body_pre (pre:vprop) (init_t:term) (r:term) (init:term) : vprop =
tm_star pre (mk_pts_to init_t r init)
let comp_withlocal_body_post (post:term) (init_t:term) (r:term) : term =
tm_star post (tm_exists_sl u0 (as_binder init_t) (mk_pts_to init_t r (null_bvar 0)))
let comp_withlocal_body (r:var) (init_t:term) (init:term) (c:comp{C_ST? c}) : comp =
let r = null_var r in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_body_pre (comp_pre c) init_t r init;
post = comp_withlocal_body_post (comp_post c) init_t r
}
let mk_array (a:term) : term =
tm_pureapp (tm_fvar (as_fv array_lid)) None a
let mk_array_length (a:term) (arr:term) : term =
let t = tm_fvar (as_fv array_length_lid) in
let t = tm_pureapp t (Some Implicit) a in
tm_pureapp t None arr
let mk_array_pts_to (a:term) (arr:term) (v:term) : term =
let t = tm_fvar (as_fv array_pts_to_lid) in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None arr in
let t = tm_pureapp t (Some Implicit) (tm_fvar (as_fv full_perm_lid)) in
tm_pureapp t None v
// let mk_array_is_full (a:term) (arr:term) : term =
// let t = tm_fvar (as_fv array_is_full_lid) in
// let t = tm_pureapp t (Some Implicit) a in
// tm_pureapp t None arr
let mk_seq_create (u:universe) (a:term) (len:term) (v:term) : term =
let t = tm_uinst (as_fv seq_create_lid) [u] in
let t = tm_pureapp t (Some Implicit) a in
let t = tm_pureapp t None len in
tm_pureapp t None v
let mk_szv (n:term) : term =
let t = tm_fvar (as_fv szv_lid) in
tm_pureapp t None n
let comp_withlocal_array_body_pre (pre:vprop) (a:term) (arr:term) (init:term) (len:term) : vprop =
tm_star pre
(tm_star (mk_array_pts_to a arr (mk_seq_create u0 a (mk_szv len) init))
(tm_pure (mk_eq2 u0 tm_nat (mk_array_length a arr) (mk_szv len))))
let mk_seq (u:universe) (a:term) : term =
let t = tm_uinst (as_fv seq_lid) [u] in
tm_pureapp t None a
let comp_withlocal_array_body_post (post:term) (a:term) (arr:term) : term =
tm_star post (tm_exists_sl u0 (as_binder (mk_seq u0 a)) (mk_array_pts_to a arr (null_bvar 0)))
let comp_withlocal_array_body (arr:var) (a:term) (init:term) (len:term) (c:comp{C_ST? c}) : comp =
let arr = null_var arr in
C_ST {
u = comp_u c;
res = comp_res c;
pre = comp_withlocal_array_body_pre (comp_pre c) a arr init len;
post = comp_withlocal_array_body_post (comp_post c) a arr
}
let comp_rewrite (p q:vprop) : comp =
C_STGhost {
u = u0;
res = tm_unit;
pre = p;
post = q;
}
let comp_admit (c:ctag) (s:st_comp) : comp =
match c with
| STT -> C_ST s
| STT_Atomic -> C_STAtomic tm_emp_inames Neutral s
| STT_Ghost -> C_STGhost s
[@@erasable]
noeq
type my_erased (a:Type) = | E of a
let typing (g:env) (e:term) (eff:T.tot_or_ghost) (t:term) =
my_erased (RT.typing (elab_env g) (elab_term e) (eff, elab_term t))
let tot_typing (g:env) (e:term) (t:term) =
typing g e T.E_Total t
let ghost_typing (g:env) (e:term) (t:typ) =
typing g e T.E_Ghost t
let lift_typing_to_ghost_typing (#g:env) (#e:term) (#eff:T.tot_or_ghost) (#t:term)
(d:typing g e eff t)
: ghost_typing g e t =
if eff = T.E_Ghost
then d
else let E d = d in
E (RT.T_Sub _ _ _ _ d (RT.Relc_total_ghost _ _))
let universe_of (g:env) (t:term) (u:universe) =
tot_typing g t (tm_type u)
let non_informative_t (g:env) (u:universe) (t:term) =
w:term & tot_typing g w (non_informative_witness_t u t)
let non_informative_c (g:env) (c:comp_st) =
non_informative_t g (comp_u c) (comp_res c)
// TODO: move
let tm_join_inames (inames1 inames2 : term) : term =
if eq_tm inames1 tm_emp_inames then inames2 else
if eq_tm inames2 tm_emp_inames then inames1 else
if eq_tm inames1 inames2 then inames1 else
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "join_inames" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset (inames1 inames2 : term) : term =
let inames1 = elab_term inames1 in
let inames2 = elab_term inames2 in
let join_lid = Pulse.Reflection.Util.mk_pulse_lib_core_lid "inames_subset" in
let join : R.term = R.pack_ln (R.Tv_FVar (R.pack_fv join_lid)) in
with_range (Tm_FStar (R.mk_e_app join [inames1; inames2]))
(T.range_of_term inames1)
let tm_inames_subset_typing (g:env) (inames1 inames2 : term) : tot_typing g (tm_inames_subset inames1 inames2) tm_prop =
(* Need to add the typing hypothesis for `inames_subset` to
the env and a precondition that the inames have type Pulse.Lib.Core.inames in g,
which the caller should get from an inversion lemma *)
RU.magic()
let prop_validity (g:env) (t:term) =
FTB.prop_validity_token (elab_env g) (elab_term t)
[@@ no_auto_projectors]
noeq
type st_equiv : env -> comp -> comp -> Type =
| ST_VPropEquiv :
g:env ->
c1:comp_st ->
c2:comp_st { st_equiv_pre c1 c2 } ->
x:var { None? (lookup g x) /\
~(x `Set.mem` freevars (comp_post c1)) /\
~(x `Set.mem` freevars (comp_post c2)) } ->
tot_typing g (comp_pre c1) tm_vprop ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) ->
tot_typing (push_binding g x ppname_default (comp_res c1)) (open_term (comp_post c1) x) tm_vprop ->
RT.equiv (elab_env g) (elab_term (comp_res c1)) (elab_term (comp_res c2)) ->
vprop_equiv g (comp_pre c1) (comp_pre c2) ->
vprop_equiv (push_binding g x ppname_default (comp_res c1))
(open_term (comp_post c1) x)
(open_term (comp_post c2) x) ->
st_equiv g c1 c2
| ST_TotEquiv :
g:env ->
t1:term ->
t2:term ->
u:_ ->
universe_of g t1 u ->
Ghost.erased (RT.equiv (elab_env g) (elab_term t1) (elab_term t2)) ->
st_equiv g (C_Tot t1) (C_Tot t2)
let sub_observability (o1 o2:observability) = o1 = Neutral || o1 = o2 || o2 = Observable
[@@ no_auto_projectors]
noeq
type st_sub : env -> comp -> comp -> Type =
| STS_Refl :
g:env ->
c:comp ->
st_sub g c c
| STS_Trans :
g:env ->
c1:comp ->
c2:comp ->
c3:comp ->
st_sub g c1 c2 ->
st_sub g c2 c3 ->
st_sub g c1 c3
| STS_AtomicInvs :
g:env ->
stc:st_comp ->
is1:term ->
is2:term ->
obs1:observability ->
obs2:observability { sub_observability obs1 obs2 } ->
prop_validity g (tm_inames_subset is1 is2) ->
st_sub g (C_STAtomic is1 obs1 stc) (C_STAtomic is2 obs2 stc)
[@@ no_auto_projectors]
noeq
type lift_comp : env -> comp -> comp -> Type =
| Lift_STAtomic_ST :
g:env ->
c:comp_st{C_STAtomic? c} -> // Note: we have to reflect a univerese bound here!
lift_comp g c (C_ST (st_comp_of_comp c))
| Lift_Observability:
g:env ->
c:comp_st{C_STAtomic? c } ->
o2:observability { sub_observability (C_STAtomic?.obs c) o2 } ->
lift_comp g
(C_STAtomic (comp_inames c) (C_STAtomic?.obs c) (st_comp_of_comp c))
(C_STAtomic (comp_inames c) o2 (st_comp_of_comp c))
| Lift_Ghost_Neutral:
g:env ->
c:comp_st{C_STGhost? c} ->
non_informative_c:non_informative_c g c ->
lift_comp g c (C_STAtomic tm_emp_inames Neutral (st_comp_of_comp c))
| Lift_Neutral_Ghost:
g:env ->
c:comp_st{C_STAtomic? c /\ C_STAtomic?.obs c == Neutral } ->
lift_comp g c (C_STGhost (st_comp_of_comp c))
let wr (ct:comp_st) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = as_effect_hint (ctag_of_comp_st ct) }
let wtag (ct:option ctag) (t:st_term') : st_term = { term = t; range = FStar.Range.range_0; effect_tag = FStar.Sealed.seal ct }
[@@ no_auto_projectors]
noeq
type st_comp_typing : env -> st_comp -> Type =
| STC:
g:env ->
st:st_comp ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars st.post) } ->
universe_of g st.res st.u ->
tot_typing g st.pre tm_vprop ->
tot_typing (push_binding g x ppname_default st.res) (open_term st.post x) tm_vprop ->
st_comp_typing g st
[@@ no_auto_projectors]
noeq
type bind_comp : env -> var -> comp -> comp -> comp -> Type =
| Bind_comp : // (C_ST and C_ST) or (C_STGhost and C_STGhost) or (C_STAtomic and C_STAtomic)
g:env ->
x:var { None? (lookup g x) } ->
c1:comp_st ->
c2:comp_st {bind_comp_pre x c1 c2} ->
universe_of g (comp_res c2) (comp_u c2) ->
//or in the result post; free var check isn't enough; we need typability
y:var { None? (lookup g y) /\ ~(y `Set.mem` freevars (comp_post c2)) } ->
tot_typing (push_binding g y ppname_default (comp_res c2)) (open_term (comp_post c2) y) tm_vprop ->
bind_comp g x c1 c2 (bind_comp_out c1 c2)
let tr_binding (vt : var & typ) : Tot R.binding =
let v, t = vt in
{
uniq = v;
sort = elab_term t;
ppname = ppname_default.name;
}
let tr_bindings = L.map tr_binding
[@@ no_auto_projectors]
noeq
type comp_typing : env -> comp -> universe -> Type =
| CT_Tot :
g:env ->
t:term ->
u:universe ->
universe_of g t u ->
comp_typing g (C_Tot t) u
| CT_ST :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_ST st) (universe_of_comp (C_ST st))
| CT_STAtomic :
g:env ->
inames:term ->
obs:observability ->
st:st_comp ->
tot_typing g inames tm_inames ->
st_comp_typing g st ->
comp_typing g (C_STAtomic inames obs st) (universe_of_comp (C_STAtomic inames obs st))
| CT_STGhost :
g:env ->
st:st_comp ->
st_comp_typing g st ->
comp_typing g (C_STGhost st) (universe_of_comp (C_STGhost st))
let comp_typing_u (e:env) (c:comp_st) = comp_typing e c (universe_of_comp c)
let subtyping_token g t1 t2 =
T.subtyping_token (elab_env g) (elab_term t1) (elab_term t2)
val readback_binding : R.binding -> binding
let readback_binding b =
assume (host_term == R.term); // fixme! expose this fact
match readback_ty b.sort with
| Some sort -> (b.uniq, sort)
| None ->
let sort : term = {t=Tm_FStar b.sort; range=T.range_of_term b.sort} in
(b.uniq, sort)
let non_informative (g:env) (c:comp) =
my_erased (RT.non_informative (elab_env g) (elab_comp c))
let inv_disjointness (inv_p inames inv:term) =
let g = Pulse.Reflection.Util.inv_disjointness_goal (elab_term inv_p) (elab_term inames) (elab_term inv) in
tm_fstar g inv.range
let eff_of_ctag = function
| STT_Ghost -> T.E_Ghost
| _ -> T.E_Total
[@@ no_auto_projectors]
noeq
type st_typing : env -> st_term -> comp -> Type =
| T_Abs:
g:env ->
x:var { None? (lookup g x) } ->
q:option qualifier ->
b:binder ->
u:universe ->
body:st_term {~ (x `Set.mem` freevars_st body) } ->
c:comp ->
tot_typing g b.binder_ty (tm_type u) ->
st_typing (push_binding g x ppname_default b.binder_ty) (open_st_term_nv body (b.binder_ppname, x)) c ->
st_typing g (wtag None (Tm_Abs { b; q; body; ascription=empty_ascription}))
(C_Tot (tm_arrow b q (close_comp c x)))
| T_STApp :
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
tot_typing g head (tm_arrow (as_binder ty) q res) ->
tot_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
//
// this rule requires a non-informative judgment
// for C_STGhost, this will always be the case
// however, when doing the soundness proof,
// we cannot call into the reflection API to get the token
// may be there is another way to make it so that we can get this once-and-for-all
// for C_STGhost
//
| T_STGhostApp:
g:env ->
head:term ->
ty:term ->
q:option qualifier ->
res:comp_st ->
arg:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars_comp res) } ->
ghost_typing g head (tm_arrow (as_binder ty) q res) ->
non_informative (push_binding g x ppname_default ty)
(open_comp_with res (null_var x)) ->
ghost_typing g arg ty ->
st_typing g (wr res (Tm_STApp {head; arg_qual=q; arg}))
(open_comp_with res arg)
| T_Return:
g:env ->
c:ctag ->
use_eq:bool ->
u:universe ->
t:term ->
e:term ->
post:term ->
x:var { None? (lookup g x) /\ ~ (x `Set.mem` freevars post) } ->
universe_of g t u ->
typing g e (eff_of_ctag c) t ->
tot_typing (push_binding g x ppname_default t) (open_term post x) tm_vprop ->
st_typing g (wtag (Some c) (Tm_Return { expected_type=tm_unknown; insert_eq=use_eq; term=e }))
(comp_return c use_eq u t e post x)
| T_Lift:
g:env ->
e:st_term ->
c1:comp_st ->
c2:comp_st ->
st_typing g e c1 ->
lift_comp g c1 c2 ->
st_typing g e c2
| T_Bind:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp_st ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
c:comp ->
st_typing g e1 c1 ->
tot_typing g (comp_res c1) (tm_type (comp_u c1)) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
bind_comp g x c1 c2 c ->
st_typing g (wr c (Tm_Bind { binder=b; head=e1; body=e2 })) c
| T_BindFn:
g:env ->
e1:st_term ->
e2:st_term ->
c1:comp { C_Tot? c1 } ->
c2:comp_st ->
b:binder { b.binder_ty == comp_res c1 }->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st e2) } ->
st_typing g e1 c1 ->
u:Ghost.erased universe ->
tot_typing g (comp_res c1) (tm_type u) -> //type-correctness; would be nice to derive it instead
st_typing (push_binding g x ppname_default (comp_res c1)) (open_st_term_nv e2 (b.binder_ppname, x)) c2 ->
comp_typing_u g c2 ->
st_typing g (wr c2 (Tm_Bind { binder=b; head=e1; body=e2 })) c2
| T_If:
g:env ->
b:term ->
e1:st_term ->
e2:st_term ->
c:comp_st ->
(* This is a little weird, we introduce a name hyp in the environment,
but the branches are not allowed to use it (except perhaps in a silent way for proofs).
Maybe more natural to have one free var in e1,e2 and to open it with hyp?
But that's also a change to FStar.Reflection.Typing
*)
hyp:var { None? (lookup g hyp) /\
~(hyp `Set.mem` (freevars_st e1 `Set.union` freevars_st e2))
} ->
tot_typing g b tm_bool ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_true)) e1 c ->
st_typing (push_binding g hyp ppname_default (mk_eq2 u0 tm_bool b tm_false)) e2 c ->
my_erased (comp_typing_u g c) ->
st_typing g (wr c (Tm_If { b; then_=e1; else_=e2; post=None })) c
| T_Match :
g:env ->
sc_u:universe ->
sc_ty:typ ->
sc:term ->
tot_typing g sc_ty (tm_type sc_u) ->
tot_typing g sc sc_ty ->
c:comp_st ->
my_erased (comp_typing_u g c) ->
brs:list (pattern & st_term) ->
brs_typing g sc_u sc_ty sc brs c ->
pats_complete g sc sc_ty (L.map (fun (p, _) -> elab_pat p) brs) ->
st_typing g (wr c (Tm_Match {sc; returns_=None; brs})) c
| T_Frame:
g:env ->
e:st_term ->
c:comp_st ->
frame:term ->
tot_typing g frame tm_vprop ->
st_typing g e c ->
st_typing g e (add_frame c frame)
| T_Equiv:
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_equiv g c c' ->
st_typing g e c'
| T_Sub :
g:env ->
e:st_term ->
c:comp ->
c':comp ->
st_typing g e c ->
st_sub g c c' ->
st_typing g e c'
| T_IntroPure:
g:env ->
p:term ->
tot_typing g p tm_prop ->
prop_validity g p ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroPure { p }))
(comp_intro_pure p)
| T_ElimExists:
g:env ->
u:universe ->
t:term ->
p:term ->
x:var { None? (lookup g x) } ->
tot_typing g t (tm_type u) ->
tot_typing g (tm_exists_sl u (as_binder t) p) tm_vprop ->
st_typing g (wtag (Some STT_Ghost) (Tm_ElimExists { p = tm_exists_sl u (as_binder t) p }))
(comp_elim_exists u t p (v_as_nv x))
| T_IntroExists:
g:env ->
u:universe ->
b:binder ->
p:term ->
e:term ->
tot_typing g b.binder_ty (tm_type u) ->
tot_typing g (tm_exists_sl u b p) tm_vprop ->
ghost_typing g e b.binder_ty ->
st_typing g (wtag (Some STT_Ghost) (Tm_IntroExists { p = tm_exists_sl u b p;
witnesses= [e] }))
(comp_intro_exists u b p e)
| T_While:
g:env ->
inv:term ->
cond:st_term ->
body:st_term ->
tot_typing g (tm_exists_sl u0 (as_binder tm_bool) inv) tm_vprop ->
st_typing g cond (comp_while_cond ppname_default inv) ->
st_typing g body (comp_while_body ppname_default inv) ->
st_typing g (wtag (Some STT) (Tm_While { invariant = inv;
condition = cond;
body;
condition_var = ppname_default } ))
(comp_while ppname_default inv)
| T_Par:
g:env ->
eL:st_term ->
cL:comp { C_ST? cL } ->
eR:st_term ->
cR:comp { C_ST? cR /\ comp_u cL == comp_u cR } ->
x:var { None? (lookup g x) } ->
// TODO: can comp_typing come from inversion of eL : cL and eR : cR?
comp_typing_u g cL ->
comp_typing_u g cR ->
st_typing g eL cL ->
st_typing g eR cR ->
st_typing g (wr cL (Tm_Par { pre1=tm_unknown; body1=eL; post1=tm_unknown;
pre2=tm_unknown; body2=eR; post2=tm_unknown }))
(comp_par cL cR x)
| T_WithLocal:
g:env ->
binder_ppname:ppname ->
init:term ->
body:st_term ->
init_t:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g init init_t ->
universe_of g init_t u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_ref init_t))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_body x init_t init c) ->
st_typing g (wr c (Tm_WithLocal { binder = mk_binder_ppname (mk_ref init_t) binder_ppname; initializer=init; body } )) c
| T_WithLocalArray:
g:env ->
binder_ppname:ppname ->
initializer:term ->
length:term ->
body:st_term ->
a:term ->
c:comp { C_ST? c } ->
x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) } ->
tot_typing g initializer a ->
tot_typing g length tm_szt ->
universe_of g a u0 ->
comp_typing_u g c ->
st_typing (push_binding g x ppname_default (mk_array a))
(open_st_term_nv body (v_as_nv x))
(comp_withlocal_array_body x a initializer length c) ->
st_typing g (wr c (Tm_WithLocalArray { binder = mk_binder_ppname (mk_array a) binder_ppname; initializer; length; body } )) c
| T_Rewrite:
g:env ->
p:vprop ->
q:vprop ->
tot_typing g p tm_vprop ->
vprop_equiv g p q ->
st_typing g (wtag (Some STT_Ghost) (Tm_Rewrite { t1=p; t2=q } ))
(comp_rewrite p q)
| T_Admit:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
st_typing g (wtag (Some c) (Tm_Admit { ctag=c; u=s.u; typ=s.res; post=None }))
(comp_admit c s)
| T_Unreachable:
g:env ->
s:st_comp ->
c:ctag ->
st_comp_typing g s ->
prop_validity g (tm_fstar (`False) FStar.Range.range_0) ->
st_typing g (wtag (Some c) Tm_Unreachable) (comp_admit c s)
(* This limits the body to be atomic, rather than also allowing unobservable *)
| T_WithInv:
g:env ->
inv_tm : term ->
inv_vprop : vprop ->
inv_vprop_typing : tot_typing g inv_vprop tm_vprop -> // could be ghost
inv_typing : tot_typing g inv_tm (tm_inv inv_vprop) ->
body : st_term ->
c : comp_st { C_STAtomic? c } ->
body_typing : st_typing g body (add_frame c inv_vprop) ->
inv_disjointness_token:prop_validity g (inv_disjointness inv_vprop (comp_inames c) inv_tm) ->
st_typing g (wtag (Some STT_Atomic) (Tm_WithInv {name=inv_tm; body; returns_inv=None}))
(add_iname_at_least_unobservable c inv_vprop inv_tm)
and pats_complete : env -> term -> typ -> list R.pattern -> Type0 =
// just check the elaborated term with the core tc
| PC_Elab :
g:env ->
sc:term ->
sc_ty:typ ->
pats:list R.pattern ->
bnds:list (list R.binding) ->
RT.match_is_complete (elab_env g) (elab_term sc) (elab_term sc_ty) pats bnds ->
pats_complete g sc sc_ty pats
and brs_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) : list branch -> comp_st -> Type =
| TBRS_0 :
c:comp_st ->
brs_typing g sc_u sc_ty sc [] c
| TBRS_1 :
c:comp_st ->
p:pattern ->
e:st_term ->
br_typing g sc_u sc_ty sc p e c ->
rest:list branch ->
brs_typing g sc_u sc_ty sc rest c ->
brs_typing g sc_u sc_ty sc ((p,e)::rest) c
and br_typing : env -> universe -> typ -> term -> pattern -> st_term -> comp_st -> Type =
| TBR :
g:env ->
sc_u : universe ->
sc_ty : typ ->
sc:term ->
c:comp_st ->
p:pattern ->
e:st_term ->
bs:(list R.binding){RT.bindings_ok_for_pat (fstar_env g) bs (elab_pat p)} ->
_ : squash (all_fresh g (L.map readback_binding bs)) ->
_ : squash (Some? (RT.elaborate_pat (elab_pat p) bs)) ->
_ : squash (~(R.Tv_Unknown? (R.inspect_ln (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs)))))) -> // should be provable from defn of elaborate_pat
hyp:var {freshv (push_bindings g (L.map readback_binding bs)) hyp} ->
st_typing (
push_binding (push_bindings g (L.map readback_binding bs))
hyp
({name=Sealed.seal "branch equality"; range=FStar.Range.range_0})
(mk_sq_eq2 sc_u sc_ty sc (tm_fstar (fst (Some?.v (RT.elaborate_pat (elab_pat p) bs))) Range.range_0))
) e c ->
br_typing g sc_u sc_ty sc p (close_st_term_n e (L.map fst (L.map readback_binding bs))) c
(* this requires some metatheory on FStar.Reflection.Typing
G |- fv e : t
G(fv) = t0 -> t1
G |- e : t0
G |- t1 <: t
G |- e0 e1 : t ==>
exists t0 t1.
G |- e0 : t0 -> t1 /\
G |- e1 : t0
*)
let star_typing_inversion_l (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t0 tm_vprop
= admit ()
let star_typing_inversion_r (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: tot_typing g t1 tm_vprop
= admit ()
let star_typing_inversion (#g:_) (#t0 #t1:term) (d:tot_typing g (tm_star t0 t1) tm_vprop)
: GTot (tot_typing g t0 tm_vprop & tot_typing g t1 tm_vprop)
= admit ()
let vprop_eq_typing_inversion g (t0 t1:term)
(token:FTB.equiv_token (elab_env g)
(elab_term t0)
(elab_term t1))
: GTot (tot_typing g t0 tm_vprop &
tot_typing g t1 tm_vprop)
= admit ()
(* These I can easily prove *)
let star_typing (#g:_) (#t0 #t1:term)
(d0:tot_typing g t0 tm_vprop)
(d1:tot_typing g t1 tm_vprop)
: tot_typing g (tm_star t0 t1) tm_vprop
= admit ()
let emp_typing (#g:_)
: tot_typing g tm_emp tm_vprop
= admit ()
let fresh_wrt (x:var) (g:env) (vars:_) =
None? (lookup g x) /\ ~(x `Set.mem` vars)
let effect_annot_typing (g:env) (e:effect_annot) =
match e with
| EffectAnnotAtomic { opens } ->
tot_typing g opens tm_inames
| _ ->
unit
noeq
type post_hint_t = {
g:env;
effect_annot:effect_annot;
effect_annot_typing:effect_annot_typing g effect_annot;
ret_ty:term;
u:universe;
ty_typing:universe_of g ret_ty u;
post:term;
x:(x:var { fresh_wrt x g (freevars post) });
post_typing_src:tot_typing (push_binding g x ppname_default ret_ty) (open_term post x) tm_vprop;
post_typing:
FStar.Ghost.erased (RT.tot_typing (elab_env g)
(RT.(mk_abs (elab_term ret_ty) T.Q_Explicit (elab_term post)))
(RT.mk_arrow (elab_term ret_ty) T.Q_Explicit (elab_term tm_vprop)))
}
let post_hint_for_env_p (g:env) (p:post_hint_t) = g `env_extends` p.g
let post_hint_for_env_extends (g:env) (p:post_hint_t) (x:var { ~ (Set.mem x (dom g)) }) (b:typ)
: Lemma
(requires post_hint_for_env_p g p)
(ensures post_hint_for_env_p (push_binding g x ppname_default b) p)
[SMTPat (post_hint_for_env_p (push_binding g x ppname_default b) p)]
= env_extends_push g x ppname_default b
let post_hint_for_env (g:env) = p:post_hint_t { post_hint_for_env_p g p }
let post_hint_opt (g:env) = o:option post_hint_t { None? o \/ post_hint_for_env_p g (Some?.v o) }
noeq
type post_hint_typing_t (g:env) (p:post_hint_t) (x:var { ~ (Set.mem x (dom g)) }) = {
effect_annot_typing:effect_annot_typing g p.effect_annot;
ty_typing:universe_of g p.ret_ty p.u;
post_typing:tot_typing (push_binding g x ppname_default p.ret_ty) (open_term p.post x) tm_vprop
} | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "FTB"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
p: Pulse.Typing.post_hint_for_env g ->
x:
Pulse.Syntax.Base.var
{Pulse.Typing.fresh_wrt x g (Pulse.Syntax.Naming.freevars (Mkpost_hint_t?.post p))}
-> Pulse.Typing.post_hint_typing_t g p x | Prims.Tot | [
"total"
] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Typing.post_hint_for_env",
"Pulse.Syntax.Base.var",
"Pulse.Typing.fresh_wrt",
"Pulse.Syntax.Naming.freevars",
"Pulse.Typing.__proj__Mkpost_hint_t__item__post",
"Pulse.Typing.Mkpost_hint_typing_t",
"Pulse.RuntimeUtils.magic",
"Pulse.Typing.universe_of",
"Pulse.Typing.__proj__Mkpost_hint_t__item__ret_ty",
"Pulse.Typing.__proj__Mkpost_hint_t__item__u",
"Pulse.Typing.tot_typing",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_term",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.effect_annot_typing",
"Pulse.Typing.__proj__Mkpost_hint_t__item__effect_annot",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.tm_inames",
"Pulse.Syntax.Base.effect_annot",
"Pulse.Typing.post_hint_typing_t"
] | [] | false | false | false | false | false | let post_hint_typing (g: env) (p: post_hint_for_env g) (x: var{fresh_wrt x g (freevars p.post)})
: post_hint_typing_t g p x =
| let effect_annot_typing:effect_annot_typing g p.effect_annot =
match p.effect_annot with
| EffectAnnotAtomic { opens = opens } ->
let opens_typing:tot_typing g opens tm_inames = RU.magic () in
opens_typing
| _ -> ()
in
{ effect_annot_typing = effect_annot_typing; ty_typing = RU.magic (); post_typing = RU.magic () } | false |
Benton2004.fst | Benton2004.reify_raw_computation | val reify_raw_computation (f: raw_computation) : reified_raw_computation | val reify_raw_computation (f: raw_computation) : reified_raw_computation | let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 54,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.raw_computation -> Benton2004.reified_raw_computation | Prims.Tot | [
"total"
] | [] | [
"Benton2004.raw_computation",
"Prims.nat",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Benton2004.reified_raw_computation"
] | [] | false | false | false | true | false | let reify_raw_computation (f: raw_computation) : reified_raw_computation =
| fun n h -> reify (f n) h | false |
Benton2004.fst | Benton2004.fuel_monotonic | val fuel_monotonic (f: reified_raw_computation) : GTot Type0 | val fuel_monotonic (f: reified_raw_computation) : GTot Type0 | let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 36,
"start_col": 0,
"start_line": 28
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.reified_raw_computation -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.reified_raw_computation",
"Prims.l_Forall",
"Prims.nat",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.bool",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.tuple2",
"Prims.has_type"
] | [] | false | false | false | false | true | let fuel_monotonic (f: reified_raw_computation) : GTot Type0 =
| forall (fuel: nat) (fuel': nat) h. {:pattern has_type fuel nat; has_type fuel' nat; has_type h heap}
(fuel <= fuel' /\ fst (f fuel h) == true) ==> (f fuel' h == f fuel h) | false |
Benton2004.fst | Benton2004.reified_exp | val reified_exp (t: Type0) : Tot Type0 | val reified_exp (t: Type0) : Tot Type0 | let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h)) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 120,
"end_line": 69,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.heap",
"FStar.Pervasives.Native.tuple2",
"Prims.l_True",
"Prims.eq2",
"FStar.Pervasives.Native.snd"
] | [] | false | false | false | true | true | let reified_exp (t: Type0) : Tot Type0 =
| h: heap -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h)) | false |
Benton2004.fst | Benton2004.is_per | val is_per (#t: Type0) (f: rel t) : GTot Type0 | val is_per (#t: Type0) (f: rel t) : GTot Type0 | let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 184,
"start_col": 0,
"start_line": 182
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.Aux.rel t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.Aux.rel",
"Prims.l_and",
"Prims.l_Forall",
"Prims.l_iff",
"Prims.l_imp"
] | [] | false | false | false | false | true | let is_per (#t: Type0) (f: rel t) : GTot Type0 =
| (forall x1 x2. f x1 x2 <==> f x2 x1) /\ (forall x1 x2 x3. (f x1 x2 /\ f x2 x3) ==> f x1 x3) | false |
Benton2004.fst | Benton2004.included | val included (#t: Type0) (r1 r2: rel t) : GTot Type0 | val included (#t: Type0) (r1 r2: rel t) : GTot Type0 | let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 180,
"start_col": 0,
"start_line": 176
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r1: Benton2004.Aux.rel t -> r2: Benton2004.Aux.rel t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.Aux.rel",
"Prims.l_Forall",
"Prims.l_imp",
"Benton2004.Aux.holds"
] | [] | false | false | false | false | true | let included (#t: Type0) (r1 r2: rel t) : GTot Type0 =
| forall x y. holds r1 x y ==> holds r2 x y | false |
Benton2004.fst | Benton2004.const | val const (#t: Type0) (v: t) : Tot (exp t) | val const (#t: Type0) (v: t) : Tot (exp t) | let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 75,
"start_col": 0,
"start_line": 75
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: t -> Benton2004.exp t | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Benton2004.exp"
] | [] | false | false | false | true | false | let const (#t: Type0) (v: t) : Tot (exp t) =
| fun _ -> v | false |
Benton2004.fst | Benton2004.terminates_on | val terminates_on (f: reified_computation) (h: heap) : GTot Type0 | val terminates_on (f: reified_computation) (h: heap) : GTot Type0 | let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 174,
"start_col": 0,
"start_line": 173
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.reified_computation -> h: FStar.DM4F.Heap.IntStoreFixed.heap -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.reified_computation",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_Exists",
"Prims.nat",
"Prims.eq2",
"Prims.bool",
"FStar.Pervasives.Native.fst"
] | [] | false | false | false | false | true | let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
| exists fuel. fst (f fuel h) == true | false |
Benton2004.fst | Benton2004.reify_exp | val reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) | val reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) | let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 73,
"start_col": 0,
"start_line": 71
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Benton2004.exp t -> Prims.GTot (Benton2004.reified_exp t) | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.exp",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"Prims.l_True",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"FStar.Pervasives.Native.Mktuple2",
"Benton2004.reified_exp"
] | [] | false | false | false | false | false | let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
| let f = reify (e ()) in
f | false |
Benton2004.fst | Benton2004.reify_computation | val reify_computation (c: computation) : GTot reified_computation | val reify_computation (c: computation) : GTot reified_computation | let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 60,
"start_col": 0,
"start_line": 59
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) }) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Benton2004.computation -> Prims.GTot Benton2004.reified_computation | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.computation",
"Benton2004.reify_raw_computation",
"Benton2004.reified_computation"
] | [] | false | false | false | false | false | let reify_computation (c: computation) : GTot reified_computation =
| reify_raw_computation c | false |
Benton2004.fst | Benton2004.intersect | val intersect (#t: Type0) (ns1 ns2: rel t) : GTot (rel t) | val intersect (#t: Type0) (ns1 ns2: rel t) : GTot (rel t) | let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 219,
"start_col": 0,
"start_line": 213
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ns1: Benton2004.Aux.rel t -> ns2: Benton2004.Aux.rel t -> Prims.GTot (Benton2004.Aux.rel t) | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.Aux.rel",
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Prims.l_iff",
"Benton2004.Aux.holds",
"Benton2004.Aux.holds_equiv",
"Prims.logical",
"Prims.l_and"
] | [] | false | false | false | false | false | let intersect (#t: Type0) (ns1 ns2: rel t) : GTot (rel t) =
| let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f | false |
Benton2004.fst | Benton2004.evar | val evar (x: var) : Tot (exp int) | val evar (x: var) : Tot (exp int) | let evar (x: var) : Tot (exp int) = fun _ -> read x | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 77,
"start_col": 0,
"start_line": 77
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Benton2004.var -> Benton2004.exp Prims.int | Prims.Tot | [
"total"
] | [] | [
"Benton2004.var",
"Prims.unit",
"FStar.DM4F.IntStoreFixed.read",
"Prims.int",
"Benton2004.exp"
] | [] | false | false | false | true | false | let evar (x: var) : Tot (exp int) =
| fun _ -> read x | false |
Benton2004.fst | Benton2004.skip | val skip:computation | val skip:computation | let skip : computation = let f (fuel: nat) : ISNull bool = true in f | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 68,
"end_line": 62,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Benton2004.computation | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.bool"
] | [] | false | false | false | true | false | let skip:computation =
| let f (fuel: nat) : ISNull bool = true in
f | false |
Benton2004.fst | Benton2004.while_raw | val while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) | val while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) | let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 129,
"start_col": 0,
"start_line": 120
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Benton2004.exp Prims.bool -> c: Benton2004.computation -> fuel: Prims.nat
-> FStar.DM4F.IntStoreFixed.ISNull Prims.bool | FStar.DM4F.IntStoreFixed.ISNull | [
""
] | [] | [
"Benton2004.exp",
"Prims.bool",
"Benton2004.computation",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Benton2004.while_raw",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | true | false | false | false | let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
| if b ()
then if c fuel then if fuel = 0 then false else while_raw b c (fuel - 1) else false
else true | false |
Benton2004.fst | Benton2004.eval_equiv_reified | val eval_equiv_reified (#t: Type0) (p: sttype) (e: nstype t) (f f': reified_exp t) : GTot Type0 | val eval_equiv_reified (#t: Type0) (p: sttype) (e: nstype t) (f f': reified_exp t) : GTot Type0 | let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s')) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 258,
"start_col": 0,
"start_line": 251
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Benton2004.sttype ->
e: Benton2004.nstype t ->
f: Benton2004.reified_exp t ->
f': Benton2004.reified_exp t
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.sttype",
"Benton2004.nstype",
"Benton2004.reified_exp",
"Prims.l_Forall",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_imp",
"Benton2004.Aux.holds",
"FStar.Pervasives.Native.fst"
] | [] | false | false | false | false | true | let eval_equiv_reified (#t: Type0) (p: sttype) (e: nstype t) (f f': reified_exp t) : GTot Type0 =
| forall (s: heap) (s': heap). holds p s s' ==> holds e (fst (f s)) (fst (f' s')) | false |
Benton2004.fst | Benton2004.interpolable | val interpolable (#t: Type0) (f: rel t) : GTot Type0 | val interpolable (#t: Type0) (f: rel t) : GTot Type0 | let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 67,
"end_line": 236,
"start_col": 0,
"start_line": 232
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.Aux.rel t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.Aux.rel",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_Exists",
"Prims.l_and"
] | [] | false | false | false | false | true | let interpolable (#t: Type0) (f: rel t) : GTot Type0 =
| forall (x1: t) (x3: t). f x1 x3 ==> (exists x2. f x1 x2 /\ f x2 x3) | false |
Benton2004.fst | Benton2004.terminates_equiv_reified | val terminates_equiv_reified (p: sttype) (f f': reified_computation) : GTot Type0 | val terminates_equiv_reified (p: sttype) (f f': reified_computation) : GTot Type0 | let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s') | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 77,
"end_line": 274,
"start_col": 0,
"start_line": 270
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Benton2004.sttype -> f: Benton2004.reified_computation -> f': Benton2004.reified_computation
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.sttype",
"Benton2004.reified_computation",
"Prims.l_Forall",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_imp",
"Benton2004.Aux.holds",
"Prims.l_iff",
"Benton2004.terminates_on"
] | [] | false | false | false | false | true | let terminates_equiv_reified (p: sttype) (f f': reified_computation) : GTot Type0 =
| forall s s'. holds p s s' ==> (terminates_on f s <==> terminates_on f' s') | false |
Benton2004.fst | Benton2004.assign | val assign (r: var) (n: exp int) : Tot computation | val assign (r: var) (n: exp int) : Tot computation | let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 85,
"start_col": 0,
"start_line": 79
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Benton2004.var -> n: Benton2004.exp Prims.int -> Benton2004.computation | Prims.Tot | [
"total"
] | [] | [
"Benton2004.var",
"Benton2004.exp",
"Prims.int",
"Prims.nat",
"Prims.bool",
"Prims.unit",
"FStar.DM4F.IntStoreFixed.write",
"Benton2004.computation"
] | [] | false | false | false | true | false | let assign (r: var) (n: exp int) : Tot computation =
| let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g | false |
Benton2004.fst | Benton2004.eval_equiv | val eval_equiv (#t: Type0) (p: sttype) (e: nstype t) (f f': exp t) : GTot Type0 | val eval_equiv (#t: Type0) (p: sttype) (e: nstype t) (f f': exp t) : GTot Type0 | let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f' | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 268,
"start_col": 0,
"start_line": 260
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s')) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Benton2004.sttype -> e: Benton2004.nstype t -> f: Benton2004.exp t -> f': Benton2004.exp t
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.sttype",
"Benton2004.nstype",
"Benton2004.exp",
"Benton2004.eval_equiv_reified",
"Benton2004.reified_exp",
"Benton2004.reify_exp"
] | [] | false | false | false | false | true | let eval_equiv (#t: Type0) (p: sttype) (e: nstype t) (f f': exp t) : GTot Type0 =
| let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f' | false |
Benton2004.fst | Benton2004.flip | val flip (#t: Type0) (r: rel t) : Tot (rel t) | val flip (#t: Type0) (r: rel t) : Tot (rel t) | let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 304,
"start_col": 0,
"start_line": 302
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Benton2004.Aux.rel t -> Benton2004.Aux.rel t | Prims.Tot | [
"total"
] | [] | [
"Benton2004.Aux.rel",
"Benton2004.Aux.holds"
] | [] | false | false | false | true | false | let flip (#t: Type0) (r: rel t) : Tot (rel t) =
| let g x y = holds r y x in
g | false |
Benton2004.fst | Benton2004.exec_equiv_reified | val exec_equiv_reified (p p': sttype) (f f': reified_computation) : GTot Type0 | val exec_equiv_reified (p p': sttype) (f f': reified_computation) : GTot Type0 | let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s'))) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 122,
"end_line": 290,
"start_col": 0,
"start_line": 284
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Benton2004.sttype ->
p': Benton2004.sttype ->
f: Benton2004.reified_computation ->
f': Benton2004.reified_computation
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.sttype",
"Benton2004.reified_computation",
"Prims.l_and",
"Benton2004.terminates_equiv_reified",
"Prims.l_Forall",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.nat",
"Prims.l_imp",
"Benton2004.Aux.holds",
"Prims.eq2",
"Prims.bool",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.snd"
] | [] | false | false | false | false | true | let exec_equiv_reified (p p': sttype) (f f': reified_computation) : GTot Type0 =
| terminates_equiv_reified p f f' /\
(forall (s: heap) (s': heap) (fuel: nat).
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==>
holds p' (snd (f fuel s)) (snd (f' fuel s'))) | false |
Benton2004.fst | Benton2004.while | val while (b: exp bool) (c: computation) : Tot computation | val while (b: exp bool) (c: computation) : Tot computation | let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 169,
"start_col": 0,
"start_line": 165
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Benton2004.exp Prims.bool -> c: Benton2004.computation -> Benton2004.computation | Prims.Tot | [
"total"
] | [] | [
"Benton2004.exp",
"Prims.bool",
"Benton2004.computation",
"Prims.unit",
"Benton2004.fuel_monotonic_while",
"Benton2004.reified_raw_computation",
"Benton2004.reify_raw_computation",
"Benton2004.raw_computation",
"Benton2004.while_raw"
] | [] | false | false | false | true | false | let while (b: exp bool) (c: computation) : Tot computation =
| let f:raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f | false |
Benton2004.fst | Benton2004.exec_equiv | val exec_equiv (p p': sttype) (f f': computation) : GTot Type0 | val exec_equiv (p p': sttype) (f f': computation) : GTot Type0 | let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f' | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 298,
"start_col": 0,
"start_line": 292
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s'))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Benton2004.sttype ->
p': Benton2004.sttype ->
f: Benton2004.computation ->
f': Benton2004.computation
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"Benton2004.sttype",
"Benton2004.computation",
"Benton2004.exec_equiv_reified",
"Benton2004.reified_computation",
"Benton2004.reify_computation"
] | [] | false | false | false | false | true | let exec_equiv (p p': sttype) (f f': computation) : GTot Type0 =
| let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f' | false |
Benton2004.fst | Benton2004.is_per_holds_sym | val is_per_holds_sym (#t: Type0) (p: rel t) (s s': t)
: Lemma (requires (is_per p)) (ensures (holds p s s' <==> holds p s' s)) [SMTPat (holds p s s')] | val is_per_holds_sym (#t: Type0) (p: rel t) (s s': t)
: Lemma (requires (is_per p)) (ensures (holds p s s' <==> holds p s' s)) [SMTPat (holds p s s')] | let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 195,
"start_col": 0,
"start_line": 186
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Benton2004.Aux.rel t -> s: t -> s': t
-> FStar.Pervasives.Lemma (requires Benton2004.is_per p)
(ensures Benton2004.Aux.holds p s s' <==> Benton2004.Aux.holds p s' s)
[SMTPat (Benton2004.Aux.holds p s s')] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.Aux.rel",
"Benton2004.Aux.holds_equiv",
"Prims.unit",
"Benton2004.is_per",
"Prims.squash",
"Prims.l_iff",
"Benton2004.Aux.holds",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let is_per_holds_sym (#t: Type0) (p: rel t) (s s': t)
: Lemma (requires (is_per p)) (ensures (holds p s s' <==> holds p s' s)) [SMTPat (holds p s s')] =
| holds_equiv p s s';
holds_equiv p s' s | false |
Benton2004.fst | Benton2004.per_holds_trans | val per_holds_trans (#t: Type0) (f: rel t) (x1 x2 x3: t)
: Lemma (requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[
SMTPatOr
[
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)]
]
] | val per_holds_trans (#t: Type0) (f: rel t) (x1 x2 x3: t)
: Lemma (requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[
SMTPatOr
[
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)]
]
] | let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3 | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 211,
"start_col": 0,
"start_line": 197
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.Aux.rel t -> x1: t -> x2: t -> x3: t
-> FStar.Pervasives.Lemma
(requires Benton2004.is_per f /\ Benton2004.Aux.holds f x1 x2 /\ Benton2004.Aux.holds f x2 x3)
(ensures Benton2004.Aux.holds f x1 x3)
[
SMTPatOr [
[SMTPat (Benton2004.Aux.holds f x1 x2); SMTPat (Benton2004.Aux.holds f x2 x3)];
[SMTPat (Benton2004.Aux.holds f x1 x2); SMTPat (Benton2004.Aux.holds f x1 x3)];
[SMTPat (Benton2004.Aux.holds f x2 x3); SMTPat (Benton2004.Aux.holds f x1 x3)]
]
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.Aux.rel",
"Benton2004.Aux.holds_equiv",
"Prims.unit",
"Prims.l_and",
"Benton2004.is_per",
"Benton2004.Aux.holds",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat_or",
"Prims.list",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let per_holds_trans (#t: Type0) (f: rel t) (x1 x2 x3: t)
: Lemma (requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[
SMTPatOr
[
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)]
]
] =
| holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3 | false |
Benton2004.fst | Benton2004.interpolable_elim | val interpolable_elim (#t: Type0) (f: rel t) (x1 x3: t)
: Lemma (requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2. holds f x1 x2 /\ holds f x2 x3)) | val interpolable_elim (#t: Type0) (f: rel t) (x1 x3: t)
: Lemma (requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2. holds f x1 x2 /\ holds f x2 x3)) | let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 245,
"start_col": 0,
"start_line": 238
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Benton2004.Aux.rel t -> x1: t -> x3: t
-> FStar.Pervasives.Lemma (requires Benton2004.interpolable f /\ Benton2004.Aux.holds f x1 x3)
(ensures exists (x2: t). Benton2004.Aux.holds f x1 x2 /\ Benton2004.Aux.holds f x2 x3) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.Aux.rel",
"FStar.Classical.forall_intro_2",
"Prims.l_iff",
"Benton2004.Aux.holds",
"Benton2004.Aux.holds_equiv",
"Prims.unit",
"Prims.l_and",
"Benton2004.interpolable",
"Prims.squash",
"Prims.l_Exists",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let interpolable_elim (#t: Type0) (f: rel t) (x1 x3: t)
: Lemma (requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2. holds f x1 x2 /\ holds f x2 x3)) =
| Classical.forall_intro_2 (holds_equiv f) | false |
Benton2004.fst | Benton2004.holds_intersect | val holds_intersect (#t: Type0) (ns1 ns2: rel t) (x y: t)
: Lemma (holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)] | val holds_intersect (#t: Type0) (ns1 ns2: rel t) (x y: t)
: Lemma (holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)] | let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 228,
"start_col": 0,
"start_line": 221
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ns1: Benton2004.Aux.rel t -> ns2: Benton2004.Aux.rel t -> x: t -> y: t
-> FStar.Pervasives.Lemma
(ensures
Benton2004.Aux.holds (Benton2004.intersect ns1 ns2) x y <==>
Benton2004.Aux.holds ns1 x y /\ Benton2004.Aux.holds ns2 x y)
[SMTPat (Benton2004.Aux.holds (Benton2004.intersect ns1 ns2) x y)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.Aux.rel",
"Benton2004.Aux.holds_equiv",
"Benton2004.intersect",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Benton2004.Aux.holds",
"Prims.l_and",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_intersect (#t: Type0) (ns1 ns2: rel t) (x y: t)
: Lemma (holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)] =
| holds_equiv (intersect ns1 ns2) x y | false |
Benton2004.fst | Benton2004.holds_flip' | val holds_flip' (#t: Type0) (r: rel t) (x y: _)
: Lemma (ensures (holds (flip r) x y <==> holds r y x)) [SMTPat (holds (flip r) x y)] | val holds_flip' (#t: Type0) (r: rel t) (x y: _)
: Lemma (ensures (holds (flip r) x y <==> holds r y x)) [SMTPat (holds (flip r) x y)] | let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 313,
"start_col": 0,
"start_line": 310
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Benton2004.Aux.rel t -> x: t -> y: t
-> FStar.Pervasives.Lemma
(ensures Benton2004.Aux.holds (Benton2004.flip r) x y <==> Benton2004.Aux.holds r y x)
[SMTPat (Benton2004.Aux.holds (Benton2004.flip r) x y)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.Aux.rel",
"Benton2004.holds_flip",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Benton2004.Aux.holds",
"Benton2004.flip",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let holds_flip' (#t: Type0) (r: rel t) x y
: Lemma (ensures (holds (flip r) x y <==> holds r y x)) [SMTPat (holds (flip r) x y)] =
| holds_flip r | false |
Benton2004.fst | Benton2004.holds_flip | val holds_flip (#t: Type0) (r: rel t) : Lemma (forall x y. holds (flip r) x y <==> holds r y x) | val holds_flip (#t: Type0) (r: rel t) : Lemma (forall x y. holds (flip r) x y <==> holds r y x) | let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r)) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 308,
"start_col": 0,
"start_line": 306
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Benton2004.Aux.rel t
-> FStar.Pervasives.Lemma
(ensures
forall (x: t) (y: t).
Benton2004.Aux.holds (Benton2004.flip r) x y <==> Benton2004.Aux.holds r y x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.Aux.rel",
"FStar.Classical.forall_intro_2",
"Prims.l_iff",
"Benton2004.Aux.holds",
"Benton2004.flip",
"Benton2004.Aux.holds_equiv",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_Forall",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let holds_flip (#t: Type0) (r: rel t) : Lemma (forall x y. holds (flip r) x y <==> holds r y x) =
| Classical.forall_intro_2 (holds_equiv (flip r)) | false |
Benton2004.fst | Benton2004.eval_equiv_flip | val eval_equiv_flip (#t: Type0) (p: sttype) (e: nstype t) (f f': exp t)
: Lemma (eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)] | val eval_equiv_flip (#t: Type0) (p: sttype) (e: nstype t) (f f': exp t)
: Lemma (eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)] | let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 324,
"start_col": 0,
"start_line": 315
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Benton2004.sttype -> e: Benton2004.nstype t -> f: Benton2004.exp t -> f': Benton2004.exp t
-> FStar.Pervasives.Lemma
(ensures
Benton2004.eval_equiv (Benton2004.flip p) (Benton2004.flip e) f' f <==>
Benton2004.eval_equiv p e f f')
[SMTPat (Benton2004.eval_equiv (Benton2004.flip p) (Benton2004.flip e) f' f)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.nstype",
"Benton2004.exp",
"Benton2004.holds_flip",
"Prims.unit",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Benton2004.eval_equiv",
"Benton2004.flip",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let eval_equiv_flip (#t: Type0) (p: sttype) (e: nstype t) (f f': exp t)
: Lemma (eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)] =
| holds_flip p;
holds_flip e | false |
Benton2004.fst | Benton2004.mention | val mention : x: a -> Prims.logical | let mention (#a:Type) (x:a) = True | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 829,
"start_col": 0,
"start_line": 829
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= ()
let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0)
// NOTE: this rule is NOT a consequence of d_su1 + d_seq + d_ctr
let d_su2
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq c skip) c))
[SMTPat (exec_equiv phi phi' (seq c skip) c)]
= ()
let d_assoc
(c1 c2 c3: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))]
= let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel)
let d_cc
(b: exp bool)
(c1 c2 c3: computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3
))
(ensures (
exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))
))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi' phi'' c3 c3)];
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
[SMTPat (exec_equiv phi' phi'' c3 c3); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
]]
= let fl = reify_computation (seq (ifthenelse b c1 c2) c3) in
let fr = reify_computation (ifthenelse b (seq c1 c3) (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel);
assert (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (seq (ifthenelse b c1 c2) c3))
#restart-solver
let d_lu1
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip)))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (ifthenelse b (seq c (while b c)) skip) in
let eb = reify_exp b in
let prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
assert (fr fuel s0 == fl fuel s1)
end else ()
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fst (fr fuel s0) == true /\ fl (fuel + 1) s0 == fr fuel s0))
= if fst (eb s0)
then begin
()
end else ()
in
let prf2'
(s0: heap)
(fuel: nat)
: Lemma
(ensures (fst (fr fuel s0) == true ==> fl (fuel + 1) s0 == fr fuel s0))
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf2'
#restart-solver
let d_lu2
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (while b (seq c (ifthenelse b c skip)))))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (while b (seq c (ifthenelse b c skip))) in
let eb = reify_exp b in
let rec prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
(decreases fuel)
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
if fst (eb s1)
then begin
let s2 = snd (fc (fuel - 1) s1) in
assert (fl fuel s0 == fl (fuel - 2) s2);
assert (fc fuel s1 == fc (fuel - 1) s1);
assert (fr fuel s0 == fr (fuel - 1) s2);
prf1 s2 (fuel - 2);
assert (fr (fuel - 1) s2 == fr (fuel - 2) s2)
end else ()
end else ()
in
let rec prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fl (fuel + fuel) s0 == fr fuel s0))
(decreases fuel)
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
if fst (eb s1)
then begin
let s2 = snd (fc fuel s1) in
assert (fr fuel s0 == fr (fuel - 1) s2);
prf2 s2 (fuel - 1);
assert (fl ((fuel - 1) + (fuel - 1)) s2 == fr (fuel - 1) s2);
assert (fl (fuel + fuel) s0 ==
fl ((fuel + fuel) - 1) s1);
assert (fl (fuel + fuel) s0 == fl (fuel - 1 + fuel - 1) s2)
end else begin
assert (fl (fuel + fuel) s0 == fr fuel s0)
end
end else ()
in
let prf1' (s0:heap) (fuel:nat) :Lemma (fst (fl fuel s0) == true ==> fr fuel s0 == fl fuel s0)
= Classical.move_requires (prf1 s0) fuel
in
let prf2' (s0:heap) (fuel:nat) :Lemma (fst (fr fuel s0) == true ==> fl (fuel + fuel) s0 == fr fuel s0)
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf1'; //AR: same pattern as in Pointer, see the comment there
Classical.forall_intro_2 prf2'
(* 3.2 Optimizing Transformations *)
(* Equivalent branches for conditional *)
(* FIXME: the following rule is WRONG, because the relations are not necessarily reflexive.
let d_bre
(c1 c2: computation)
(phi phi' : sttype)
(b: exp bool)
: Lemma
(requires (exec_equiv phi phi' c1 c2))
(ensures (exec_equiv phi phi' (ifthenelse b c1 c2) c1))
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_True",
"Prims.logical"
] | [] | false | false | false | true | true | let mention (#a: Type) (x: a) =
| True | false |
|
Hacl.Spec.SHA2.Equiv.fst | Hacl.Spec.SHA2.Equiv.load_ws_lemma_l | val load_ws_lemma_l:
#a:sha2_alg
-> #m:m_spec{is_supported a m}
-> b:multiblock_spec a m
-> j:nat{j < lanes a m} ->
Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) | val load_ws_lemma_l:
#a:sha2_alg
-> #m:m_spec{is_supported a m}
-> b:multiblock_spec a m
-> j:nat{j < lanes a m} ->
Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) | let load_ws_lemma_l #a #m b j =
let lp = Seq.index (ws_spec_v (load_ws b)) j in
let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in
let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) =
let l = lanes a m in
BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i;
assert (Seq.index rp i == BSeq.uint_from_bytes_be
(Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a)));
assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i);
Lemmas.transpose_ws_lemma_ij (load_blocks b) j i;
load_blocks_lemma_ij_subst #a #m b j i in
Classical.forall_intro aux;
eq_intro lp rp | {
"file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 416,
"start_col": 0,
"start_line": 401
} | module Hacl.Spec.SHA2.Equiv
open FStar.Mul
open Lib.IntTypes
open Lib.NTuple
open Lib.Sequence
open Lib.IntVector
open Lib.IntVector.Serialize
open Lib.LoopCombinators
open Spec.Hash.Definitions
open Hacl.Spec.SHA2.Vec
module Spec = Hacl.Spec.SHA2
module LSeq = Lib.Sequence
module BSeq = Lib.ByteSequence
module Lemmas = Hacl.Spec.SHA2.Lemmas
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let _Ch_lemma #a #m x y z :
Lemma (vec_v (_Ch #a #m x y z) ==
LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i]))
[SMTPat (_Ch x y z)]
=
LSeq.eq_intro (vec_v (_Ch #a #m x y z))
(LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i]))
let _Maj_lemma #a #m x y z :
Lemma (vec_v (_Maj #a #m x y z) ==
LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i]))
[SMTPat (_Maj x y z)]
=
LSeq.eq_intro (vec_v (_Maj #a #m x y z))
(LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i]))
let _Sigma0_lemma #a #m x :
Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x))
[SMTPat (_Sigma0 x)]
=
LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x))
let _Sigma1_lemma #a #m x :
Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x))
[SMTPat (_Sigma1 x)]
=
LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x))
let _sigma0_lemma #a #m x :
Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x))
[SMTPat (_sigma0 x)]
=
LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x))
let _sigma1_lemma #a #m x :
Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x))
[SMTPat (_sigma1 x)]
=
LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x))
val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a ->
Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7])
let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 =
let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in
assert_norm (List.length [x0; x1; x2; x3; x4; x5; x6; x7] == 8);
assert (length rp == 8);
let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in
let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) =
assert_norm (Seq.index lp i == Seq.index rp i) in
Classical.forall_intro aux;
eq_intro rp lp
val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a
let shuffle_core_pre_create8 a k_t ws_t hash =
let a0 = Seq.index hash 0 in
let b0 = Seq.index hash 1 in
let c0 = Seq.index hash 2 in
let d0 = Seq.index hash 3 in
let e0 = Seq.index hash 4 in
let f0 = Seq.index hash 5 in
let g0 = Seq.index hash 6 in
let h0 = Seq.index hash 7 in
let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in
create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0
val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a ->
Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash)
let shuffle_core_pre_create8_lemma a k_t ws_t hash =
let a0 = Seq.index hash 0 in
let b0 = Seq.index hash 1 in
let c0 = Seq.index hash 2 in
let d0 = Seq.index hash 3 in
let e0 = Seq.index hash 4 in
let f0 = Seq.index hash 5 in
let g0 = Seq.index hash 6 in
let h0 = Seq.index hash 7 in
let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in
let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in
seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0
val shuffle_core_spec_lemma_l:
#a:sha2_alg
-> #m:m_spec
-> k_t:word a
-> ws_t:element_t a m
-> st:state_spec a m
-> l:nat{l < lanes a m} ->
Lemma
((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] ==
Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l])
let shuffle_core_spec_lemma_l #a #m k_t ws_t st l =
eq_intro #(word a) #(state_word_length a)
(state_spec_v (shuffle_core_spec k_t ws_t st)).[l]
(shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]);
shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l]
#push-options "--z3rlimit 100"
val ws_next_inner_lemma_l:
#a:sha2_alg
-> #m:m_spec
-> i:nat{i < 16}
-> ws:ws_spec a m
-> l:nat{l < lanes a m} ->
Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l])
let ws_next_inner_lemma_l #a #m i ws l =
eq_intro #(word a) #16
(ws_spec_v (ws_next_inner i ws)).[l]
(Spec.ws_next_inner a i (ws_spec_v ws).[l])
#pop-options
val ws_next_lemma_loop:
#a:sha2_alg
-> #m:m_spec
-> ws:ws_spec a m
-> l:nat{l < lanes a m}
-> n:nat{n <= 16} ->
Lemma
((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] ==
repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l])
let rec ws_next_lemma_loop #a #m ws l n =
let lp = repeati n (ws_next_inner #a #m) ws in
let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in
if n = 0 then begin
eq_repeati0 n (ws_next_inner #a #m) ws;
eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l];
ws_next_inner_lemma_l 0 ws l end
else begin
let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in
let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in
ws_next_lemma_loop #a #m ws l (n - 1);
//assert ((ws_spec_v lp0).[l] == rp0);
unfold_repeati n (ws_next_inner #a #m) ws (n - 1);
unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1);
//assert (lp == ws_next_inner #a #m (n - 1) lp0);
//assert (rp == Spec.ws_next_inner a (n - 1) rp0);
ws_next_inner_lemma_l (n - 1) lp0 l;
() end
val ws_next_lemma_l:
#a:sha2_alg
-> #m:m_spec
-> ws:ws_spec a m
-> l:nat{l < lanes a m} ->
Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l])
let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16
val shuffle_inner_lemma_l:
#a:sha2_alg
-> #m:m_spec
-> ws:ws_spec a m
-> i:nat{i < Spec.num_rounds16 a}
-> j:nat{j < 16}
-> st:state_spec a m
-> l:nat{l < lanes a m} ->
Lemma
((state_spec_v (shuffle_inner ws i j st)).[l] ==
Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l])
let shuffle_inner_lemma_l #a #m ws i j st l =
let k_t = Seq.index (Spec.k0 a) (16 * i + j) in
let ws_t = ws.[j] in
shuffle_core_spec_lemma_l k_t ws_t st l
val shuffle_inner_loop_lemma:
#a:sha2_alg
-> #m:m_spec
-> i:nat{i < Spec.num_rounds16 a}
-> ws0:ws_spec a m
-> st0:state_spec a m
-> l:nat{l < lanes a m}
-> n:nat{n <= 16} ->
Lemma
((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] ==
repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l])
let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n =
let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in
let lp = repeati n (shuffle_inner ws0 i) st0 in
let rp = repeati n f_sc (state_spec_v st0).[l] in
if n = 0 then begin
eq_repeati0 n (shuffle_inner ws0 i) st0;
eq_repeati0 n f_sc (state_spec_v st0).[l];
shuffle_inner_lemma_l #a #m ws0 i n st0 l end
else begin
let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in
let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in
shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1);
assert ((state_spec_v lp0).[l] == rp0);
unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1);
unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1);
shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end
val shuffle_inner_loop_lemma_l:
#a:sha2_alg
-> #m:m_spec
-> i:nat{i < Spec.num_rounds16 a}
-> ws_st:tuple2 (ws_spec a m) (state_spec a m)
-> l:nat{l < lanes a m} ->
Lemma
(let (ws1, st1) = shuffle_inner_loop i ws_st in
let (ws0, st0) = ws_st in
let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in
(ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st)
let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l =
shuffle_inner_loop_lemma #a #m i ws0 st0 l 16;
ws_next_lemma_l ws0 l
val shuffle_loop_lemma:
#a:sha2_alg
-> #m:m_spec
-> ws0:ws_spec a m
-> st0:state_spec a m
-> l:nat{l < lanes a m}
-> n:nat{n <= Spec.num_rounds16 a} ->
Lemma
(let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in
let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in
(ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st)
let rec shuffle_loop_lemma #a #m ws0 st0 l n =
let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in
let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in
let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in
if n = 0 then begin
eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0);
eq_repeati0 n (Spec.shuffle_inner_loop a) acc0;
shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end
else begin
let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in
let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in
shuffle_loop_lemma #a #m ws0 st0 l (n - 1);
//assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1);
unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1);
unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1);
shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end
val shuffle_lemma_l:
#a:sha2_alg
-> #m:m_spec
-> ws:ws_spec a m
-> st:state_spec a m
-> l:nat{l < lanes a m} ->
Lemma ((state_spec_v (shuffle ws st)).[l] ==
Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l])
let shuffle_lemma_l #a #m ws st l =
shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a)
val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} ->
Lemma ((state_spec_v (init a m)).[l] == Spec.init a)
let init_lemma_l a m l =
eq_intro #(word a) #(state_word_length a)
(state_spec_v (init a m)).[l] (Spec.init a)
val load_blocks_lemma_ij:
#a:sha2_alg
-> #m:m_spec
-> b:multiblock_spec a m
-> j:nat{j < lanes a m}
-> i:nat{i < 16} ->
Lemma (let l = lanes a m in
let ind = (i / l * l + j) * word_length a in
(vec_v (load_blocks b).[i]).[j] ==
BSeq.uint_from_bytes_be
(Seq.slice b.(|i % l|) ind (ind + word_length a)))
let load_blocks_lemma_ij #a #m b j i =
let l = lanes a m in
let idx_i = i % l in
let idx_j = i / l in
let blocksize = word_length a in
let blocksize_l = l * blocksize in
let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in
//assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j);
assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j);
BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j;
assert ((vec_v ((load_blocks b).[i])).[j] ==
BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize)));
calc (==) {
idx_j * blocksize_l + j * blocksize;
(==) { Math.Lemmas.paren_mul_right idx_j l blocksize;
Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize }
(idx_j * l + j) * blocksize;
};
Seq.Properties.slice_slice b.(|idx_i|)
(idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l)
(j * blocksize) (j * blocksize + blocksize);
assert ((vec_v ((load_blocks b).[i])).[j] ==
BSeq.uint_from_bytes_be
(Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize)
((idx_j * l + j) * blocksize + blocksize)))
val load_blocks_lemma_ij_subst:
#a:sha2_alg
-> #m:m_spec
-> b:multiblock_spec a m
-> j:nat{j < lanes a m}
-> i:nat{i < 16} ->
Lemma (let l = lanes a m in
(vec_v (load_blocks b).[i / l * l + j]).[i % l] ==
BSeq.uint_from_bytes_be
(Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a)))
let load_blocks_lemma_ij_subst #a #m b j i =
let l = lanes a m in
let i_new = i / l * l + j in
let j_new = i % l in
load_blocks_lemma_ij #a #m b j_new i_new;
//assert (
//(vec_v (load_blocks b).[i_new]).[j_new] ==
//BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a)));
calc (==) {
i_new % l;
(==) { }
(i / l * l + j) % l;
(==) { Math.Lemmas.modulo_addition_lemma j l (i / l) }
j % l;
(==) { Math.Lemmas.small_mod j l }
j;
};
calc (==) {
i_new / l * l + j_new;
(==) { }
(i / l * l + j) / l * l + i % l;
(==) { Math.Lemmas.division_addition_lemma j l (i / l) }
(i / l + j / l) * l + i % l;
(==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l }
i / l * l + j / l * l + i % l;
(==) { Math.Lemmas.euclidean_division_definition i l }
i + j / l * l;
(==) { Math.Lemmas.small_div j l }
i;
}
#push-options "--z3rlimit 150"
val load_ws_lemma_l:
#a:sha2_alg
-> #m:m_spec{is_supported a m}
-> b:multiblock_spec a m
-> j:nat{j < lanes a m} ->
Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NTuple.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Serialize.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.SHA2.Vec.fst.checked",
"Hacl.Spec.SHA2.Lemmas.fst.checked",
"Hacl.Spec.SHA2.EquivScalar.fsti.checked",
"Hacl.Spec.SHA2.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.SHA2.Equiv.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector.Serialize",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NTuple",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Hacl.Spec.SHA2.Vec.multiblock_spec a m -> j: Prims.nat{j < Hacl.Spec.SHA2.Vec.lanes a m}
-> FStar.Pervasives.Lemma
(ensures
(Hacl.Spec.SHA2.Vec.ws_spec_v (Hacl.Spec.SHA2.Vec.load_ws b)).[ j ] ==
Lib.ByteSequence.uints_from_bytes_be b.(| j |)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Hash.Definitions.sha2_alg",
"Hacl.Spec.SHA2.Vec.m_spec",
"Hacl.Spec.SHA2.Vec.is_supported",
"Hacl.Spec.SHA2.Vec.multiblock_spec",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.SHA2.Vec.lanes",
"Lib.Sequence.eq_intro",
"Hacl.Spec.SHA2.Vec.word",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Spec.Hash.Definitions.word_t",
"Lib.IntTypes.SEC",
"FStar.Seq.Base.index",
"Prims.l_True",
"Prims.squash",
"Lib.IntTypes.int_t",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Hacl.Spec.SHA2.Equiv.load_blocks_lemma_ij_subst",
"Hacl.Spec.SHA2.Lemmas.transpose_ws_lemma_ij",
"Hacl.Spec.SHA2.Vec.load_blocks",
"Prims._assert",
"Lib.Sequence.lseq",
"Hacl.Spec.SHA2.Vec.ws_spec_v",
"Hacl.Spec.SHA2.Vec.transpose_ws",
"Lib.ByteSequence.uint_from_bytes_be",
"FStar.Seq.Base.slice",
"Lib.IntTypes.uint8",
"Lib.NTuple.op_Lens_Access",
"FStar.Seq.Properties.lseq",
"Spec.Hash.Definitions.block_length",
"FStar.Mul.op_Star",
"Spec.Hash.Definitions.word_length",
"Prims.op_Addition",
"Lib.ByteSequence.index_uints_from_bytes_be",
"Hacl.Spec.SHA2.Vec.lanes_t",
"Lib.ByteSequence.uints_from_bytes_be",
"Hacl.Spec.SHA2.Vec.load_ws"
] | [] | false | false | true | false | false | let load_ws_lemma_l #a #m b j =
| let lp = Seq.index (ws_spec_v (load_ws b)) j in
let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(| j |) in
let aux (i: nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) =
let l = lanes a m in
BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(| j |) i;
assert (Seq.index rp i ==
BSeq.uint_from_bytes_be (Seq.slice b.(| j |)
(i * word_length a)
(i * word_length a + word_length a)));
assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i);
Lemmas.transpose_ws_lemma_ij (load_blocks b) j i;
load_blocks_lemma_ij_subst #a #m b j i
in
Classical.forall_intro aux;
eq_intro lp rp | false |
Benton2004.fst | Benton2004.eop | val eop (#from #to: Type0) (op: (from -> from -> Tot to)) (e1 e2: exp from) : Tot (exp to) | val eop (#from #to: Type0) (op: (from -> from -> Tot to)) (e1 e2: exp from) : Tot (exp to) | let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ()) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 477,
"start_col": 0,
"start_line": 472
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | op: (_: from -> _: from -> to) -> e1: Benton2004.exp from -> e2: Benton2004.exp from
-> Benton2004.exp to | Prims.Tot | [
"total"
] | [] | [
"Benton2004.exp",
"Prims.unit"
] | [] | false | false | false | true | false | let eop (#from #to: Type0) (op: (from -> from -> Tot to)) (e1 e2: exp from) : Tot (exp to) =
| fun () -> (e1 ()) `op` (e2 ()) | false |
Benton2004.fst | Benton2004.exec_equiv_flip | val exec_equiv_flip (p p': sttype) (f f': computation)
: Lemma (exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')] | val exec_equiv_flip (p p': sttype) (f f': computation)
: Lemma (exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')] | let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p' | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 333,
"start_col": 0,
"start_line": 326
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Benton2004.sttype ->
p': Benton2004.sttype ->
f: Benton2004.computation ->
f': Benton2004.computation
-> FStar.Pervasives.Lemma
(ensures
Benton2004.exec_equiv (Benton2004.flip p) (Benton2004.flip p') f f' <==>
Benton2004.exec_equiv p p' f' f)
[SMTPat (Benton2004.exec_equiv (Benton2004.flip p) (Benton2004.flip p') f f')] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.computation",
"Benton2004.holds_flip",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Benton2004.exec_equiv",
"Benton2004.flip",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let exec_equiv_flip (p p': sttype) (f f': computation)
: Lemma (exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')] =
| holds_flip p;
holds_flip p' | false |
Benton2004.fst | Benton2004.eval_equiv_trans | val eval_equiv_trans (#t: Type0) (p: sttype) (e: nstype t) (f1 f2 f3: exp t)
: Lemma (requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3) | val eval_equiv_trans (#t: Type0) (p: sttype) (e: nstype t) (f1 f2 f3: exp t)
: Lemma (requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3) | let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x)) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 69,
"end_line": 376,
"start_col": 0,
"start_line": 357
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Benton2004.sttype ->
e: Benton2004.nstype t ->
f1: Benton2004.exp t ->
f2: Benton2004.exp t ->
f3: Benton2004.exp t
-> FStar.Pervasives.Lemma
(requires
Benton2004.is_per e /\ Benton2004.interpolable p /\ Benton2004.eval_equiv p e f1 f2 /\
Benton2004.eval_equiv p e f2 f3) (ensures Benton2004.eval_equiv p e f1 f3) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.nstype",
"Benton2004.exp",
"FStar.Classical.forall_intro_2",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_imp",
"Benton2004.Aux.holds",
"FStar.Pervasives.Native.fst",
"Benton2004.reify_exp",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.exists_elim",
"Prims.l_and",
"Prims._assert",
"Benton2004.interpolable_elim",
"Benton2004.is_per",
"Benton2004.interpolable",
"Benton2004.eval_equiv"
] | [] | false | false | true | false | false | let eval_equiv_trans (#t: Type0) (p: sttype) (e: nstype t) (f1 f2 f3: exp t)
: Lemma (requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3) =
| let lem (s1 s3: heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))) =
let w = interpolable_elim p s1 s3 in
Classical.exists_elim (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2: heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x)) | false |
Benton2004.fst | Benton2004.exec_equiv_trans | val exec_equiv_trans (p p': sttype) (c1 c2 c3: computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv p p' c1 c2 /\ exec_equiv p p' c2 c3))
(ensures (exec_equiv p p' c1 c3))
[
SMTPatOr
[
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)]
]
] | val exec_equiv_trans (p p': sttype) (c1 c2 c3: computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv p p' c1 c2 /\ exec_equiv p p' c2 c3))
(ensures (exec_equiv p p' c1 c3))
[
SMTPatOr
[
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)]
]
] | let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3 | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 440,
"start_col": 0,
"start_line": 421
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 128,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Benton2004.sttype ->
p': Benton2004.sttype ->
c1: Benton2004.computation ->
c2: Benton2004.computation ->
c3: Benton2004.computation
-> FStar.Pervasives.Lemma
(requires
Benton2004.is_per p' /\ Benton2004.interpolable p /\ Benton2004.exec_equiv p p' c1 c2 /\
Benton2004.exec_equiv p p' c2 c3)
(ensures Benton2004.exec_equiv p p' c1 c3)
[
SMTPatOr [
[SMTPat (Benton2004.exec_equiv p p' c1 c2); SMTPat (Benton2004.exec_equiv p p' c2 c3)];
[SMTPat (Benton2004.exec_equiv p p' c1 c2); SMTPat (Benton2004.exec_equiv p p' c1 c3)];
[SMTPat (Benton2004.exec_equiv p p' c2 c3); SMTPat (Benton2004.exec_equiv p p' c1 c3)]
]
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.computation",
"Benton2004.exec_equiv_reified_trans",
"Benton2004.reified_computation",
"Benton2004.reify_computation",
"Prims.unit",
"Prims.l_and",
"Benton2004.is_per",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Benton2004.interpolable",
"Benton2004.exec_equiv",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat_or",
"Prims.list",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let exec_equiv_trans (p p': sttype) (c1 c2 c3: computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv p p' c1 c2 /\ exec_equiv p p' c2 c3))
(ensures (exec_equiv p p' c1 c3))
[
SMTPatOr
[
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)]
]
] =
| let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3 | false |
Benton2004.fst | Benton2004.d_seq_terminates_recip | val d_seq_terminates_recip (p0 p1 p2: sttype) (c01 c01' c12 c12': computation) (s0 s0': heap)
: Lemma
(requires
(exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12' /\ holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'))
(ensures (terminates_on (reify_computation (seq c01 c12)) s0)) | val d_seq_terminates_recip (p0 p1 p2: sttype) (c01 c01' c12 c12': computation) (s0 s0': heap)
: Lemma
(requires
(exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12' /\ holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'))
(ensures (terminates_on (reify_computation (seq c01 c12)) s0)) | let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0 | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 73,
"end_line": 582,
"start_col": 0,
"start_line": 567
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p0: Benton2004.sttype ->
p1: Benton2004.sttype ->
p2: Benton2004.sttype ->
c01: Benton2004.computation ->
c01': Benton2004.computation ->
c12: Benton2004.computation ->
c12': Benton2004.computation ->
s0: FStar.DM4F.Heap.IntStoreFixed.heap ->
s0': FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma
(requires
Benton2004.exec_equiv p0 p1 c01 c01' /\ Benton2004.exec_equiv p1 p2 c12 c12' /\
Benton2004.Aux.holds p0 s0 s0' /\
Benton2004.terminates_on (Benton2004.reify_computation (Benton2004.seq c01' c12')) s0')
(ensures Benton2004.terminates_on (Benton2004.reify_computation (Benton2004.seq c01 c12)) s0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.computation",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Benton2004.d_seq_terminates",
"Benton2004.flip",
"Prims.unit",
"Benton2004.holds_flip'",
"Prims.l_and",
"Benton2004.exec_equiv",
"Benton2004.Aux.holds",
"Benton2004.terminates_on",
"Benton2004.reify_computation",
"Benton2004.seq",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let d_seq_terminates_recip (p0 p1 p2: sttype) (c01 c01' c12 c12': computation) (s0 s0': heap)
: Lemma
(requires
(exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12' /\ holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'))
(ensures (terminates_on (reify_computation (seq c01 c12)) s0)) =
| holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0 | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.vale_p | val vale_p : Prims.logical | let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled) | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 84,
"start_col": 0,
"start_line": 84
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_and",
"Prims.b2t",
"Vale.X64.CPU_Features_s.adx_enabled",
"Vale.X64.CPU_Features_s.bmi2_enabled"
] | [] | false | false | false | true | true | let vale_p =
| let open Vale.X64.CPU_Features_s in adx_enabled /\ bmi2_enabled | false |
|
Benton2004.fst | Benton2004.d_assoc | val d_assoc (c1 c2 c3: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))] | val d_assoc (c1 c2 c3: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))] | let d_assoc
(c1 c2 c3: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))]
= let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 678,
"start_col": 0,
"start_line": 669
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= ()
let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0)
// NOTE: this rule is NOT a consequence of d_su1 + d_seq + d_ctr
let d_su2
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq c skip) c))
[SMTPat (exec_equiv phi phi' (seq c skip) c)]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c1: Benton2004.computation ->
c2: Benton2004.computation ->
c3: Benton2004.computation ->
phi: Benton2004.sttype ->
phi': Benton2004.sttype
-> FStar.Pervasives.Lemma
(requires
Benton2004.exec_equiv phi
phi'
(Benton2004.seq (Benton2004.seq c1 c2) c3)
(Benton2004.seq (Benton2004.seq c1 c2) c3))
(ensures
Benton2004.exec_equiv phi
phi'
(Benton2004.seq (Benton2004.seq c1 c2) c3)
(Benton2004.seq c1 (Benton2004.seq c2 c3)))
[
SMTPat (Benton2004.exec_equiv phi
phi'
(Benton2004.seq (Benton2004.seq c1 c2) c3)
(Benton2004.seq c1 (Benton2004.seq c2 c3)))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.computation",
"Benton2004.sttype",
"Prims._assert",
"Prims.l_Forall",
"Prims.nat",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Benton2004.reified_computation",
"Benton2004.reify_computation",
"Benton2004.seq",
"Prims.unit",
"Benton2004.exec_equiv",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let d_assoc (c1 c2 c3: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))] =
| let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel. fl s0 fuel == fr s0 fuel) | false |
Benton2004.fst | Benton2004.d_cc | val d_cc (b: exp bool) (c1 c2 c3: computation) (phi phi' phi'': sttype)
: Lemma
(requires
(exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3))
(ensures
(exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))))
[
SMTPatOr
[
[
SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2));
SMTPat (exec_equiv phi' phi'' c3 c3)
];
[
SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2));
SMTPat
(exec_equiv phi
phi''
(seq (ifthenelse b c1 c2) c3)
(ifthenelse b (seq c1 c3) (seq c2 c3)))
];
[
SMTPat (exec_equiv phi' phi'' c3 c3);
SMTPat
(exec_equiv phi
phi''
(seq (ifthenelse b c1 c2) c3)
(ifthenelse b (seq c1 c3) (seq c2 c3)))
]
]
] | val d_cc (b: exp bool) (c1 c2 c3: computation) (phi phi' phi'': sttype)
: Lemma
(requires
(exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3))
(ensures
(exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))))
[
SMTPatOr
[
[
SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2));
SMTPat (exec_equiv phi' phi'' c3 c3)
];
[
SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2));
SMTPat
(exec_equiv phi
phi''
(seq (ifthenelse b c1 c2) c3)
(ifthenelse b (seq c1 c3) (seq c2 c3)))
];
[
SMTPat (exec_equiv phi' phi'' c3 c3);
SMTPat
(exec_equiv phi
phi''
(seq (ifthenelse b c1 c2) c3)
(ifthenelse b (seq c1 c3) (seq c2 c3)))
]
]
] | let d_cc
(b: exp bool)
(c1 c2 c3: computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3
))
(ensures (
exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))
))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi' phi'' c3 c3)];
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
[SMTPat (exec_equiv phi' phi'' c3 c3); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
]]
= let fl = reify_computation (seq (ifthenelse b c1 c2) c3) in
let fr = reify_computation (ifthenelse b (seq c1 c3) (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel);
assert (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (seq (ifthenelse b c1 c2) c3)) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 91,
"end_line": 700,
"start_col": 0,
"start_line": 680
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= ()
let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0)
// NOTE: this rule is NOT a consequence of d_su1 + d_seq + d_ctr
let d_su2
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq c skip) c))
[SMTPat (exec_equiv phi phi' (seq c skip) c)]
= ()
let d_assoc
(c1 c2 c3: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))]
= let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Benton2004.exp Prims.bool ->
c1: Benton2004.computation ->
c2: Benton2004.computation ->
c3: Benton2004.computation ->
phi: Benton2004.sttype ->
phi': Benton2004.sttype ->
phi'': Benton2004.sttype
-> FStar.Pervasives.Lemma
(requires
Benton2004.exec_equiv phi
phi'
(Benton2004.ifthenelse b c1 c2)
(Benton2004.ifthenelse b c1 c2) /\ Benton2004.exec_equiv phi' phi'' c3 c3)
(ensures
Benton2004.exec_equiv phi
phi''
(Benton2004.seq (Benton2004.ifthenelse b c1 c2) c3)
(Benton2004.ifthenelse b (Benton2004.seq c1 c3) (Benton2004.seq c2 c3)))
[
SMTPatOr [
[
SMTPat (Benton2004.exec_equiv phi
phi'
(Benton2004.ifthenelse b c1 c2)
(Benton2004.ifthenelse b c1 c2));
SMTPat (Benton2004.exec_equiv phi' phi'' c3 c3)
];
[
SMTPat (Benton2004.exec_equiv phi
phi'
(Benton2004.ifthenelse b c1 c2)
(Benton2004.ifthenelse b c1 c2));
SMTPat (Benton2004.exec_equiv phi
phi''
(Benton2004.seq (Benton2004.ifthenelse b c1 c2) c3)
(Benton2004.ifthenelse b (Benton2004.seq c1 c3) (Benton2004.seq c2 c3)))
];
[
SMTPat (Benton2004.exec_equiv phi' phi'' c3 c3);
SMTPat (Benton2004.exec_equiv phi
phi''
(Benton2004.seq (Benton2004.ifthenelse b c1 c2) c3)
(Benton2004.ifthenelse b (Benton2004.seq c1 c3) (Benton2004.seq c2 c3)))
]
]
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.exp",
"Prims.bool",
"Benton2004.computation",
"Benton2004.sttype",
"Prims._assert",
"Benton2004.exec_equiv",
"Benton2004.seq",
"Benton2004.ifthenelse",
"Prims.unit",
"Prims.l_Forall",
"Prims.nat",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"Benton2004.reified_computation",
"Benton2004.reify_computation",
"Prims.l_and",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat_or",
"Prims.list",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let d_cc (b: exp bool) (c1 c2 c3: computation) (phi phi' phi'': sttype)
: Lemma
(requires
(exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3))
(ensures
(exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))))
[
SMTPatOr
[
[
SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2));
SMTPat (exec_equiv phi' phi'' c3 c3)
];
[
SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2));
SMTPat
(exec_equiv phi
phi''
(seq (ifthenelse b c1 c2) c3)
(ifthenelse b (seq c1 c3) (seq c2 c3)))
];
[
SMTPat (exec_equiv phi' phi'' c3 c3);
SMTPat
(exec_equiv phi
phi''
(seq (ifthenelse b c1 c2) c3)
(ifthenelse b (seq c1 c3) (seq c2 c3)))
]
]
] =
| let fl = reify_computation (seq (ifthenelse b c1 c2) c3) in
let fr = reify_computation (ifthenelse b (seq c1 c3) (seq c2 c3)) in
assert (forall s0 fuel. fl s0 fuel == fr s0 fuel);
assert (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (seq (ifthenelse b c1 c2) c3)) | false |
Benton2004.fst | Benton2004.d_seq_terminates | val d_seq_terminates (p0 p1 p2: sttype) (c01 c01' c12 c12': computation) (s0 s0': heap)
: Lemma
(requires
(exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12' /\ holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0))
(ensures (terminates_on (reify_computation (seq c01' c12')) s0')) | val d_seq_terminates (p0 p1 p2: sttype) (c01 c01' c12 c12': computation) (s0 s0': heap)
: Lemma
(requires
(exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12' /\ holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0))
(ensures (terminates_on (reify_computation (seq c01' c12')) s0')) | let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 563,
"start_col": 0,
"start_line": 518
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p0: Benton2004.sttype ->
p1: Benton2004.sttype ->
p2: Benton2004.sttype ->
c01: Benton2004.computation ->
c01': Benton2004.computation ->
c12: Benton2004.computation ->
c12': Benton2004.computation ->
s0: FStar.DM4F.Heap.IntStoreFixed.heap ->
s0': FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma
(requires
Benton2004.exec_equiv p0 p1 c01 c01' /\ Benton2004.exec_equiv p1 p2 c12 c12' /\
Benton2004.Aux.holds p0 s0 s0' /\
Benton2004.terminates_on (Benton2004.reify_computation (Benton2004.seq c01 c12)) s0)
(ensures
Benton2004.terminates_on (Benton2004.reify_computation (Benton2004.seq c01' c12')) s0') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.computation",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.l_imp",
"Prims.l_and",
"Prims.eq2",
"Prims.bool",
"FStar.Pervasives.Native.fst",
"Benton2004.terminates_on",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims._assert",
"Prims.op_Addition",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Benton2004.reify_computation",
"Benton2004.seq",
"Benton2004.Aux.holds",
"FStar.Pervasives.Native.snd",
"Benton2004.reified_computation",
"Benton2004.exec_equiv"
] | [] | false | false | true | false | false | let d_seq_terminates (p0 p1 p2: sttype) (c01 c01' c12 c12': computation) (s0 s0': heap)
: Lemma
(requires
(exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12' /\ holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0))
(ensures (terminates_on (reify_computation (seq c01' c12')) s0')) =
| let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g (fuel: nat)
: Lemma (requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0')) =
let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' == (reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g' (fuel': nat)
: Lemma (requires (fst (f12' fuel' s1') == true)) (ensures (terminates_on f' s0')) =
assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g) | false |
Benton2004.fst | Benton2004.d_lu1 | val d_lu1 (b: exp bool) (c: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip))) | val d_lu1 (b: exp bool) (c: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip))) | let d_lu1
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip)))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (ifthenelse b (seq c (while b c)) skip) in
let eb = reify_exp b in
let prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
assert (fr fuel s0 == fl fuel s1)
end else ()
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fst (fr fuel s0) == true /\ fl (fuel + 1) s0 == fr fuel s0))
= if fst (eb s0)
then begin
()
end else ()
in
let prf2'
(s0: heap)
(fuel: nat)
: Lemma
(ensures (fst (fr fuel s0) == true ==> fl (fuel + 1) s0 == fr fuel s0))
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf2' | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 746,
"start_col": 0,
"start_line": 703
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= ()
let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0)
// NOTE: this rule is NOT a consequence of d_su1 + d_seq + d_ctr
let d_su2
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq c skip) c))
[SMTPat (exec_equiv phi phi' (seq c skip) c)]
= ()
let d_assoc
(c1 c2 c3: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))]
= let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel)
let d_cc
(b: exp bool)
(c1 c2 c3: computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3
))
(ensures (
exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))
))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi' phi'' c3 c3)];
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
[SMTPat (exec_equiv phi' phi'' c3 c3); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
]]
= let fl = reify_computation (seq (ifthenelse b c1 c2) c3) in
let fr = reify_computation (ifthenelse b (seq c1 c3) (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel);
assert (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (seq (ifthenelse b c1 c2) c3)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Benton2004.exp Prims.bool ->
c: Benton2004.computation ->
phi: Benton2004.sttype ->
phi': Benton2004.sttype
-> FStar.Pervasives.Lemma
(requires Benton2004.exec_equiv phi phi' (Benton2004.while b c) (Benton2004.while b c))
(ensures
Benton2004.exec_equiv phi
phi'
(Benton2004.while b c)
(Benton2004.ifthenelse b (Benton2004.seq c (Benton2004.while b c)) Benton2004.skip)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.exp",
"Prims.bool",
"Benton2004.computation",
"Benton2004.sttype",
"FStar.Classical.forall_intro_2",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.nat",
"Prims.l_imp",
"Prims.eq2",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.move_requires",
"Prims.l_and",
"Prims._assert",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.snd",
"Benton2004.reified_exp",
"Benton2004.reify_exp",
"Benton2004.reified_computation",
"Benton2004.reify_computation",
"Benton2004.ifthenelse",
"Benton2004.seq",
"Benton2004.while",
"Benton2004.skip",
"Benton2004.exec_equiv"
] | [] | false | false | true | false | false | let d_lu1 (b: exp bool) (c: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip))) =
| let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (ifthenelse b (seq c (while b c)) skip) in
let eb = reify_exp b in
let prf1 (s0: heap) (fuel: nat)
: Lemma (requires (fst (fl fuel s0) == true)) (ensures (fr fuel s0 == fl fuel s0)) =
if fst (eb s0)
then
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
assert (fr fuel s0 == fl fuel s1)
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2 (s0: heap) (fuel: nat)
: Lemma (requires (fst (fr fuel s0) == true))
(ensures (fst (fr fuel s0) == true /\ fl (fuel + 1) s0 == fr fuel s0)) =
if fst (eb s0) then ()
in
let prf2' (s0: heap) (fuel: nat)
: Lemma (ensures (fst (fr fuel s0) == true ==> fl (fuel + 1) s0 == fr fuel s0)) =
Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf2' | false |
Benton2004.fst | Benton2004.d_su1' | val d_su1' (c c' c'': computation) (phi phi' phi'': sttype)
: Lemma (requires (exec_equiv phi phi' c skip /\ exec_equiv phi' phi'' c' c''))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[
SMTPatOr
[
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')]
]
] | val d_su1' (c c' c'': computation) (phi phi' phi'': sttype)
: Lemma (requires (exec_equiv phi phi' c skip /\ exec_equiv phi' phi'' c' c''))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[
SMTPatOr
[
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')]
]
] | let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 657,
"start_col": 0,
"start_line": 640
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: Benton2004.computation ->
c': Benton2004.computation ->
c'': Benton2004.computation ->
phi: Benton2004.sttype ->
phi': Benton2004.sttype ->
phi'': Benton2004.sttype
-> FStar.Pervasives.Lemma
(requires
Benton2004.exec_equiv phi phi' c Benton2004.skip /\ Benton2004.exec_equiv phi' phi'' c' c'')
(ensures Benton2004.exec_equiv phi phi'' (Benton2004.seq c c') c'')
[
SMTPatOr [
[
SMTPat (Benton2004.exec_equiv phi phi' c Benton2004.skip);
SMTPat (Benton2004.exec_equiv phi phi'' (Benton2004.seq c c') c'')
];
[
SMTPat (Benton2004.exec_equiv phi' phi'' c' c'');
SMTPat (Benton2004.exec_equiv phi phi'' (Benton2004.seq c c') c'')
];
[
SMTPat (Benton2004.exec_equiv phi phi' c Benton2004.skip);
SMTPat (Benton2004.exec_equiv phi' phi'' c' c'')
]
]
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.computation",
"Benton2004.sttype",
"Prims._assert",
"Prims.l_Forall",
"Prims.nat",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Benton2004.reified_computation",
"Benton2004.reify_computation",
"Benton2004.seq",
"Benton2004.skip",
"Prims.unit",
"Benton2004.exec_equiv",
"Prims.l_and",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat_or",
"Prims.list",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let d_su1' (c c' c'': computation) (phi phi' phi'': sttype)
: Lemma (requires (exec_equiv phi phi' c skip /\ exec_equiv phi' phi'' c' c''))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[
SMTPatOr
[
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')]
]
] =
| assert (exec_equiv phi phi'' (seq c c') (seq skip c''));
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0. f1 fuel s0 == f2 fuel s0) | false |
Benton2004.fst | Benton2004.d_seq | val d_seq (p0 p1 p2: sttype) (c01 c01' c12 c12': computation)
: Lemma (requires (exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12'))
(ensures (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')))
[
SMTPatOr
[
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[
SMTPat (exec_equiv p0 p1 c01 c01');
SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))
];
[
SMTPat (exec_equiv p1 p2 c12 c12');
SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))
]
]
] | val d_seq (p0 p1 p2: sttype) (c01 c01' c12 c12': computation)
: Lemma (requires (exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12'))
(ensures (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')))
[
SMTPatOr
[
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[
SMTPat (exec_equiv p0 p1 c01 c01');
SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))
];
[
SMTPat (exec_equiv p1 p2 c12 c12');
SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))
]
]
] | let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y)) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 74,
"end_line": 627,
"start_col": 0,
"start_line": 584
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p0: Benton2004.sttype ->
p1: Benton2004.sttype ->
p2: Benton2004.sttype ->
c01: Benton2004.computation ->
c01': Benton2004.computation ->
c12: Benton2004.computation ->
c12': Benton2004.computation
-> FStar.Pervasives.Lemma
(requires Benton2004.exec_equiv p0 p1 c01 c01' /\ Benton2004.exec_equiv p1 p2 c12 c12')
(ensures Benton2004.exec_equiv p0 p2 (Benton2004.seq c01 c12) (Benton2004.seq c01' c12'))
[
SMTPatOr [
[
SMTPat (Benton2004.exec_equiv p0 p1 c01 c01');
SMTPat (Benton2004.exec_equiv p1 p2 c12 c12')
];
[
SMTPat (Benton2004.exec_equiv p0 p1 c01 c01');
SMTPat (Benton2004.exec_equiv p0
p2
(Benton2004.seq c01 c12)
(Benton2004.seq c01' c12'))
];
[
SMTPat (Benton2004.exec_equiv p1 p2 c12 c12');
SMTPat (Benton2004.exec_equiv p0
p2
(Benton2004.seq c01 c12)
(Benton2004.seq c01' c12'))
]
]
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.sttype",
"Benton2004.computation",
"FStar.Classical.forall_intro_3",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.nat",
"Prims.l_imp",
"Prims.l_and",
"Benton2004.Aux.holds",
"Prims.eq2",
"Prims.bool",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.snd",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims._assert",
"FStar.Pervasives.Native.tuple2",
"FStar.Classical.forall_intro_2",
"Prims.l_iff",
"Benton2004.terminates_on",
"Benton2004.exec_equiv",
"Benton2004.reify_computation",
"Benton2004.seq",
"Benton2004.d_seq_terminates_recip",
"Benton2004.d_seq_terminates",
"Benton2004.reified_computation",
"Prims.Cons",
"FStar.Pervasives.smt_pat_or",
"Prims.list",
"FStar.Pervasives.smt_pat"
] | [] | false | false | true | false | false | let d_seq (p0 p1 p2: sttype) (c01 c01' c12 c12': computation)
: Lemma (requires (exec_equiv p0 p1 c01 c01' /\ exec_equiv p1 p2 c12 c12'))
(ensures (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')))
[
SMTPatOr
[
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[
SMTPat (exec_equiv p0 p1 c01 c01');
SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))
];
[
SMTPat (exec_equiv p1 p2 c12 c12');
SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))
]
]
] =
| let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1 (s0 s0': heap)
: Lemma (requires (holds p0 s0 s0')) (ensures (terminates_on f s0 <==> terminates_on f' s0')) =
Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2 (s0 s0': heap) (fuel: nat)
: Lemma (requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0')))) =
let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y)) | false |
Benton2004.fst | Benton2004.d_bre | val d_bre (c1 c2 c0: computation) (phi phi': sttype) (b: exp bool)
: Lemma (requires (exec_equiv phi phi' c1 c0 /\ exec_equiv phi phi' c2 c0))
(ensures (exec_equiv phi phi' (ifthenelse b c1 c2) c0))
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) c0)] | val d_bre (c1 c2 c0: computation) (phi phi': sttype) (b: exp bool)
: Lemma (requires (exec_equiv phi phi' c1 c0 /\ exec_equiv phi phi' c2 c0))
(ensures (exec_equiv phi phi' (ifthenelse b c1 c2) c0))
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) c0)] | let d_bre
(c1 c2 c0: computation)
(phi phi' : sttype)
(b: exp bool)
: Lemma
(requires (
exec_equiv phi phi' c1 c0 /\
exec_equiv phi phi' c2 c0
))
(ensures (exec_equiv phi phi' (ifthenelse b c1 c2) c0))
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) c0)]
= assert (mention (reify_exp b)) | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 842,
"start_col": 0,
"start_line": 831
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= ()
let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0)
// NOTE: this rule is NOT a consequence of d_su1 + d_seq + d_ctr
let d_su2
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq c skip) c))
[SMTPat (exec_equiv phi phi' (seq c skip) c)]
= ()
let d_assoc
(c1 c2 c3: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))]
= let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel)
let d_cc
(b: exp bool)
(c1 c2 c3: computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3
))
(ensures (
exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))
))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi' phi'' c3 c3)];
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
[SMTPat (exec_equiv phi' phi'' c3 c3); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
]]
= let fl = reify_computation (seq (ifthenelse b c1 c2) c3) in
let fr = reify_computation (ifthenelse b (seq c1 c3) (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel);
assert (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (seq (ifthenelse b c1 c2) c3))
#restart-solver
let d_lu1
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip)))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (ifthenelse b (seq c (while b c)) skip) in
let eb = reify_exp b in
let prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
assert (fr fuel s0 == fl fuel s1)
end else ()
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fst (fr fuel s0) == true /\ fl (fuel + 1) s0 == fr fuel s0))
= if fst (eb s0)
then begin
()
end else ()
in
let prf2'
(s0: heap)
(fuel: nat)
: Lemma
(ensures (fst (fr fuel s0) == true ==> fl (fuel + 1) s0 == fr fuel s0))
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf2'
#restart-solver
let d_lu2
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (while b (seq c (ifthenelse b c skip)))))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (while b (seq c (ifthenelse b c skip))) in
let eb = reify_exp b in
let rec prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
(decreases fuel)
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
if fst (eb s1)
then begin
let s2 = snd (fc (fuel - 1) s1) in
assert (fl fuel s0 == fl (fuel - 2) s2);
assert (fc fuel s1 == fc (fuel - 1) s1);
assert (fr fuel s0 == fr (fuel - 1) s2);
prf1 s2 (fuel - 2);
assert (fr (fuel - 1) s2 == fr (fuel - 2) s2)
end else ()
end else ()
in
let rec prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fl (fuel + fuel) s0 == fr fuel s0))
(decreases fuel)
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
if fst (eb s1)
then begin
let s2 = snd (fc fuel s1) in
assert (fr fuel s0 == fr (fuel - 1) s2);
prf2 s2 (fuel - 1);
assert (fl ((fuel - 1) + (fuel - 1)) s2 == fr (fuel - 1) s2);
assert (fl (fuel + fuel) s0 ==
fl ((fuel + fuel) - 1) s1);
assert (fl (fuel + fuel) s0 == fl (fuel - 1 + fuel - 1) s2)
end else begin
assert (fl (fuel + fuel) s0 == fr fuel s0)
end
end else ()
in
let prf1' (s0:heap) (fuel:nat) :Lemma (fst (fl fuel s0) == true ==> fr fuel s0 == fl fuel s0)
= Classical.move_requires (prf1 s0) fuel
in
let prf2' (s0:heap) (fuel:nat) :Lemma (fst (fr fuel s0) == true ==> fl (fuel + fuel) s0 == fr fuel s0)
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf1'; //AR: same pattern as in Pointer, see the comment there
Classical.forall_intro_2 prf2'
(* 3.2 Optimizing Transformations *)
(* Equivalent branches for conditional *)
(* FIXME: the following rule is WRONG, because the relations are not necessarily reflexive.
let d_bre
(c1 c2: computation)
(phi phi' : sttype)
(b: exp bool)
: Lemma
(requires (exec_equiv phi phi' c1 c2))
(ensures (exec_equiv phi phi' (ifthenelse b c1 c2) c1))
*)
let mention (#a:Type) (x:a) = True | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c1: Benton2004.computation ->
c2: Benton2004.computation ->
c0: Benton2004.computation ->
phi: Benton2004.sttype ->
phi': Benton2004.sttype ->
b: Benton2004.exp Prims.bool
-> FStar.Pervasives.Lemma
(requires Benton2004.exec_equiv phi phi' c1 c0 /\ Benton2004.exec_equiv phi phi' c2 c0)
(ensures Benton2004.exec_equiv phi phi' (Benton2004.ifthenelse b c1 c2) c0)
[SMTPat (Benton2004.exec_equiv phi phi' (Benton2004.ifthenelse b c1 c2) c0)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.computation",
"Benton2004.sttype",
"Benton2004.exp",
"Prims.bool",
"Prims._assert",
"Benton2004.mention",
"Benton2004.reified_exp",
"Benton2004.reify_exp",
"Prims.unit",
"Prims.l_and",
"Benton2004.exec_equiv",
"Prims.squash",
"Benton2004.ifthenelse",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let d_bre (c1 c2 c0: computation) (phi phi': sttype) (b: exp bool)
: Lemma (requires (exec_equiv phi phi' c1 c0 /\ exec_equiv phi phi' c2 c0))
(ensures (exec_equiv phi phi' (ifthenelse b c1 c2) c0))
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) c0)] =
| assert (mention (reify_exp b)) | false |
Hacl.Spec.K256.Scalar.Lemmas.fst | Hacl.Spec.K256.Scalar.Lemmas.qmul_shift_383_mod_2_lemma | val qmul_shift_383_mod_2_lemma : l:lseq uint64 8 ->
Lemma (v l.[5] / pow2 63 = SD.bn_v l / pow2 383 % 2) | val qmul_shift_383_mod_2_lemma : l:lseq uint64 8 ->
Lemma (v l.[5] / pow2 63 = SD.bn_v l / pow2 383 % 2) | let qmul_shift_383_mod_2_lemma l =
calc (==) {
v l.[5] / pow2 63;
(==) { SD.bn_eval_index l 5 }
SD.bn_v l / pow2 320 % pow2 64 / pow2 63;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (SD.bn_v l) 320 384 }
SD.bn_v l % pow2 384 / pow2 320 / pow2 63;
(==) { Math.Lemmas.division_multiplication_lemma (SD.bn_v l % pow2 384) (pow2 320) (pow2 63) }
SD.bn_v l % pow2 384 / (pow2 320 * pow2 63);
(==) { Math.Lemmas.pow2_plus 320 63 }
SD.bn_v l % pow2 384 / pow2 383;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (SD.bn_v l) 383 384 }
SD.bn_v l / pow2 383 % pow2 1;
(==) { assert_norm (pow2 1 = 2) }
SD.bn_v l / pow2 383 % 2;
} | {
"file_name": "code/k256/Hacl.Spec.K256.Scalar.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 457,
"start_col": 0,
"start_line": 442
} | module Hacl.Spec.K256.Scalar.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Hacl.Spec.K256.Scalar
module S = Spec.K256
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val qas_nat4_is_qas_nat (f:qelem_lseq) :
Lemma (SD.bn_v f == qas_nat4 (f.[0], f.[1], f.[2], f.[3]))
let qas_nat4_is_qas_nat f =
SD.bn_eval_unfold_i f 4;
SD.bn_eval_unfold_i f 3;
SD.bn_eval_unfold_i f 2;
SD.bn_eval_unfold_i f 1;
SD.bn_eval0 f
val qas_nat4_inj (f1 f2:qelem4) : Lemma
(requires qas_nat4 f1 = qas_nat4 f2)
(ensures
(let (a0,a1,a2,a3) = f1 in
let (b0,b1,b2,b3) = f2 in
a0 == b0 /\ a1 == b1 /\ a2 == b2 /\ a3 == b3))
let qas_nat4_inj f1 f2 =
let (a0,a1,a2,a3) = f1 in
let (b0,b1,b2,b3) = f2 in
let bf1 = create4 a0 a1 a2 a3 in
let bf2 = create4 b0 b1 b2 b3 in
qas_nat4_is_qas_nat bf1;
qas_nat4_is_qas_nat bf2;
SD.bn_eval_inj 4 bf1 bf2
#push-options "--ifuel 1"
val is_qelem_zero_vartime4_lemma: f:qelem4 ->
Lemma (is_qelem_zero_vartime4 f == (qas_nat4 f = 0))
let is_qelem_zero_vartime4_lemma f = ()
val is_qelem_lt_q_vartime4_lemma: f:qelem4 ->
Lemma (is_qelem_lt_q_vartime4 f == (qas_nat4 f < S.q))
let is_qelem_lt_q_vartime4_lemma f =
assert_norm (0xbfd25e8cd0364141 + 0xbaaedce6af48a03b * pow2 64 +
0xfffffffffffffffe * pow2 128 + 0xffffffffffffffff * pow2 192 = S.q)
val is_qelem_le_q_halved_vartime4_lemma: f:qelem4 ->
Lemma (is_qelem_le_q_halved_vartime4 f == (qas_nat4 f <= S.q / 2))
let is_qelem_le_q_halved_vartime4_lemma f =
assert_norm (0xdfe92f46681b20a0 + 0x5d576e7357a4501d * pow2 64 +
0xffffffffffffffff * pow2 128 + 0x7fffffffffffffff * pow2 192 = S.q / 2)
val is_qelem_eq_vartime4_lemma: f1:qelem4 -> f2:qelem4 ->
Lemma (is_qelem_eq_vartime4 f1 f2 == (qas_nat4 f1 = qas_nat4 f2))
let is_qelem_eq_vartime4_lemma f1 f2 =
if qas_nat4 f1 = qas_nat4 f2 then qas_nat4_inj f1 f2
#pop-options
val is_qelem_lt_pow2_128_vartime4_lemma: f:qelem4 ->
Lemma (is_qelem_lt_pow2_128_vartime4 f == (qas_nat4 f < pow2 128))
let is_qelem_lt_pow2_128_vartime4_lemma f =
let (f0, f1, f2, f3) = f in
assert (qas_nat4 f == v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192);
assert (v f0 + v f1 * pow2 64 < pow2 128);
if v f2 = 0 && v f3 = 0 then ()
else begin
Math.Lemmas.pow2_lt_compat 192 128;
assert (pow2 128 <= qas_nat4 f) end
val lemma_check_overflow: b:nat{b < pow2 256} ->
Lemma (let overflow = (b + (pow2 256 - S.q)) / pow2 256 in
overflow = (if b < S.q then 0 else 1))
let lemma_check_overflow b =
let overflow = (b + (pow2 256 - S.q)) / pow2 256 in
if b < S.q then begin
assert (pow2 256 + b - S.q < pow2 256);
assert (pow2 256 - S.q <= pow2 256 + b - S.q);
assert_norm (0 < pow2 256 - S.q);
Math.Lemmas.small_div (pow2 256 + b - S.q) (pow2 256);
assert (overflow = 0) end
else begin
assert (pow2 256 <= pow2 256 + b - S.q);
Math.Lemmas.lemma_div_le (pow2 256) (pow2 256 + b - S.q) (pow2 256);
Math.Lemmas.cancel_mul_div 1 (pow2 256);
assert (1 <= overflow);
assert (pow2 256 + b - S.q < pow2 256 + pow2 256 - S.q);
assert (pow2 256 + b - S.q <= pow2 256 + pow2 256 - S.q - 1);
Math.Lemmas.lemma_div_le (pow2 256 + b - S.q) (pow2 256 + pow2 256 - S.q - 1) (pow2 256);
assert_norm ((pow2 256 + pow2 256 - S.q - 1) / pow2 256 = 1);
assert (overflow <= 1) end
val lemma_get_carry_from_bn_add: r:nat{r < pow2 256} -> c:nat ->
Lemma ((r + c * pow2 256) / pow2 256 = c)
let lemma_get_carry_from_bn_add r c =
Math.Lemmas.lemma_div_plus r c (pow2 256);
Math.Lemmas.small_div r (pow2 256)
val mod_short_lseq_lemma_aux: a:qelem_lseq -> out:qelem_lseq -> c:BB.carry U64 -> Lemma
(requires v c * pow2 256 + SD.bn_v out = SD.bn_v a + pow2 256 - S.q)
(ensures SD.bn_v (map2 (BB.mask_select (u64 0 -. c)) out a) == SD.bn_v a % S.q)
let mod_short_lseq_lemma_aux a out c =
assert_norm (pow2 256 - S.q < S.q);
let mask = u64 0 -. c in
let out1 = map2 (BB.mask_select mask) out a in
assert (v mask = (if v c = 0 then 0 else ones_v U64));
BB.lseq_mask_select_lemma out a mask;
assert (out1 == (if v c = 0 then a else out));
SD.bn_eval_bound a 4;
SD.bn_eval_bound out 4;
lemma_check_overflow (SD.bn_v a);
lemma_get_carry_from_bn_add (SD.bn_v out) (v c);
assert (v c = (if SD.bn_v a < S.q then 0 else 1));
if SD.bn_v a < S.q then begin
assert (SD.bn_v out1 == SD.bn_v a);
Math.Lemmas.small_mod (SD.bn_v a) S.q end
else begin
assert (SD.bn_v out1 == SD.bn_v a + (pow2 256 - S.q) - pow2 256);
Math.Lemmas.lemma_mod_sub (SD.bn_v a) S.q 1;
assert (SD.bn_v out1 % S.q == SD.bn_v a % S.q);
Math.Lemmas.small_mod (SD.bn_v out1) S.q end
val mod_short_lseq_lemma: a:qelem_lseq ->
Lemma (SD.bn_v (mod_short_lseq a) == SD.bn_v a % S.q)
let mod_short_lseq_lemma a =
let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in
let tmp = create4 t0 t1 t2 t3 in
let c, out = SB.bn_add a tmp in
SB.bn_add_lemma a tmp;
assert (v c * pow2 256 + SD.bn_v out = SD.bn_v a + SD.bn_v tmp);
qas_nat4_is_qas_nat tmp;
assert (SD.bn_v tmp == pow2 256 - S.q);
mod_short_lseq_lemma_aux a out c
val mul_pow2_256_minus_q_lemma: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len ->
Lemma (let c, res = mul_pow2_256_minus_q_lseq len resLen a in
v c * pow2 (64 * resLen) + SD.bn_v res = SD.bn_v a * (pow2 256 - S.q))
let mul_pow2_256_minus_q_lemma len resLen a =
let t0 = u64 0x402da1732fc9bebf in
let t1 = u64 0x4551231950b75fc4 in
assert_norm (v t0 + v t1 * pow2 64 = pow2 256 - S.q - pow2 128);
let t01 = create2 t0 t1 in
SD.bn_eval_unfold_i t01 2;
SD.bn_eval_unfold_i t01 1;
SD.bn_eval0 t01;
assert (SD.bn_v t01 = pow2 256 - S.q - pow2 128);
let m0 = SB.bn_mul a t01 in // a * t01
SB.bn_mul_lemma a t01;
assert (SD.bn_v m0 == SD.bn_v a * SD.bn_v t01);
let m10 = create resLen (u64 0) in
let m1 = update_sub m10 2 len a in // a * t2 * pow2 128
SD.bn_update_sub_eval m10 a 2;
assert (SD.bn_v m1 = SD.bn_v m10 - SD.bn_v (sub m10 2 len) * pow2 128 + SD.bn_v a * pow2 128);
SD.bn_eval_zeroes #U64 resLen resLen;
eq_intro (sub m10 2 len) (create len (u64 0));
SD.bn_eval_zeroes #U64 len len;
assert (SD.bn_v m1 = SD.bn_v a * pow2 128);
let c, m2 = SB.bn_add m1 m0 in // a * SECP256K1_N_C
SB.bn_add_lemma m1 m0;
assert (v c * pow2 (64 * resLen) + SD.bn_v m2 = SD.bn_v m1 + SD.bn_v m0);
assert (v c * pow2 (64 * resLen) + SD.bn_v m2 = SD.bn_v a * pow2 128 + SD.bn_v a * SD.bn_v t01);
Math.Lemmas.distributivity_add_right (SD.bn_v a) (pow2 128) (SD.bn_v t01);
assert (v c * pow2 (64 * resLen) + SD.bn_v m2 = SD.bn_v a * (pow2 256 - S.q))
val mul_pow2_256_minus_q_lt_lemma: p:nat -> a:nat{a < pow2 p} ->
Lemma (a * (pow2 256 - S.q) < pow2 (p + 129))
let mul_pow2_256_minus_q_lt_lemma p a =
Math.Lemmas.lemma_mult_lt_right (pow2 256 - S.q) a (pow2 p);
assert_norm (pow2 256 - S.q < pow2 129);
Math.Lemmas.lemma_mult_lt_left (pow2 p) (pow2 256 - S.q) (pow2 129);
Math.Lemmas.pow2_plus p 129
val carry_is_zero (c d e a:nat) : Lemma
(requires
a < pow2 d /\ e < pow2 d /\
c * pow2 d + e = a)
(ensures c = 0)
let carry_is_zero c d e a = ()
val mul_pow2_256_minus_q_add_lemma:
len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> d:nat
-> a:lseq uint64 len -> e:lseq uint64 4 -> Lemma
(requires SD.bn_v a < pow2 d /\ d + 129 < 64 * resLen)
(ensures (let c, res = mul_pow2_256_minus_q_lseq_add len resLen a e in
v c * pow2 (64 * resLen) + SD.bn_v res = SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e /\
SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e < pow2 (d + 129) + pow2 256))
let mul_pow2_256_minus_q_add_lemma len resLen d a e =
let c0, m = mul_pow2_256_minus_q_lseq len resLen a in // a * SECP256K1_N_C
mul_pow2_256_minus_q_lemma len resLen a;
assert (v c0 * pow2 (64 * resLen) + SD.bn_v m = SD.bn_v a * (pow2 256 - S.q));
mul_pow2_256_minus_q_lt_lemma d (SD.bn_v a);
assert (SD.bn_v a * (pow2 256 - S.q) < pow2 (d + 129));
Math.Lemmas.pow2_lt_compat (64 * resLen) (d + 129);
assert (SD.bn_v a * (pow2 256 - S.q) < pow2 (64 * resLen));
SD.bn_eval_bound m resLen;
assert (SD.bn_v m < pow2 (64 * resLen));
carry_is_zero (v c0) (64 * resLen) (SD.bn_v m) (SD.bn_v a * (pow2 256 - S.q));
assert (v c0 = 0 /\ SD.bn_v m = SD.bn_v a * (pow2 256 - S.q));
let c1, res = SB.bn_add m e in // e + a * SECP256K1_N_C
SB.bn_add_lemma m e;
assert (v c1 * pow2 (64 * resLen) + SD.bn_v res == SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e);
SD.bn_eval_bound e 4;
assert (SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e < pow2 (d + 129) + pow2 256)
val mul_pow2_256_minus_q_add_lemma_carry_is_zero:
len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> d:nat
-> a:lseq uint64 len -> e:lseq uint64 4 -> f:nat -> Lemma
(requires
SD.bn_v a < pow2 d /\ d + 129 < 64 * resLen /\
256 <= f /\ d + 129 <= f /\ f + 1 < 64 * resLen)
(ensures (let c, res = mul_pow2_256_minus_q_lseq_add len resLen a e in
v c * pow2 (64 * resLen) + SD.bn_v res = SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e /\
v c = 0 /\ SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e < pow2 (d + 129) + pow2 256))
let mul_pow2_256_minus_q_add_lemma_carry_is_zero len resLen d a e f =
let c0, m = mul_pow2_256_minus_q_lseq_add len resLen a e in
mul_pow2_256_minus_q_add_lemma len resLen d a e;
let rhs_m = SD.bn_v a * (pow2 256 - S.q) + SD.bn_v e in
assert (v c0 * pow2 (64 * resLen) + SD.bn_v m = rhs_m);
assert (rhs_m < pow2 (d + 129) + pow2 256);
Math.Lemmas.pow2_le_compat f 256;
Math.Lemmas.pow2_le_compat f (d + 129);
Math.Lemmas.pow2_double_sum f;
assert (rhs_m < pow2 (f + 1));
Math.Lemmas.pow2_lt_compat (64 * resLen) (f + 1);
carry_is_zero (v c0) (64 * resLen) (SD.bn_v m) rhs_m;
assert (v c0 = 0 /\ SD.bn_v m = rhs_m)
val lemma_m_bound: m:lseq uint64 7 -> Lemma
(requires SD.bn_v m < pow2 385 + pow2 256)
(ensures SD.bn_v (sub m 4 3) < pow2 130)
let lemma_m_bound m =
Math.Lemmas.pow2_lt_compat 385 256;
Math.Lemmas.pow2_double_sum 385;
SD.bn_eval_split_i m 4;
assert (SD.bn_v m - SD.bn_v (sub m 0 4) = pow2 256 * SD.bn_v (sub m 4 3));
Math.Lemmas.cancel_mul_div (SD.bn_v (sub m 4 3)) (pow2 256);
Math.Lemmas.lemma_div_lt (SD.bn_v m - SD.bn_v (sub m 0 4)) 386 256;
assert (SD.bn_v (sub m 4 3) < pow2 130)
val lemma_p_bound: p:lseq uint64 5 -> Lemma
(requires SD.bn_v p < pow2 259 + pow2 256)
(ensures SD.bn_v (sub p 4 1) < pow2 4)
let lemma_p_bound p =
Math.Lemmas.pow2_lt_compat 259 256;
Math.Lemmas.pow2_double_sum 259;
SD.bn_eval_split_i p 4;
assert (SD.bn_v p - SD.bn_v (sub p 0 4) = pow2 256 * SD.bn_v (sub p 4 1));
Math.Lemmas.cancel_mul_div (SD.bn_v (sub p 4 1)) (pow2 256);
Math.Lemmas.lemma_div_lt (SD.bn_v p - SD.bn_v (sub p 0 4)) 260 256;
assert (SD.bn_v (sub p 4 1) < pow2 4)
val mod_lseq_before_final_lemma_aux: a:lseq uint64 8 -> Lemma
(let c0, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in // a[0..3] + a[4..7] * SECP256K1_N_C
let c1, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in // m[0..3] + m[4..6] * SECP256K1_N_C
let c2, r = mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4) in // p[0..3] + p[4] * SECP256K1_N_C
let rhs_a = SD.bn_v (sub a 4 4) * (pow2 256 - S.q) + SD.bn_v (sub a 0 4) in
let rhs_m = SD.bn_v (sub m 4 3) * (pow2 256 - S.q) + SD.bn_v (sub m 0 4) in
let rhs_p = SD.bn_v (sub p 4 1) * (pow2 256 - S.q) + SD.bn_v (sub p 0 4) in
v c0 = 0 /\ SD.bn_v m = rhs_a /\
v c1 = 0 /\ SD.bn_v p = rhs_m /\
v c2 * pow2 256 + SD.bn_v r = rhs_p /\ rhs_p < pow2 133 + pow2 256)
let mod_lseq_before_final_lemma_aux a =
let c0, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in // a[0..3] + a[4..7] * SECP256K1_N_C
let rhs_a = SD.bn_v (sub a 4 4) * (pow2 256 - S.q) + SD.bn_v (sub a 0 4) in
SD.bn_eval_bound (sub a 4 4) 4;
mul_pow2_256_minus_q_add_lemma_carry_is_zero 4 7 256 (sub a 4 4) (sub a 0 4) 385;
assert (v c0 = 0 /\ SD.bn_v m = rhs_a /\ rhs_a < pow2 385 + pow2 256);
let c1, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in // m[0..3] + m[4..6] * SECP256K1_N_C
let rhs_m = SD.bn_v (sub m 4 3) * (pow2 256 - S.q) + SD.bn_v (sub m 0 4) in
lemma_m_bound m;
mul_pow2_256_minus_q_add_lemma_carry_is_zero 3 5 130 (sub m 4 3) (sub m 0 4) 259;
assert (v c1 = 0 /\ SD.bn_v p = rhs_m); ///\ rhs_m < pow2 259 + pow2 256);
let c2, r = mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4) in // p[0..3] + p[4] * SECP256K1_N_C
lemma_p_bound p;
mul_pow2_256_minus_q_add_lemma 1 4 4 (sub p 4 1) (sub p 0 4);
let rhs_p = SD.bn_v (sub p 4 1) * (pow2 256 - S.q) + SD.bn_v (sub p 0 4) in
assert (v c2 * pow2 256 + SD.bn_v r = rhs_p);
assert (rhs_p < pow2 133 + pow2 256)
val lemma_b_pow2_256_plus_a_modq (a b: nat) :
Lemma ((b * pow2 256 + a) % S.q = (b * (pow2 256 - S.q) + a) % S.q)
let lemma_b_pow2_256_plus_a_modq a b =
calc (==) {
(b * (pow2 256 - S.q) + a) % S.q;
(==) { Math.Lemmas.distributivity_sub_right b (pow2 256) S.q }
(b * pow2 256 - b * S.q + a) % S.q;
(==) { Math.Lemmas.lemma_mod_sub (b * pow2 256 + a) S.q b }
(b * pow2 256 + a) % S.q;
}
val lemma_b_pow2_256_plus_a_modq_lseq: len:size_nat{4 <= len} -> a:lseq uint64 len ->
Lemma (SD.bn_v a % S.q == (SD.bn_v (sub a 4 (len - 4)) * (pow2 256 - S.q) + SD.bn_v (sub a 0 4)) % S.q)
let lemma_b_pow2_256_plus_a_modq_lseq len a =
lemma_b_pow2_256_plus_a_modq (SD.bn_v (sub a 0 4)) (SD.bn_v (sub a 4 (len - 4)));
SD.bn_eval_split_i a 4
val mod_lseq_before_final_lemma: a:lseq uint64 8 ->
Lemma (let (c, res) = mod_lseq_before_final a in
v c * pow2 256 + SD.bn_v res < pow2 133 + pow2 256 /\
(v c * pow2 256 + SD.bn_v res) % S.q == SD.bn_v a % S.q)
let mod_lseq_before_final_lemma a =
let c0, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in // a[0..3] + a[4..7] * SECP256K1_N_C
let c1, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in // m[0..3] + m[4..6] * SECP256K1_N_C
let c2, r = mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4) in // p[0..3] + p[4] * SECP256K1_N_C
let rhs_a = SD.bn_v (sub a 4 4) * (pow2 256 - S.q) + SD.bn_v (sub a 0 4) in
let rhs_m = SD.bn_v (sub m 4 3) * (pow2 256 - S.q) + SD.bn_v (sub m 0 4) in
let rhs_p = SD.bn_v (sub p 4 1) * (pow2 256 - S.q) + SD.bn_v (sub p 0 4) in
mod_lseq_before_final_lemma_aux a;
assert (v c0 = 0 /\ SD.bn_v m = rhs_a);
assert (v c1 = 0 /\ SD.bn_v p = rhs_m);
assert (v c2 * pow2 256 + SD.bn_v r = rhs_p);
assert (rhs_p < pow2 133 + pow2 256);
calc (==) { //(v c2 * pow2 256 + SD.bn_v r) % S.q;
rhs_p % S.q;
(==) { lemma_b_pow2_256_plus_a_modq_lseq 5 p }
SD.bn_v p % S.q;
(==) { }
rhs_m % S.q;
(==) { lemma_b_pow2_256_plus_a_modq_lseq 7 m }
SD.bn_v m % S.q;
(==) { }
rhs_a % S.q;
(==) { lemma_b_pow2_256_plus_a_modq_lseq 8 a }
SD.bn_v a % S.q;
}
val mod_lseq_lemma: a:lseq uint64 8 -> Lemma (SD.bn_v (mod_lseq a) == SD.bn_v a % S.q)
let mod_lseq_lemma a =
let c0, r = mod_lseq_before_final a in
mod_lseq_before_final_lemma a;
assert ((v c0 * pow2 256 + SD.bn_v r) % S.q == SD.bn_v a % S.q);
assert (v c0 * pow2 256 + SD.bn_v r < pow2 256 + pow2 133);
let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in
let tmp = create4 t0 t1 t2 t3 in
qas_nat4_is_qas_nat tmp;
assert (SD.bn_v tmp = pow2 256 - S.q);
let c1, out = SB.bn_add r tmp in
SB.bn_add_lemma r tmp;
assert (v c1 * pow2 256 + SD.bn_v out = SD.bn_v r + pow2 256 - S.q);
Math.Lemmas.small_mod (v c0 + v c1) (pow2 64);
assert (v (c0 +. c1) == v c0 + v c1);
let mask = u64 0 -. (c0 +. c1) in
//let mask = u64 0 -. c1 in
let res = map2 (BB.mask_select mask) out r in
SD.bn_eval_bound r 4;
SD.bn_eval_bound out 4;
lemma_check_overflow (SD.bn_v r);
lemma_get_carry_from_bn_add (SD.bn_v out) (v c1);
assert (v c1 = (if SD.bn_v r < S.q then 0 else 1));
if v c0 = 0 then begin
assert (SD.bn_v r % S.q == SD.bn_v a % S.q);
assert (res == mod_short_lseq r);
mod_short_lseq_lemma r;
assert (SD.bn_v res == SD.bn_v a % S.q) end
else begin // v c0 = 1 ==> v c1 = 0
assert ((pow2 256 + SD.bn_v r) % S.q == SD.bn_v a % S.q);
assert (v c1 * pow2 256 + SD.bn_v out = SD.bn_v r + pow2 256 - S.q);
assert (SD.bn_v r < pow2 133);
assert_norm (pow2 256 - S.q < pow2 129);
Math.Lemmas.pow2_lt_compat 133 129;
Math.Lemmas.pow2_double_sum 133;
assert (SD.bn_v r + pow2 256 - S.q < pow2 134);
Math.Lemmas.pow2_lt_compat 256 134;
carry_is_zero (v c1) 256 (SD.bn_v out) (SD.bn_v r + pow2 256 - S.q);
assert (v c1 = 0);
assert_norm (pow2 134 < S.q);
assert (SD.bn_v r + pow2 256 - S.q < S.q);
BB.lseq_mask_select_lemma out r mask;
assert (SD.bn_v res == SD.bn_v r + pow2 256 - S.q);
Math.Lemmas.lemma_mod_sub (pow2 256 + SD.bn_v r) S.q 1;
assert (SD.bn_v res % S.q == SD.bn_v a % S.q);
Math.Lemmas.small_mod (SD.bn_v res) S.q end
val qmul_shift_383_mod_2_lemma : l:lseq uint64 8 -> | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.K256.Scalar.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Scalar.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Lib.Sequence.lseq Lib.IntTypes.uint64 8
-> FStar.Pervasives.Lemma
(ensures
Lib.IntTypes.v l.[ 5 ] / Prims.pow2 63 =
Hacl.Spec.Bignum.Definitions.bn_v l / Prims.pow2 383 % 2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Division",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"Prims.pow2",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_index",
"Prims.squash",
"FStar.Math.Lemmas.pow2_modulo_division_lemma_1",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality"
] | [] | false | false | true | false | false | let qmul_shift_383_mod_2_lemma l =
| calc ( == ) {
v l.[ 5 ] / pow2 63;
( == ) { SD.bn_eval_index l 5 }
SD.bn_v l / pow2 320 % pow2 64 / pow2 63;
( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (SD.bn_v l) 320 384 }
SD.bn_v l % pow2 384 / pow2 320 / pow2 63;
( == ) { Math.Lemmas.division_multiplication_lemma (SD.bn_v l % pow2 384) (pow2 320) (pow2 63) }
SD.bn_v l % pow2 384 / (pow2 320 * pow2 63);
( == ) { Math.Lemmas.pow2_plus 320 63 }
SD.bn_v l % pow2 384 / pow2 383;
( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (SD.bn_v l) 383 384 }
SD.bn_v l / pow2 383 % pow2 1;
( == ) { assert_norm (pow2 1 = 2) }
SD.bn_v l / pow2 383 % 2;
} | false |
FStar.Order.fst | FStar.Order.ne | val ne : order -> bool | val ne : order -> bool | let ne o = o <> Eq | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 28,
"start_col": 0,
"start_line": 28
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Order.order -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_disEquality",
"FStar.Order.Eq",
"Prims.bool"
] | [] | false | false | false | true | false | let ne o =
| o <> Eq | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.nsize_public | val nsize_public : a: Spec.Agile.DH.algorithm -> FStar.UInt32.t | let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 26,
"start_col": 0,
"start_line": 23
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> FStar.UInt32.t | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.t"
] | [] | false | false | false | true | false | let nsize_public (a: DH.algorithm) =
| match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul | false |
|
FStar.Order.fst | FStar.Order.ge | val ge : order -> bool | val ge : order -> bool | let ge o = o <> Lt | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 22,
"start_col": 0,
"start_line": 22
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Order.order -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_disEquality",
"FStar.Order.Lt",
"Prims.bool"
] | [] | false | false | false | true | false | let ge o =
| o <> Lt | false |
FStar.Order.fst | FStar.Order.le | val le : order -> bool | val le : order -> bool | let le o = o <> Gt | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 25,
"start_col": 0,
"start_line": 25
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Order.order -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_disEquality",
"FStar.Order.Gt",
"Prims.bool"
] | [] | false | false | false | true | false | let le o =
| o <> Gt | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.nsize_key | val nsize_key : a: Spec.Agile.DH.algorithm -> FStar.UInt32.t | let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 20,
"start_col": 0,
"start_line": 17
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1" | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> FStar.UInt32.t | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.t"
] | [] | false | false | false | true | false | let nsize_key (a: DH.algorithm) =
| match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul | false |
|
FStar.Order.fst | FStar.Order.order_from_int | val order_from_int : int -> order | val order_from_int : int -> order | let order_from_int i =
if i < 0 then Lt
else if i = 0 then Eq
else Gt | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 52,
"start_col": 0,
"start_line": 49
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt
val eq : order -> bool
let eq o = o = Eq
// Lexicographical combination, thunked to be lazy
val lex : order -> (unit -> order) -> order
let lex o1 o2 =
match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.int -> FStar.Order.order | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims.op_LessThan",
"FStar.Order.Lt",
"Prims.bool",
"Prims.op_Equality",
"FStar.Order.Eq",
"FStar.Order.Gt",
"FStar.Order.order"
] | [] | false | false | false | true | false | let order_from_int i =
| if i < 0 then Lt else if i = 0 then Eq else Gt | false |
FStar.Order.fst | FStar.Order.gt | val gt : order -> bool | val gt : order -> bool | let gt o = o = Gt | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 32,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency... | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Order.order -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_Equality",
"FStar.Order.Gt",
"Prims.bool"
] | [] | false | false | false | true | false | let gt o =
| o = Gt | false |
FStar.Order.fst | FStar.Order.compare_int | val compare_int : int -> int -> order | val compare_int : int -> int -> order | let compare_int i j = order_from_int (i - j) | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 61,
"start_col": 0,
"start_line": 61
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt
val eq : order -> bool
let eq o = o = Eq
// Lexicographical combination, thunked to be lazy
val lex : order -> (unit -> order) -> order
let lex o1 o2 =
match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt
val order_from_int : int -> order
let order_from_int i =
if i < 0 then Lt
else if i = 0 then Eq
else Gt
val int_of_order : order -> int
let int_of_order = function
| Lt -> (-1)
| Eq -> 0
| Gt -> 1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.int -> j: Prims.int -> FStar.Order.order | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.Order.order_from_int",
"Prims.op_Subtraction",
"FStar.Order.order"
] | [] | false | false | false | true | false | let compare_int i j =
| order_from_int (i - j) | false |
FStar.Order.fst | FStar.Order.lex | val lex : order -> (unit -> order) -> order | val lex : order -> (unit -> order) -> order | let lex o1 o2 =
match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 46,
"start_col": 0,
"start_line": 42
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt
val eq : order -> bool
let eq o = o = Eq
// Lexicographical combination, thunked to be lazy | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o1: FStar.Order.order -> o2: (_: Prims.unit -> FStar.Order.order) -> FStar.Order.order | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.unit",
"FStar.Order.Lt",
"FStar.Order.Gt"
] | [] | false | false | false | true | false | let lex o1 o2 =
| match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt | false |
FStar.Order.fst | FStar.Order.lt | val lt : order -> bool | val lt : order -> bool | let lt o = o = Lt | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 35,
"start_col": 0,
"start_line": 35
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Order.order -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_Equality",
"FStar.Order.Lt",
"Prims.bool"
] | [] | false | false | false | true | false | let lt o =
| o = Lt | false |
FStar.Order.fst | FStar.Order.eq | val eq : order -> bool | val eq : order -> bool | let eq o = o = Eq | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 38,
"start_col": 0,
"start_line": 38
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Order.order -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_Equality",
"FStar.Order.Eq",
"Prims.bool"
] | [] | false | false | false | true | false | let eq o =
| o = Eq | false |
FStar.Order.fst | FStar.Order.compare_option | val compare_option : ('a -> 'a -> order) -> option 'a -> option 'a -> order | val compare_option : ('a -> 'a -> order) -> option 'a -> option 'a -> order | let compare_option f x y =
match x, y with
| None , None -> Eq
| None , Some _ -> Lt
| Some _ , None -> Gt
| Some x , Some y -> f x y | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 85,
"start_col": 0,
"start_line": 80
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt
val eq : order -> bool
let eq o = o = Eq
// Lexicographical combination, thunked to be lazy
val lex : order -> (unit -> order) -> order
let lex o1 o2 =
match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt
val order_from_int : int -> order
let order_from_int i =
if i < 0 then Lt
else if i = 0 then Eq
else Gt
val int_of_order : order -> int
let int_of_order = function
| Lt -> (-1)
| Eq -> 0
| Gt -> 1
val compare_int : int -> int -> order
let compare_int i j = order_from_int (i - j)
(*
* It promises to call the comparator in strictly smaller elements
* Useful when writing a comparator for an inductive type,
* that contains the list of itself as an argument to one of its
* data constructors
*)
let rec compare_list (#a:Type)
(l1 l2:list a)
(f:(x:a{x << l1} -> y:a{y << l2} -> order))
: order
= match l1, l2 with
| [], [] -> Eq
| [], _ -> Lt
| _, [] -> Gt
| x::xs, y::ys -> lex (f x y) (fun _ -> compare_list xs ys f) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (_: 'a -> _: 'a -> FStar.Order.order) ->
x: FStar.Pervasives.Native.option 'a ->
y: FStar.Pervasives.Native.option 'a
-> FStar.Order.order | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Order.Eq",
"FStar.Order.Lt",
"FStar.Order.Gt"
] | [] | false | false | false | true | false | let compare_option f x y =
| match x, y with
| None, None -> Eq
| None, Some _ -> Lt
| Some _, None -> Gt
| Some x, Some y -> f x y | false |
FStar.Order.fst | FStar.Order.compare_list | val compare_list (#a: Type) (l1 l2: list a) (f: (x: a{x << l1} -> y: a{y << l2} -> order)) : order | val compare_list (#a: Type) (l1 l2: list a) (f: (x: a{x << l1} -> y: a{y << l2} -> order)) : order | let rec compare_list (#a:Type)
(l1 l2:list a)
(f:(x:a{x << l1} -> y:a{y << l2} -> order))
: order
= match l1, l2 with
| [], [] -> Eq
| [], _ -> Lt
| _, [] -> Gt
| x::xs, y::ys -> lex (f x y) (fun _ -> compare_list xs ys f) | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 77,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt
val eq : order -> bool
let eq o = o = Eq
// Lexicographical combination, thunked to be lazy
val lex : order -> (unit -> order) -> order
let lex o1 o2 =
match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt
val order_from_int : int -> order
let order_from_int i =
if i < 0 then Lt
else if i = 0 then Eq
else Gt
val int_of_order : order -> int
let int_of_order = function
| Lt -> (-1)
| Eq -> 0
| Gt -> 1
val compare_int : int -> int -> order
let compare_int i j = order_from_int (i - j)
(*
* It promises to call the comparator in strictly smaller elements
* Useful when writing a comparator for an inductive type,
* that contains the list of itself as an argument to one of its
* data constructors | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Prims.list a -> l2: Prims.list a -> f: (x: a{x << l1} -> y: a{y << l2} -> FStar.Order.order)
-> FStar.Order.order | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Prims.precedes",
"FStar.Order.order",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Order.Eq",
"FStar.Order.Lt",
"FStar.Order.Gt",
"FStar.Order.lex",
"Prims.unit",
"FStar.Order.compare_list"
] | [
"recursion"
] | false | false | false | false | false | let rec compare_list (#a: Type) (l1 l2: list a) (f: (x: a{x << l1} -> y: a{y << l2} -> order))
: order =
| match l1, l2 with
| [], [] -> Eq
| [], _ -> Lt
| _, [] -> Gt
| x :: xs, y :: ys -> lex (f x y) (fun _ -> compare_list xs ys f) | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.dh_st | val dh_st : a: Spec.Agile.DH.algorithm -> p: Type0 -> Type0 | let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False)) | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 21,
"end_line": 43,
"start_col": 0,
"start_line": 29
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> p: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.Agile.DH.serialized_point",
"FStar.Seq.Base.equal",
"Lib.Buffer.as_seq",
"FStar.Pervasives.Native.__proj__Some__item__v",
"FStar.Pervasives.Native.uu___is_None",
"Prims.l_False",
"Prims.logical",
"FStar.Pervasives.Native.option",
"Spec.Agile.DH.dh"
] | [] | false | false | false | true | true | let dh_st (a: DH.algorithm) (p: Type0) =
|
o: lbuffer uint8 (nsize_public a) ->
k: lbuffer uint8 (nsize_key a) ->
i: lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 -> p /\ live h0 o /\ live h0 k /\ live h0 i /\ disjoint o i /\ disjoint o k)
(ensures
fun h0 result h1 ->
modifies (loc o) h0 h1 /\
(let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ (as_seq h1 o) `Seq.equal` (Some?.v output)
| 1ul -> None? output
| _ -> False)) | false |
|
FStar.Order.fst | FStar.Order.int_of_order | val int_of_order : order -> int | val int_of_order : order -> int | let int_of_order = function
| Lt -> (-1)
| Eq -> 0
| Gt -> 1 | {
"file_name": "ulib/FStar.Order.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 58,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Order
type order = | Lt | Eq | Gt
// Some derived checks
val ge : order -> bool
let ge o = o <> Lt
val le : order -> bool
let le o = o <> Gt
val ne : order -> bool
let ne o = o <> Eq
// Just for completeness and consistency...
val gt : order -> bool
let gt o = o = Gt
val lt : order -> bool
let lt o = o = Lt
val eq : order -> bool
let eq o = o = Eq
// Lexicographical combination, thunked to be lazy
val lex : order -> (unit -> order) -> order
let lex o1 o2 =
match o1 with
| Lt -> Lt
| Eq -> o2 ()
| Gt -> Gt
val order_from_int : int -> order
let order_from_int i =
if i < 0 then Lt
else if i = 0 then Eq
else Gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Order.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: FStar.Order.order -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"FStar.Order.order",
"Prims.op_Minus",
"Prims.int"
] | [] | false | false | false | true | false | let int_of_order =
| function
| Lt -> (- 1)
| Eq -> 0
| Gt -> 1 | false |
IfcMonitor.fst | IfcMonitor.interpret_exp | val interpret_exp (h: heap) (env: label_fun) (e: exp) : Tot (int * label) | val interpret_exp (h: heap) (env: label_fun) (e: exp) : Tot (int * label) | let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 106,
"end_line": 92,
"start_col": 0,
"start_line": 92
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2 | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.DM4F.Heap.IntStoreFixed.heap -> env: IfcMonitor.label_fun -> e: IfcMonitor.exp
-> Prims.int * Label.label | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.label_fun",
"IfcMonitor.exp",
"IfcMonitor.interpret_exp_st",
"FStar.Pervasives.Native.tuple2",
"Prims.int",
"Label.label"
] | [] | false | false | false | true | false | let interpret_exp (h: heap) (env: label_fun) (e: exp) : Tot (int * label) =
| reify (interpret_exp_st env e) h | false |
IfcMonitor.fst | IfcMonitor.decr_while | val decr_while : heap -> com -> GTot nat | val decr_while : heap -> com -> GTot nat | let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0 | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 103,
"start_col": 0,
"start_line": 100
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.DM4F.Heap.IntStoreFixed.heap -> c: IfcMonitor.com -> Prims.GTot Prims.nat | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.com",
"IfcMonitor.exp",
"IfcMonitor.metric",
"IfcMonitor.interpret_exp'",
"Prims.nat"
] | [] | false | false | false | false | false | let decr_while h c =
| match c with
| While c b v -> interpret_exp' h v
| _ -> 0 | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.secret_to_public_st | val secret_to_public_st : a: Spec.Agile.DH.algorithm -> p: Type0 -> Type0 | let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False)) | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 20,
"end_line": 58,
"start_col": 0,
"start_line": 46
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False)) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> p: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.Agile.DH.serialized_point",
"FStar.Seq.Base.equal",
"Lib.Buffer.as_seq",
"FStar.Pervasives.Native.__proj__Some__item__v",
"FStar.Pervasives.Native.uu___is_None",
"Prims.l_False",
"Prims.logical",
"FStar.Pervasives.Native.option",
"Spec.Agile.DH.secret_to_public"
] | [] | false | false | false | true | true | let secret_to_public_st (a: DH.algorithm) (p: Type0) =
| o: lbuffer uint8 (nsize_public a) -> i: lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 -> p /\ live h0 o /\ live h0 i /\ disjoint o i)
(ensures
fun h0 result h1 ->
modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ (as_seq h1 o) `Seq.equal` (Some?.v output)
| 1ul -> None? output
| _ -> False)) | false |
|
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.secret_to_public_c51 | val secret_to_public_c51:secret_to_public_st (DH.DH_Curve25519) True | val secret_to_public_c51:secret_to_public_st (DH.DH_Curve25519) True | let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 73,
"start_col": 0,
"start_line": 71
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.HPKE.Interface.DH.secret_to_public_st Spec.Agile.DH.DH_Curve25519 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Spec.Agile.DH.DH_Curve25519",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.t",
"Prims.unit",
"Hacl.Curve25519_51.secret_to_public"
] | [] | false | false | false | true | false | let secret_to_public_c51:secret_to_public_st (DH.DH_Curve25519) True =
| fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul | false |
IfcMonitor.fst | IfcMonitor.interpret_exp_st | val interpret_exp_st (env: label_fun) (e: exp) : ISFR.ISRNull (int * label) | val interpret_exp_st (env: label_fun) (e: exp) : ISFR.ISRNull (int * label) | let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2 | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 88,
"start_col": 0,
"start_line": 78
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | env: IfcMonitor.label_fun -> e: IfcMonitor.exp
-> FStar.DM4F.IntStoreFixedReader.ISRNull (Prims.int * Label.label) | FStar.DM4F.IntStoreFixedReader.ISRNull | [] | [] | [
"IfcMonitor.label_fun",
"IfcMonitor.exp",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"Label.label",
"Label.Low",
"FStar.Pervasives.Native.tuple2",
"FStar.DM4F.Heap.IntStoreFixed.id",
"FStar.DM4F.IntStoreFixedReader.read",
"IfcMonitor.binop",
"IfcMonitor.interpret_binop",
"Label.join",
"IfcMonitor.interpret_exp_st"
] | [
"recursion"
] | false | true | false | false | false | let rec interpret_exp_st (env: label_fun) (e: exp) : ISFR.ISRNull (int * label) =
| match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a, l1 = interpret_exp_st env e1 in
let b, l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2 | false |
IfcMonitor.fst | IfcMonitor.interpret_binop | val interpret_binop : o:binop -> a:int -> b:int -> Tot int | val interpret_binop : o:binop -> a:int -> b:int -> Tot int | let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 38,
"start_col": 0,
"start_line": 33
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: IfcMonitor.binop -> a: Prims.int -> b: Prims.int -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"IfcMonitor.binop",
"Prims.int",
"Prims.op_Addition",
"Prims.op_Subtraction",
"Prims.op_Multiply",
"Prims.op_GreaterThanOrEqual",
"Prims.bool"
] | [] | false | false | false | true | false | let interpret_binop o a b =
| match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a | false |
IfcMonitor.fst | IfcMonitor.interpret_exp' | val interpret_exp' (h: heap) (e: exp) : Tot nat | val interpret_exp' (h: heap) (e: exp) : Tot nat | let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 96,
"start_col": 0,
"start_line": 94
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.DM4F.Heap.IntStoreFixed.heap -> e: IfcMonitor.exp -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.exp",
"Prims.int",
"Label.label",
"Prims.op_GreaterThan",
"Prims.bool",
"Prims.nat",
"FStar.Pervasives.Native.tuple2",
"IfcMonitor.interpret_exp",
"FStar.DM4F.Heap.IntStoreFixed.id",
"Label.Low"
] | [] | false | false | false | true | false | let interpret_exp' (h: heap) (e: exp) : Tot nat =
| let n, _ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n | false |
IfcMonitor.fst | IfcMonitor.interpret_com | val interpret_com (h0: heap) (c: com) (env: label_fun) (pc: label) : Tot (option heap) | val interpret_com (h0: heap) (c: com) (env: label_fun) (pc: label) : Tot (option heap) | let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 166,
"start_col": 0,
"start_line": 162
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.DM4F.Heap.IntStoreFixed.heap ->
c: IfcMonitor.com ->
env: IfcMonitor.label_fun ->
pc: Label.label
-> FStar.Pervasives.Native.option FStar.DM4F.Heap.IntStoreFixed.heap | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.com",
"IfcMonitor.label_fun",
"Label.label",
"IfcMonitor.interpret_com_st",
"Prims.unit",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option"
] | [] | false | false | false | true | false | let interpret_com (h0: heap) (c: com) (env: label_fun) (pc: label) : Tot (option heap) =
| match (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None | false |
Benton2004.fst | Benton2004.d_lu2 | val d_lu2 (b: exp bool) (c: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (while b (seq c (ifthenelse b c skip))))) | val d_lu2 (b: exp bool) (c: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (while b (seq c (ifthenelse b c skip))))) | let d_lu2
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (while b (seq c (ifthenelse b c skip)))))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (while b (seq c (ifthenelse b c skip))) in
let eb = reify_exp b in
let rec prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
(decreases fuel)
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
if fst (eb s1)
then begin
let s2 = snd (fc (fuel - 1) s1) in
assert (fl fuel s0 == fl (fuel - 2) s2);
assert (fc fuel s1 == fc (fuel - 1) s1);
assert (fr fuel s0 == fr (fuel - 1) s2);
prf1 s2 (fuel - 2);
assert (fr (fuel - 1) s2 == fr (fuel - 2) s2)
end else ()
end else ()
in
let rec prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fl (fuel + fuel) s0 == fr fuel s0))
(decreases fuel)
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
if fst (eb s1)
then begin
let s2 = snd (fc fuel s1) in
assert (fr fuel s0 == fr (fuel - 1) s2);
prf2 s2 (fuel - 1);
assert (fl ((fuel - 1) + (fuel - 1)) s2 == fr (fuel - 1) s2);
assert (fl (fuel + fuel) s0 ==
fl ((fuel + fuel) - 1) s1);
assert (fl (fuel + fuel) s0 == fl (fuel - 1 + fuel - 1) s2)
end else begin
assert (fl (fuel + fuel) s0 == fr fuel s0)
end
end else ()
in
let prf1' (s0:heap) (fuel:nat) :Lemma (fst (fl fuel s0) == true ==> fr fuel s0 == fl fuel s0)
= Classical.move_requires (prf1 s0) fuel
in
let prf2' (s0:heap) (fuel:nat) :Lemma (fst (fr fuel s0) == true ==> fl (fuel + fuel) s0 == fr fuel s0)
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf1'; //AR: same pattern as in Pointer, see the comment there
Classical.forall_intro_2 prf2' | {
"file_name": "examples/rel/Benton2004.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 813,
"start_col": 0,
"start_line": 749
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Benton2004
include Benton2004.Aux
include FStar.DM4F.Heap.IntStoreFixed
include FStar.DM4F.IntStoreFixed
type reified_raw_computation =
(nat ->
heap ->
GTot (bool * heap)
)
let fuel_monotonic
(f: reified_raw_computation)
: GTot Type0
= forall (fuel fuel' : nat) h .{:pattern has_type fuel nat; has_type fuel' nat; has_type h heap} (
fuel <= fuel' /\
fst (f fuel h) == true
) ==> (
f fuel' h == f fuel h
)
type reified_computation =
(f: reified_raw_computation { fuel_monotonic f } )
let reified_computation_elim
(f: reified_computation)
(fuel fuel' : nat)
(h: _)
: Lemma
(requires (fuel <= fuel' /\ fst (f fuel h) == true))
(ensures (f fuel' h == f fuel h))
= ()
type raw_computation =
(fuel: nat) -> ISNull bool
let reify_raw_computation (f : raw_computation) : reified_raw_computation =
fun n h -> reify (f n) h
type computation =
(f: raw_computation { fuel_monotonic (reify_raw_computation f) })
let reify_computation (c: computation) : GTot reified_computation =
reify_raw_computation c
let skip : computation = let f (fuel: nat) : ISNull bool = true in f
type var = id
#set-options "--z3rlimit 128 --max_fuel 8 --max_ifuel 8"
type exp (t: Type0) : Type0 = unit -> IntStore t (requires (fun _ -> True)) (ensures (fun h _ h' -> h' == h))
let reified_exp (t: Type0) : Tot Type0 = (h: heap) -> Ghost (t * heap) (requires True) (ensures (fun rh -> snd rh == h))
let reify_exp (#t: Type0) (e: exp t) : GTot (reified_exp t) =
let f = reify (e ()) in
f
let const (#t: Type0) (v: t) : Tot (exp t) = fun _ -> v
let evar (x: var) : Tot (exp int) = fun _ -> read x
let assign (r: var) (n: exp int) : Tot computation =
let g _ : ISNull bool =
let n = n () in
write r n;
true
in
g
let ifthenelse (b: exp bool) (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if b () then c1 fuel else c2 fuel
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
let e = reify_exp b in (
(forall fuel h . fst (e h) == true ==> f fuel h == f1 fuel h) /\
(forall fuel h . fst (e h) == false ==> f fuel h == f2 fuel h)
));
g
let seq (c1 c2: computation) : Tot computation =
let g (fuel: nat) : ISNull bool =
if c1 fuel then c2 fuel else false
in
admit ();
assert (
let f : reified_raw_computation =
let h fuel = reify (g fuel) in h
in
let f1 = reify_computation c1 in
let f2 = reify_computation c2 in
(forall fuel h . fst (f fuel h) == true <==> (fst (f1 fuel h) == true /\ fst (f2 fuel (snd (f1 fuel h))) == true)) /\
(forall fuel h . fst (f fuel h) == true ==> f fuel h == f2 fuel (snd (f1 fuel h)))
);
g
let rec while_raw (b: exp bool) (c: computation) (fuel: nat) : ISNull bool (decreases fuel) =
if b ()
then
if c fuel
then
if fuel = 0
then false
else while_raw b c (fuel - 1)
else false
else true
let fuel_monotonic_while
(b: exp bool)
(c: computation)
(f: reified_raw_computation)
: Lemma
(requires (forall fuel h . f fuel h == reify (while_raw b c fuel) h))
(ensures (
fuel_monotonic f
))
= admit ();
let f (fuel: nat) = reify (while_raw b c fuel) in
let fb = reify_exp b in
let fc = reify_computation c in
let rec prf
(fuel fuel' : nat)
(h: heap)
: Lemma
(requires (
fuel <= fuel' /\
fst (f fuel h) == true
))
(ensures (f fuel' h == f fuel h))
(decreases fuel)
= let (_, h1) = f fuel h in
let (_, h1') = f fuel' h in
let (b0, _) = fb h in
if b0
then begin
let (_, h') = fc fuel h in
prf (fuel - 1) (fuel' - 1) h'
end else ()
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf x y))
let while (b: exp bool) (c: computation) : Tot computation =
let f : raw_computation = while_raw b c in
let g = reify_raw_computation f in
fuel_monotonic_while b c g;
f
(* Termination *)
let terminates_on (f: reified_computation) (h: heap) : GTot Type0 =
exists fuel . fst (f fuel h) == true
let included
(#t: Type0)
(r1 r2: rel t)
: GTot Type0
= forall x y . holds r1 x y ==> holds r2 x y
let is_per (#t: Type0) (f: rel t) : GTot Type0 =
(forall x1 x2 . f x1 x2 <==> f x2 x1) /\
(forall x1 x2 x3 . (f x1 x2 /\ f x2 x3) ==> f x1 x3)
let is_per_holds_sym
(#t: Type0)
(p: rel t)
(s s' : t)
: Lemma
(requires (is_per p))
(ensures (holds p s s' <==> holds p s' s))
[SMTPat (holds p s s')]
= holds_equiv p s s';
holds_equiv p s' s
let per_holds_trans
(#t: Type0)
(f: rel t)
(x1 x2 x3: t)
: Lemma
(requires (is_per f /\ holds f x1 x2 /\ holds f x2 x3))
(ensures (holds f x1 x3))
[SMTPatOr [
[SMTPat (holds f x1 x2); SMTPat (holds f x2 x3)];
[SMTPat (holds f x1 x2); SMTPat (holds f x1 x3)];
[SMTPat (holds f x2 x3); SMTPat (holds f x1 x3)];
]]
= holds_equiv f x1 x2;
holds_equiv f x2 x3;
holds_equiv f x1 x3
let intersect
(#t: Type0)
(ns1 ns2: rel t)
: GTot (rel t)
= let f x y = holds ns1 x y /\ holds ns2 x y in
Classical.forall_intro_2 (holds_equiv f);
f
let holds_intersect
(#t: Type0)
(ns1 ns2: rel t)
(x y: t)
: Lemma
(holds (intersect ns1 ns2) x y <==> (holds ns1 x y /\ holds ns2 x y))
[SMTPat (holds (intersect ns1 ns2) x y)]
= holds_equiv (intersect ns1 ns2) x y
type nstype (t: Type0) = rel t
let interpolable
(#t: Type0)
(f: rel t)
: GTot Type0
= forall (x1 x3 : t) . f x1 x3 ==> (exists x2 . f x1 x2 /\ f x2 x3)
let interpolable_elim
(#t: Type0)
(f: rel t)
(x1 x3: t)
: Lemma
(requires (interpolable f /\ holds f x1 x3))
(ensures (exists x2 . holds f x1 x2 /\ holds f x2 x3))
= Classical.forall_intro_2 (holds_equiv f)
type sttype = rel heap
(* 3.1.3. Judgements *)
let eval_equiv_reified
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': reified_exp t)
: GTot Type0
= forall (s s' : heap) .
holds p s s' ==> holds e (fst (f s)) (fst (f' s'))
let eval_equiv
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: GTot Type0
= let f = reify_exp f in
let f' = reify_exp f' in
eval_equiv_reified p e f f'
let terminates_equiv_reified
(p : sttype)
(f f' : reified_computation)
: GTot Type0
= forall s s' . holds p s s' ==> (terminates_on f s <==> terminates_on f' s')
let terminates_equiv_reified_sym
(p : sttype)
(f f' : reified_computation)
: Lemma
(requires (terminates_equiv_reified p f f' /\ is_per p))
(ensures (terminates_equiv_reified p f' f))
= ()
let exec_equiv_reified
(p p' : sttype)
(f f' : reified_computation)
: GTot Type0
= terminates_equiv_reified p f f' /\
(forall (s s' : heap) (fuel: nat) .
(holds p s s' /\ fst (f fuel s) == true /\ fst (f' fuel s') == true) ==> holds p' (snd (f fuel s)) (snd (f' fuel s')))
let exec_equiv
(p p' : sttype)
(f f' : computation)
: GTot Type0
= let f = reify_computation f in
let f' = reify_computation f' in
exec_equiv_reified p p' f f'
(* Flipping a relation *)
let flip (#t: Type0) (r: rel t) : Tot (rel t) =
let g x y = holds r y x in
g
let holds_flip (#t: Type0) (r: rel t) : Lemma
(forall x y . holds (flip r) x y <==> holds r y x)
= Classical.forall_intro_2 (holds_equiv (flip r))
let holds_flip' (#t: Type0) (r: rel t) x y : Lemma
(ensures (holds (flip r) x y <==> holds r y x))
[SMTPat (holds (flip r) x y)]
= holds_flip r
let eval_equiv_flip
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(eval_equiv (flip p) (flip e) f' f <==> eval_equiv p e f f')
[SMTPat (eval_equiv (flip p) (flip e) f' f)]
= holds_flip p;
holds_flip e
let exec_equiv_flip
(p p': sttype)
(f f' : computation)
: Lemma
(exec_equiv (flip p) (flip p') f f' <==> exec_equiv p p' f' f)
[SMTPat (exec_equiv (flip p) (flip p') f f')]
= holds_flip p;
holds_flip p'
(* Lemma 2 *)
let eval_equiv_sym
(#t: Type0)
(p: sttype)
(e: nstype t)
(f f': exp t)
: Lemma
(requires (is_per p /\ is_per e /\ eval_equiv p e f f'))
(ensures (eval_equiv p e f' f))
= ()
let exec_equiv_sym
(p p': sttype)
(f f' : computation)
: Lemma
(requires (is_per p /\ is_per p'))
(ensures (exec_equiv p p' f f' <==> exec_equiv p p' f' f))
[SMTPat (exec_equiv p p' f f')]
= ()
#push-options "--z3rlimit 5 --max_fuel 0 --max_ifuel 0"
let eval_equiv_trans
(#t: Type0)
(p: sttype)
(e: nstype t)
(f1 f2 f3 : exp t)
: Lemma
(requires (is_per e /\ interpolable p /\ eval_equiv p e f1 f2 /\ eval_equiv p e f2 f3))
(ensures eval_equiv p e f1 f3)
= let lem (s1 s3:heap)
: Lemma (requires holds p s1 s3)
(ensures (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3))))
= let w = interpolable_elim p s1 s3 in
Classical.exists_elim
(holds e (fst (reify_exp f1 s1)) (fst (reify_exp f3 s3)))
w
(fun (s2:heap{holds p s1 s2 /\ holds p s2 s3}) ->
assert (holds e (fst (reify_exp f1 s1)) (fst (reify_exp f2 s2)));
assert (holds e (fst (reify_exp f2 s2)) (fst (reify_exp f3 s3))))
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (lem x))
#pop-options
let exec_equiv_reified_trans
(p p': sttype)
(f1 f2 f3 : reified_computation)
: Lemma
(requires (is_per p' /\ interpolable p /\ exec_equiv_reified p p' f1 f2 /\ exec_equiv_reified p p' f2 f3))
(ensures (exec_equiv_reified p p' f1 f3))
= let prf1
(s1 s3 : heap)
: Lemma
(requires (holds p s1 s3))
(ensures (terminates_on f1 s1 <==> terminates_on f3 s3))
= interpolable_elim p s1 s3
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s1 s3: heap)
(fuel: nat)
: Lemma
(requires (holds p s1 s3 /\ fst (f1 fuel s1) == true /\ fst (f3 fuel s3) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= interpolable_elim p s1 s3;
let g
(s2: heap)
: Lemma
(requires (holds p s1 s2 /\ holds p s2 s3))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= let g'
(fuel' : nat)
: Lemma
(requires (fst (f2 fuel' s2) == true))
(ensures (holds p' (snd (f1 fuel s1)) (snd (f3 fuel s3))))
= assert (f1 (fuel + fuel') s1 == f1 fuel s1);
assert (f2 (fuel + fuel') s2 == f2 fuel' s2);
assert (f3 (fuel + fuel') s3 == f3 fuel s3);
assert (holds p' (snd (f1 (fuel + fuel') s1)) (snd (f2 (fuel + fuel') s2)))
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
let exec_equiv_trans
(p p' : sttype)
(c1 c2 c3 : computation)
: Lemma
(requires (
is_per p' /\
interpolable p /\
exec_equiv p p' c1 c2 /\
exec_equiv p p' c2 c3
))
(ensures (exec_equiv p p' c1 c3))
[SMTPatOr [
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c2 c3)];
[SMTPat (exec_equiv p p' c1 c2); SMTPat (exec_equiv p p' c1 c3)];
[SMTPat (exec_equiv p p' c2 c3); SMTPat (exec_equiv p p' c1 c3)];
]]
= let z1 = reify_computation c1 in
let z2 = reify_computation c2 in
let z3 = reify_computation c3 in
exec_equiv_reified_trans p p' z1 z2 z3
(* Figure 2. Theorem 1. *)
let d_esub
(#t: Type0)
(f f' : exp t)
(ph ph': sttype)
(p p': nstype t)
: Lemma
(requires (
eval_equiv ph p f f' /\
included ph' ph /\
included p p'
))
(ensures (eval_equiv ph' p' f f'))
[SMTPat (eval_equiv ph' p' f f'); SMTPat (eval_equiv ph p f f')]
= ()
let d_csub
(p1 p2 p1' p2' : sttype)
(f f' : computation)
: Lemma
(requires (
exec_equiv p1 p2 f f' /\
included p1' p1 /\
included p2 p2'
))
(ensures (exec_equiv p1' p2' f f'))
[SMTPat (exec_equiv p1' p2' f f'); SMTPat (exec_equiv p1 p2 f f')]
= ()
let eop
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e2: exp from)
: Tot (exp to)
= fun () -> (e1 ()) `op` (e2 ())
(* Definition 1 *)
let op_abs
(#from #to: Type0)
(op: (from -> from -> Tot to))
(ns1 ns2: nstype from)
(ns: nstype to)
: GTot Type0
= forall x x' y y' .
(holds ns1 x x' /\ holds ns2 y y') ==>
holds ns (op x y) (op x' y')
let d_op
(#from #to: Type0)
(op: (from -> from -> Tot to))
(e1 e1' e2 e2': exp from)
(ns1 ns2: nstype from)
(ns: nstype to)
(phi: sttype)
: Lemma
(requires (
eval_equiv phi ns1 e1 e1' /\
eval_equiv phi ns2 e2 e2' /\
op_abs op ns1 ns2 ns
))
(ensures (eval_equiv phi ns (eop op e1 e2) (eop op e1' e2')))
= ()
(* Commands *)
let d_skip
(p: sttype)
: Lemma
(exec_equiv p p skip skip)
[SMTPat (exec_equiv p p skip skip)]
= ()
#set-options "--z3rlimit 1024"
let d_seq_terminates
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01 c12)) s0
))
(ensures (
terminates_on (reify_computation (seq c01' c12')) s0'
))
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let g
(fuel: nat)
: Lemma
(requires (fst (f01 fuel s0) == true /\ fst (f01' fuel s0') == true))
(ensures (terminates_on f' s0'))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1');
assert (reify_computation (seq c01' c12') fuel s0' ==
(reify_computation c12') fuel s1');
assert (terminates_on f12' s1');
let g'
(fuel' : nat)
: Lemma
(requires (fst (f12' fuel' s1') == true))
(ensures (terminates_on f' s0'))
= assert (f01' (fuel + fuel') s0' == (true, s1'));
assert (f12' (fuel + fuel') s1' == f12' fuel' s1');
assert (f' (fuel + fuel') s0' == f12' (fuel + fuel') s1');
assert (fst (f' (fuel + fuel') s0') == true)
in
Classical.forall_intro (Classical.move_requires g')
in
Classical.forall_intro (Classical.move_requires g)
(* We now need to prove the converse, too, because p is not necessarily a PER. *)
let d_seq_terminates_recip
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
(s0 s0': heap)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12' /\
holds p0 s0 s0' /\
terminates_on (reify_computation (seq c01' c12')) s0'
))
(ensures (
terminates_on (reify_computation (seq c01 c12)) s0
))
= holds_flip' p0 s0' s0;
d_seq_terminates (flip p0) (flip p1) (flip p2) c01' c01 c12' c12 s0' s0
let d_seq
(p0 p1 p2 : sttype)
(c01 c01' c12 c12' : computation)
: Lemma
(requires (
exec_equiv p0 p1 c01 c01' /\
exec_equiv p1 p2 c12 c12'
))
(ensures (
exec_equiv p0 p2 (seq c01 c12) (seq c01' c12')
))
[SMTPatOr [
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p1 p2 c12 c12')];
[SMTPat (exec_equiv p0 p1 c01 c01'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
[SMTPat (exec_equiv p1 p2 c12 c12'); SMTPat (exec_equiv p0 p2 (seq c01 c12) (seq c01' c12'))];
]]
= let f01 = reify_computation c01 in
let f01' = reify_computation c01' in
let f12 = reify_computation c12 in
let f12' = reify_computation c12' in
let f = reify_computation (seq c01 c12) in
let f' = reify_computation (seq c01' c12') in
let prf1
(s0 s0' : heap)
: Lemma
(requires (holds p0 s0 s0'))
(ensures (terminates_on f s0 <==> terminates_on f' s0'))
= Classical.move_requires (d_seq_terminates p0 p1 p2 c01 c01' c12 c12' s0) s0';
Classical.move_requires (d_seq_terminates_recip p0 p1 p2 c01 c01' c12 c12' s0) s0'
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0 s0': heap)
(fuel: nat)
: Lemma
(requires (holds p0 s0 s0' /\ fst (f fuel s0) == true /\ fst (f' fuel s0') == true))
(ensures (holds p2 (snd (f fuel s0)) (snd (f' fuel s0'))))
= let k01 = f01 fuel s0 in
let k01' = f01' fuel s0' in
let s1 = snd k01 in
let s1' = snd k01' in
assert (holds p1 s1 s1')
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (prf2 x y))
(* 3.1 Basic equations *)
let d_su1
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq skip c) c))
[SMTPat (exec_equiv phi phi' (seq skip c) c)]
= ()
let d_su1'
(c c' c'' : computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' c skip /\
exec_equiv phi' phi'' c' c''
))
(ensures (exec_equiv phi phi'' (seq c c') c''))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi' phi'' c' c''); SMTPat (exec_equiv phi phi'' (seq c c') c'')];
[SMTPat (exec_equiv phi phi' c skip); SMTPat (exec_equiv phi' phi'' c' c'')];
]]
= assert (exec_equiv phi phi'' (seq c c') (seq skip c'')) ;
let f1 = reify_computation (seq skip c'') in
let f2 = reify_computation c'' in
assert (forall fuel s0 . f1 fuel s0 == f2 fuel s0)
// NOTE: this rule is NOT a consequence of d_su1 + d_seq + d_ctr
let d_su2
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' c c))
(ensures (exec_equiv phi phi' (seq c skip) c))
[SMTPat (exec_equiv phi phi' (seq c skip) c)]
= ()
let d_assoc
(c1 c2 c3: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq (seq c1 c2) c3)))
(ensures (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3))))
[SMTPat (exec_equiv phi phi' (seq (seq c1 c2) c3) (seq c1 (seq c2 c3)))]
= let fl = reify_computation (seq (seq c1 c2) c3) in
let fr = reify_computation (seq c1 (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel)
let d_cc
(b: exp bool)
(c1 c2 c3: computation)
(phi phi' phi'' : sttype)
: Lemma
(requires (
exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2) /\
exec_equiv phi' phi'' c3 c3
))
(ensures (
exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3))
))
[SMTPatOr [
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi' phi'' c3 c3)];
[SMTPat (exec_equiv phi phi' (ifthenelse b c1 c2) (ifthenelse b c1 c2)); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
[SMTPat (exec_equiv phi' phi'' c3 c3); SMTPat (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (ifthenelse b (seq c1 c3) (seq c2 c3)))];
]]
= let fl = reify_computation (seq (ifthenelse b c1 c2) c3) in
let fr = reify_computation (ifthenelse b (seq c1 c3) (seq c2 c3)) in
assert (forall s0 fuel . fl s0 fuel == fr s0 fuel);
assert (exec_equiv phi phi'' (seq (ifthenelse b c1 c2) c3) (seq (ifthenelse b c1 c2) c3))
#restart-solver
let d_lu1
(b: exp bool)
(c: computation)
(phi phi' : sttype)
: Lemma
(requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (ifthenelse b (seq c (while b c)) skip)))
= let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (ifthenelse b (seq c (while b c)) skip) in
let eb = reify_exp b in
let prf1
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
= if fst (eb s0)
then begin
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
assert (fr fuel s0 == fl fuel s1)
end else ()
in
Classical.forall_intro_2 (fun x -> Classical.move_requires (prf1 x));
let prf2
(s0: heap)
(fuel: nat)
: Lemma
(requires (fst (fr fuel s0) == true))
(ensures (fst (fr fuel s0) == true /\ fl (fuel + 1) s0 == fr fuel s0))
= if fst (eb s0)
then begin
()
end else ()
in
let prf2'
(s0: heap)
(fuel: nat)
: Lemma
(ensures (fst (fr fuel s0) == true ==> fl (fuel + 1) s0 == fr fuel s0))
= Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf2' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked",
"FStar.Classical.fsti.checked",
"Benton2004.Aux.fsti.checked"
],
"interface_file": false,
"source_file": "Benton2004.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Benton2004.Aux",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 8,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1024,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Benton2004.exp Prims.bool ->
c: Benton2004.computation ->
phi: Benton2004.sttype ->
phi': Benton2004.sttype
-> FStar.Pervasives.Lemma
(requires Benton2004.exec_equiv phi phi' (Benton2004.while b c) (Benton2004.while b c))
(ensures
Benton2004.exec_equiv phi
phi'
(Benton2004.while b c)
(Benton2004.while b (Benton2004.seq c (Benton2004.ifthenelse b c Benton2004.skip)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Benton2004.exp",
"Prims.bool",
"Benton2004.computation",
"Benton2004.sttype",
"FStar.Classical.forall_intro_2",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.nat",
"Prims.l_imp",
"Prims.eq2",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.move_requires",
"Prims._assert",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.snd",
"Benton2004.reified_exp",
"Benton2004.reify_exp",
"Benton2004.reified_computation",
"Benton2004.reify_computation",
"Benton2004.while",
"Benton2004.seq",
"Benton2004.ifthenelse",
"Benton2004.skip",
"Benton2004.exec_equiv"
] | [] | false | false | true | false | false | let d_lu2 (b: exp bool) (c: computation) (phi phi': sttype)
: Lemma (requires (exec_equiv phi phi' (while b c) (while b c)))
(ensures (exec_equiv phi phi' (while b c) (while b (seq c (ifthenelse b c skip))))) =
| let fc = reify_computation c in
let fl = reify_computation (while b c) in
let fr = reify_computation (while b (seq c (ifthenelse b c skip))) in
let eb = reify_exp b in
let rec prf1 (s0: heap) (fuel: nat)
: Lemma (requires (fst (fl fuel s0) == true))
(ensures (fr fuel s0 == fl fuel s0))
(decreases fuel) =
if fst (eb s0)
then
let s1 = snd (fc fuel s0) in
assert (fl fuel s0 == fl (fuel - 1) s1);
if fst (eb s1)
then
let s2 = snd (fc (fuel - 1) s1) in
assert (fl fuel s0 == fl (fuel - 2) s2);
assert (fc fuel s1 == fc (fuel - 1) s1);
assert (fr fuel s0 == fr (fuel - 1) s2);
prf1 s2 (fuel - 2);
assert (fr (fuel - 1) s2 == fr (fuel - 2) s2)
in
let rec prf2 (s0: heap) (fuel: nat)
: Lemma (requires (fst (fr fuel s0) == true))
(ensures (fl (fuel + fuel) s0 == fr fuel s0))
(decreases fuel) =
if fst (eb s0)
then
let s1 = snd (fc fuel s0) in
if fst (eb s1)
then
let s2 = snd (fc fuel s1) in
assert (fr fuel s0 == fr (fuel - 1) s2);
prf2 s2 (fuel - 1);
assert (fl ((fuel - 1) + (fuel - 1)) s2 == fr (fuel - 1) s2);
assert (fl (fuel + fuel) s0 == fl ((fuel + fuel) - 1) s1);
assert (fl (fuel + fuel) s0 == fl (fuel - 1 + fuel - 1) s2)
else assert (fl (fuel + fuel) s0 == fr fuel s0)
in
let prf1' (s0: heap) (fuel: nat) : Lemma (fst (fl fuel s0) == true ==> fr fuel s0 == fl fuel s0) =
Classical.move_requires (prf1 s0) fuel
in
let prf2' (s0: heap) (fuel: nat)
: Lemma (fst (fr fuel s0) == true ==> fl (fuel + fuel) s0 == fr fuel s0) =
Classical.move_requires (prf2 s0) fuel
in
Classical.forall_intro_2 prf1';
Classical.forall_intro_2 prf2' | false |
IfcMonitor.fst | IfcMonitor.interpret_com_st | val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c]) | val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c]) | let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 9,
"end_line": 156,
"start_col": 0,
"start_line": 112
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: IfcMonitor.com ->
h0: FStar.DM4F.Heap.IntStoreFixed.heap ->
env: IfcMonitor.label_fun ->
pc: Label.label
-> FStar.DM4F.IntStoreExcFixed.IntStoreExc Prims.unit | FStar.DM4F.IntStoreExcFixed.IntStoreExc | [
""
] | [] | [
"IfcMonitor.com",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.label_fun",
"Label.label",
"Prims.unit",
"FStar.DM4F.Heap.IntStoreFixed.id",
"IfcMonitor.exp",
"Prims.int",
"Label.op_Less_Equals",
"Label.join",
"FStar.DM4F.IntStoreExcFixed.write",
"Prims.bool",
"FStar.DM4F.IntStoreExcFixed.raise_",
"FStar.Pervasives.Native.tuple2",
"IfcMonitor.interpret_exp_st",
"IfcMonitor.interpret_com_st",
"FStar.DM4F.IntStoreFixed.get",
"Prims.op_Equality",
"IfcMonitor.metric",
"Prims.op_disEquality",
"Prims.op_GreaterThan",
"Prims.nat",
"IfcMonitor.interpret_exp'"
] | [
"recursion"
] | false | true | false | false | false | let rec interpret_com_st c h0 env pc =
| match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then write x v else raise_ ()
| Seq c1 c2 ->
let h1 = (X.get ()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get ()) in
interpret_com_st c2 h2 env pc
| If e ct cf ->
let v, l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get ()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0
then
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get () in
let m1 = interpret_exp' h2 v in
if m0 > m1 then interpret_com_st c h2 env pc else raise_ () | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.change_error_code | val change_error_code (r: uint64)
: Pure UInt32.t
(requires v r = 0 \/ v r = pow2 64 - 1)
(ensures fun r' -> UInt32.v r' <= 1 /\ (UInt32.v r' = 0 <==> v r = 0)) | val change_error_code (r: uint64)
: Pure UInt32.t
(requires v r = 0 \/ v r = pow2 64 - 1)
(ensures fun r' -> UInt32.v r' <= 1 /\ (UInt32.v r' = 0 <==> v r = 0)) | let change_error_code (r:uint64) : Pure UInt32.t
(requires v r = 0 \/ v r = pow2 64 - 1)
(ensures fun r' -> UInt32.v r' <= 1 /\ (UInt32.v r' = 0 <==> v r = 0))
= let r' = logand r (u64 1) in
logand_mask r (u64 1) 1;
let r' = cast U32 SEC r' in
Lib.RawIntTypes.u32_to_UInt32 r' | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 107,
"start_col": 0,
"start_line": 101
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
inline_for_extraction noextract
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
inline_for_extraction noextract
let secret_to_public_c64 : secret_to_public_st (DH.DH_Curve25519) vale_p = fun o i ->
Hacl.Curve25519_64.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c64 : dh_st (DH.DH_Curve25519) vale_p = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_64.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
// TODO: After unification of error codes, this should be removed | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Lib.IntTypes.uint64 -> Prims.Pure FStar.UInt32.t | Prims.Pure | [] | [] | [
"Lib.IntTypes.uint64",
"Lib.RawIntTypes.u32_to_UInt32",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.op_At_Percent_Dot",
"Lib.IntTypes.U64",
"Lib.IntTypes.cast",
"Prims.unit",
"Lib.IntTypes.logand_mask",
"Lib.IntTypes.u64",
"Lib.IntTypes.logand",
"FStar.UInt32.t",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Equality",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"Prims.l_iff"
] | [] | false | false | false | false | false | let change_error_code (r: uint64)
: Pure UInt32.t
(requires v r = 0 \/ v r = pow2 64 - 1)
(ensures fun r' -> UInt32.v r' <= 1 /\ (UInt32.v r' = 0 <==> v r = 0)) =
| let r' = logand r (u64 1) in
logand_mask r (u64 1) 1;
let r' = cast U32 SEC r' in
Lib.RawIntTypes.u32_to_UInt32 r' | false |
IfcMonitor.fst | IfcMonitor.dyn_ifc_exp | val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in
lr = ll /\ (Low? lr ==> vl = vr))) | val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in
lr = ll /\ (Low? lr ==> vl = vr))) | let rec dyn_ifc_exp e h env =
match e with
| AInt _ -> ()
| AVar _ -> ()
| AOp _ e1 e2 -> dyn_ifc_exp e1 h env; dyn_ifc_exp e2 h env | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 333,
"start_col": 0,
"start_line": 329
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc))
let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h)
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c])
let rec high_pc c h env pc =
match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then
high_pc ct h env (join l pc)
else
high_pc cf h env (join l pc);
if (Low? pc && High? l) then
no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o then
begin
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2 then
begin
high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h''
end
end
| While e body v ->
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
high_pc c h' env pc
end
end
end
end;
high_pc_while e body v h env pc
#reset-options
#set-options "--z3rlimit 15 "
val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 15,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: IfcMonitor.exp -> h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap -> env: IfcMonitor.label_fun
-> FStar.Pervasives.Lemma (requires IfcMonitor.low_equiv env h)
(ensures
(let _ = IfcMonitor.interpret_exp (R?.l h) env e in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ vl ll = _ in
let _ = IfcMonitor.interpret_exp (R?.r h) env e in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ vr lr = _ in
lr = ll /\ (Low? lr ==> vl = vr))
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"IfcMonitor.exp",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.label_fun",
"Prims.int",
"FStar.DM4F.Heap.IntStoreFixed.id",
"IfcMonitor.binop",
"IfcMonitor.dyn_ifc_exp",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec dyn_ifc_exp e h env =
| match e with
| AInt _ -> ()
| AVar _ -> ()
| AOp _ e1 e2 ->
dyn_ifc_exp e1 h env;
dyn_ifc_exp e2 h env | false |
IfcMonitor.fst | IfcMonitor.dyn_ifc_assign | val dyn_ifc_assign : (x:id) -> (e:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type (Assign x e) env pc h)) | val dyn_ifc_assign : (x:id) -> (e:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type (Assign x e) env pc h)) | let dyn_ifc_assign x e env pc h = dyn_ifc_exp e h env | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 355,
"start_col": 0,
"start_line": 355
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc))
let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h)
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c])
let rec high_pc c h env pc =
match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then
high_pc ct h env (join l pc)
else
high_pc cf h env (join l pc);
if (Low? pc && High? l) then
no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o then
begin
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2 then
begin
high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h''
end
end
| While e body v ->
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
high_pc c h' env pc
end
end
end
end;
high_pc_while e body v h env pc
#reset-options
#set-options "--z3rlimit 15 "
val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in
lr = ll /\ (Low? lr ==> vl = vr)))
let rec dyn_ifc_exp e h env =
match e with
| AInt _ -> ()
| AVar _ -> ()
| AOp _ e1 e2 -> dyn_ifc_exp e1 h env; dyn_ifc_exp e2 h env
type ifc_type (c:com) (env:label_fun) (pc:label) (h:rel heap) =
begin
let ol = (interpret_com (R?.l h) c env pc) in
let or = (interpret_com (R?.r h) c env pc) in
if (Some? ol && Some? or) then
begin
let h' = R (Some?.v ol) (Some?.v or) in
low_equiv env h'
end
else True
end
#set-options "--z3rlimit 30 "
val dyn_ifc_assign : (x:id) -> (e:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.DM4F.Heap.IntStoreFixed.id ->
e: IfcMonitor.exp ->
env: IfcMonitor.label_fun ->
pc: Label.label ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma (requires IfcMonitor.low_equiv env h)
(ensures IfcMonitor.ifc_type (IfcMonitor.Assign x e) env pc h) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.DM4F.Heap.IntStoreFixed.id",
"IfcMonitor.exp",
"IfcMonitor.label_fun",
"Label.label",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.dyn_ifc_exp",
"Prims.unit"
] | [] | true | false | true | false | false | let dyn_ifc_assign x e env pc h =
| dyn_ifc_exp e h env | false |
IfcMonitor.fst | IfcMonitor.dyn_ifc | val dyn_ifc : (c:com) -> (env:label_fun) -> (pc:label) ->
(h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures ((fun r1 r2 -> (Some? r1 /\ Some? r2) ==>
(fun hl hr -> (low_equiv env (R hl hr)))
(Some?.v r1) (Some?.v r2))
(interpret_com (R?.l h) c env pc)
(interpret_com (R?.r h) c env pc))) | val dyn_ifc : (c:com) -> (env:label_fun) -> (pc:label) ->
(h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures ((fun r1 r2 -> (Some? r1 /\ Some? r2) ==>
(fun hl hr -> (low_equiv env (R hl hr)))
(Some?.v r1) (Some?.v r2))
(interpret_com (R?.l h) c env pc)
(interpret_com (R?.r h) c env pc))) | let dyn_ifc c env pc h =
dyn_ifc' c env pc h;
high_pc c (R?.l h) env pc | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 587,
"start_col": 0,
"start_line": 585
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc))
let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h)
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c])
let rec high_pc c h env pc =
match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then
high_pc ct h env (join l pc)
else
high_pc cf h env (join l pc);
if (Low? pc && High? l) then
no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o then
begin
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2 then
begin
high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h''
end
end
| While e body v ->
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
high_pc c h' env pc
end
end
end
end;
high_pc_while e body v h env pc
#reset-options
#set-options "--z3rlimit 15 "
val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in
lr = ll /\ (Low? lr ==> vl = vr)))
let rec dyn_ifc_exp e h env =
match e with
| AInt _ -> ()
| AVar _ -> ()
| AOp _ e1 e2 -> dyn_ifc_exp e1 h env; dyn_ifc_exp e2 h env
type ifc_type (c:com) (env:label_fun) (pc:label) (h:rel heap) =
begin
let ol = (interpret_com (R?.l h) c env pc) in
let or = (interpret_com (R?.r h) c env pc) in
if (Some? ol && Some? or) then
begin
let h' = R (Some?.v ol) (Some?.v or) in
low_equiv env h'
end
else True
end
#set-options "--z3rlimit 30 "
val dyn_ifc_assign : (x:id) -> (e:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type (Assign x e) env pc h))
let dyn_ifc_assign x e env pc h = dyn_ifc_exp e h env
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 2 "
val dyn_ifc_while : (e:exp) -> (body:com) -> (v:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h /\
begin
let R hl hr = h in
let c = While e body v in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
ifc_type body env (join ll pc) h /\
begin
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
ifc_type c env pc (R hl' hr')
else True
end
end
else True
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
ifc_type c env pc (R hl' hr)
else True
end
else True
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
ifc_type c env pc (R hl hr')
else True
end
else True
| false, false -> True
end))
(ensures (ifc_type (While e body v) env pc h))
let dyn_ifc_while e body v env pc h =
let R hl hr = h in
let c = While e body v in
let rl = interpret_com hl c env pc in
let rr = interpret_com hr c env pc in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
dyn_ifc_exp e h env;
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc) in
let or = interpret_com hr body env (join lr pc) in
if (Some? ol && Some? or) then
begin
begin
cut (ifc_type body env (join ll pc) h);
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
begin
cut (ifc_type c env pc (R hl' hr'));
cut (rl = interpret_com hl' c env pc);
cut (rr = interpret_com hr' c env pc)
end
end
end
| true, false ->
cut (High? ll);
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
begin
cut (ifc_type c env pc (R hl' hr));
cut (rl = interpret_com hl' c env pc)
end
end
| false, true ->
cut (High? lr);
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
begin
cut (ifc_type c env pc (R hl hr'));
cut (rr = interpret_com hr' c env pc)
end
end
| false, false -> ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val dyn_ifc' : (c:com) -> (env:label_fun) -> (pc:label) -> (h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type c env pc h))
(decreases %[c; decr_while (R?.l h) c + decr_while (R?.r h) c])
let rec dyn_ifc' c env pc h =
let (R hl hr) = h in
if Low? pc then
begin
match c with
| Skip -> ()
| Assign x e -> dyn_ifc_assign x e env pc h
| If e ct cf ->
dyn_ifc_exp e h env;
(match interpret_exp hl env e, interpret_exp hr env e with
| (0, ll) , (0, lr) ->
dyn_ifc' cf env (join ll pc) h
| (0, ll) , (_, lr) ->
cut (High? ll);
high_pc cf hl env High;
high_pc ct hr env High
| (_, ll) , (0, lr) ->
cut (High? ll);
high_pc ct hl env High;
high_pc cf hr env High
| (_, ll) , (_, lr) ->
dyn_ifc' ct env (join ll pc) h)
| Seq c1 c2 ->
let ol = interpret_com hl c1 env pc in
let or = interpret_com hr c1 env pc in
if (Some? ol && Some? or) then
begin
dyn_ifc' c1 env pc h;
let hl' = Some?.v ol in
let hr' = Some?.v or in
dyn_ifc' c2 env pc (R hl' hr')
end
| While e body v ->
dyn_ifc_exp e h env;
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
(match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
dyn_ifc' body env (join ll pc) h;
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
dyn_ifc' c env pc (R hl' hr')
end
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
begin
dyn_ifc' c env pc (R hl' hr)
end
end
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
begin
dyn_ifc' c env pc (R hl hr')
end
end
| false, false -> ());
dyn_ifc_while e body v env pc h
end
else
begin
high_pc c hl env pc;
high_pc c hr env pc
end
#reset-options
val dyn_ifc : (c:com) -> (env:label_fun) -> (pc:label) ->
(h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures ((fun r1 r2 -> (Some? r1 /\ Some? r2) ==>
(fun hl hr -> (low_equiv env (R hl hr)))
(Some?.v r1) (Some?.v r2))
(interpret_com (R?.l h) c env pc) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: IfcMonitor.com ->
env: IfcMonitor.label_fun ->
pc: Label.label ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma (requires IfcMonitor.low_equiv env h)
(ensures
Some? (IfcMonitor.interpret_com (R?.l h) c env pc) /\
Some? (IfcMonitor.interpret_com (R?.r h) c env pc) ==>
IfcMonitor.low_equiv env
(Rel.R (Some?.v (IfcMonitor.interpret_com (R?.l h) c env pc))
(Some?.v (IfcMonitor.interpret_com (R?.r h) c env pc)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"IfcMonitor.com",
"IfcMonitor.label_fun",
"Label.label",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.high_pc",
"Rel.__proj__R__item__l",
"Prims.unit",
"IfcMonitor.dyn_ifc'"
] | [] | true | false | true | false | false | let dyn_ifc c env pc h =
| dyn_ifc' c env pc h;
high_pc c (R?.l h) env pc | false |
IfcMonitor.fst | IfcMonitor.high_pc_while | val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc)) | val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc)) | let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h) | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 259,
"start_col": 0,
"start_line": 226
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: IfcMonitor.exp ->
body: IfcMonitor.com ->
v: IfcMonitor.exp ->
h: FStar.DM4F.Heap.IntStoreFixed.heap ->
env: IfcMonitor.label_fun ->
pc: Label.label
-> FStar.Pervasives.Lemma
(requires
(let c = IfcMonitor.While e body v in
let _ = IfcMonitor.interpret_exp h env e in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ v0 l = _ in
(match v0 <> 0 with
| true ->
let o = IfcMonitor.interpret_com h body env (Label.join l pc) in
(match Some? o with
| true ->
let h' = Some?.v o in
IfcMonitor.high_pc_type body h env (Label.join l pc) /\
(let m0 = IfcMonitor.interpret_exp' h v in
let m1 = IfcMonitor.interpret_exp' h' v in
(match m0 > m1 with
| true ->
let o2 = IfcMonitor.interpret_com h' c env pc in
(match Some? o2 with
| true ->
let h'' = Some?.v o2 in
IfcMonitor.high_pc_type c h' env pc
| _ -> Prims.l_True)
<:
Prims.logical
| _ -> Prims.l_True)
<:
Prims.logical)
| _ -> Prims.l_True)
<:
Type0
| _ -> Prims.l_True)
<:
Type0)
<:
Type0)) (ensures IfcMonitor.high_pc_type (IfcMonitor.While e body v) h env pc) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"IfcMonitor.exp",
"IfcMonitor.com",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.label_fun",
"Label.label",
"Prims.int",
"Prims.op_disEquality",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.op_GreaterThan",
"IfcMonitor.no_sens_trans",
"Label.join",
"Prims.unit",
"Prims.cut",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Pervasives.Native.__proj__Some__item__v",
"IfcMonitor.high_pc_type",
"Prims.bool",
"FStar.Pervasives.Native.uu___is_None",
"FStar.Pervasives.Native.option",
"IfcMonitor.interpret_com",
"Prims.nat",
"IfcMonitor.interpret_exp'",
"FStar.Pervasives.Native.tuple2",
"IfcMonitor.interpret_exp",
"IfcMonitor.While"
] | [] | false | false | true | false | false | let high_pc_while e body v h env pc =
| let c = While e body v in
let r = interpret_com h c env pc in
let v0, l = interpret_exp h env e in
if v0 <> 0
then
let o = interpret_com h body env (join l pc) in
if Some? o
then
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1
then
let o2 = interpret_com h' c env pc in
if Some? o2
then
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
else cut (None? r)
else cut (None? r)
else cut (None? r)
else cut (Some? r /\ Some?.v r = h) | false |
IfcMonitor.fst | IfcMonitor.high_pc | val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c]) | val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c]) | let rec high_pc c h env pc =
match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then
high_pc ct h env (join l pc)
else
high_pc cf h env (join l pc);
if (Low? pc && High? l) then
no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o then
begin
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2 then
begin
high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h''
end
end
| While e body v ->
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
high_pc c h' env pc
end
end
end
end;
high_pc_while e body v h env pc | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 316,
"start_col": 0,
"start_line": 269
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc))
let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h)
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: IfcMonitor.com ->
h: FStar.DM4F.Heap.IntStoreFixed.heap ->
env: IfcMonitor.label_fun ->
pc: Label.label
-> FStar.Pervasives.Lemma (ensures IfcMonitor.high_pc_type c h env pc)
(decreases %[c;IfcMonitor.decr_while h c]) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"IfcMonitor.com",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"IfcMonitor.label_fun",
"Label.label",
"FStar.DM4F.Heap.IntStoreFixed.id",
"IfcMonitor.exp",
"IfcMonitor.high_pc_assign",
"Prims.int",
"Prims.op_AmpAmp",
"Label.uu___is_Low",
"Label.uu___is_High",
"IfcMonitor.no_sens_upd_pc",
"Prims.bool",
"Prims.unit",
"Prims.op_disEquality",
"IfcMonitor.high_pc",
"Label.join",
"FStar.Pervasives.Native.tuple2",
"IfcMonitor.interpret_exp",
"FStar.Pervasives.Native.uu___is_Some",
"IfcMonitor.no_sens_trans",
"FStar.Pervasives.Native.__proj__Some__item__v",
"FStar.Pervasives.Native.option",
"IfcMonitor.interpret_com",
"IfcMonitor.metric",
"IfcMonitor.high_pc_while",
"Prims.op_GreaterThan",
"Prims.nat",
"IfcMonitor.interpret_exp'"
] | [
"recursion"
] | false | false | true | false | false | let rec high_pc c h env pc =
| match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then high_pc ct h env (join l pc) else high_pc cf h env (join l pc);
if (Low? pc && High? l) then no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o
then
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2
then
(high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h'')
| While e body v ->
let v0, l = interpret_exp h env e in
if v0 <> 0
then
(let o = interpret_com h body env (join l pc) in
if Some? o
then
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1
then
let o2 = interpret_com h' c env pc in
if Some? o2 then high_pc c h' env pc);
high_pc_while e body v h env pc | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.secret_to_public_c64 | val secret_to_public_c64:secret_to_public_st (DH.DH_Curve25519) vale_p | val secret_to_public_c64:secret_to_public_st (DH.DH_Curve25519) vale_p | let secret_to_public_c64 : secret_to_public_st (DH.DH_Curve25519) vale_p = fun o i ->
Hacl.Curve25519_64.secret_to_public o i;
0ul | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 89,
"start_col": 0,
"start_line": 87
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
inline_for_extraction noextract
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.HPKE.Interface.DH.secret_to_public_st Spec.Agile.DH.DH_Curve25519 Hacl.HPKE.Interface.DH.vale_p | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Spec.Agile.DH.DH_Curve25519",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.t",
"Prims.unit",
"Hacl.Curve25519_64.secret_to_public"
] | [] | false | false | false | true | false | let secret_to_public_c64:secret_to_public_st (DH.DH_Curve25519) vale_p =
| fun o i ->
Hacl.Curve25519_64.secret_to_public o i;
0ul | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.nat_from_bytes_le_zero_is_zero | val nat_from_bytes_le_zero_is_zero (n: size_nat{n >= 1}) (s: Lib.ByteSequence.lbytes n)
: Lemma (requires s `Seq.equal` (Lib.Sequence.create n (u8 0)))
(ensures Lib.ByteSequence.nat_from_bytes_le s == 0) | val nat_from_bytes_le_zero_is_zero (n: size_nat{n >= 1}) (s: Lib.ByteSequence.lbytes n)
: Lemma (requires s `Seq.equal` (Lib.Sequence.create n (u8 0)))
(ensures Lib.ByteSequence.nat_from_bytes_le s == 0) | let rec nat_from_bytes_le_zero_is_zero (n:size_nat{n >= 1}) (s:Lib.ByteSequence.lbytes n)
: Lemma (requires s `Seq.equal` Lib.Sequence.create n (u8 0))
(ensures Lib.ByteSequence.nat_from_bytes_le s == 0)
= let open Lib.Sequence in
let open Lib.ByteSequence in
if n = 1 then nat_from_intseq_le_lemma0 s
else (
nat_from_intseq_le_slice_lemma s 1;
nat_from_bytes_le_zero_is_zero (n-1) (slice s 1 n);
nat_from_intseq_le_lemma0 (slice s 0 1)
) | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 125,
"start_col": 0,
"start_line": 115
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
inline_for_extraction noextract
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
inline_for_extraction noextract
let secret_to_public_c64 : secret_to_public_st (DH.DH_Curve25519) vale_p = fun o i ->
Hacl.Curve25519_64.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c64 : dh_st (DH.DH_Curve25519) vale_p = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_64.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
// TODO: After unification of error codes, this should be removed
inline_for_extraction noextract
let change_error_code (r:uint64) : Pure UInt32.t
(requires v r = 0 \/ v r = pow2 64 - 1)
(ensures fun r' -> UInt32.v r' <= 1 /\ (UInt32.v r' = 0 <==> v r = 0))
= let r' = logand r (u64 1) in
logand_mask r (u64 1) 1;
let r' = cast U32 SEC r' in
Lib.RawIntTypes.u32_to_UInt32 r'
inline_for_extraction noextract
let secret_to_public_p256 : secret_to_public_st (DH.DH_P256) True = fun o i ->
let res = Hacl.Impl.P256.DH.ecp256dh_i o i in
if res then 0ul else 1ul
(* change_error_code res *) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Lib.IntTypes.size_nat{n >= 1} -> s: Lib.ByteSequence.lbytes n
-> FStar.Pervasives.Lemma
(requires FStar.Seq.Base.equal s (Lib.Sequence.create n (Lib.IntTypes.u8 0)))
(ensures Lib.ByteSequence.nat_from_bytes_le s == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.ByteSequence.lbytes",
"Prims.op_Equality",
"Prims.int",
"Lib.ByteSequence.nat_from_intseq_le_lemma0",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.bool",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Prims.unit",
"Hacl.HPKE.Interface.DH.nat_from_bytes_le_zero_is_zero",
"Prims.op_Subtraction",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma",
"FStar.Seq.Base.equal",
"Lib.Sequence.create",
"Lib.IntTypes.u8",
"Prims.squash",
"Prims.eq2",
"Lib.ByteSequence.nat_from_bytes_le",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nat_from_bytes_le_zero_is_zero (n: size_nat{n >= 1}) (s: Lib.ByteSequence.lbytes n)
: Lemma (requires s `Seq.equal` (Lib.Sequence.create n (u8 0)))
(ensures Lib.ByteSequence.nat_from_bytes_le s == 0) =
| let open Lib.Sequence in
let open Lib.ByteSequence in
if n = 1
then nat_from_intseq_le_lemma0 s
else
(nat_from_intseq_le_slice_lemma s 1;
nat_from_bytes_le_zero_is_zero (n - 1) (slice s 1 n);
nat_from_intseq_le_lemma0 (slice s 0 1)) | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.secret_to_public_p256 | val secret_to_public_p256:secret_to_public_st (DH.DH_P256) True | val secret_to_public_p256:secret_to_public_st (DH.DH_P256) True | let secret_to_public_p256 : secret_to_public_st (DH.DH_P256) True = fun o i ->
let res = Hacl.Impl.P256.DH.ecp256dh_i o i in
if res then 0ul else 1ul | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 112,
"start_col": 0,
"start_line": 110
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
inline_for_extraction noextract
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
inline_for_extraction noextract
let secret_to_public_c64 : secret_to_public_st (DH.DH_Curve25519) vale_p = fun o i ->
Hacl.Curve25519_64.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c64 : dh_st (DH.DH_Curve25519) vale_p = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_64.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
// TODO: After unification of error codes, this should be removed
inline_for_extraction noextract
let change_error_code (r:uint64) : Pure UInt32.t
(requires v r = 0 \/ v r = pow2 64 - 1)
(ensures fun r' -> UInt32.v r' <= 1 /\ (UInt32.v r' = 0 <==> v r = 0))
= let r' = logand r (u64 1) in
logand_mask r (u64 1) 1;
let r' = cast U32 SEC r' in
Lib.RawIntTypes.u32_to_UInt32 r' | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.HPKE.Interface.DH.secret_to_public_st Spec.Agile.DH.DH_P256 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Spec.Agile.DH.DH_P256",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"FStar.UInt32.t",
"Hacl.Impl.P256.DH.ecp256dh_i"
] | [] | false | false | false | true | false | let secret_to_public_p256:secret_to_public_st (DH.DH_P256) True =
| fun o i ->
let res = Hacl.Impl.P256.DH.ecp256dh_i o i in
if res then 0ul else 1ul | false |
IfcMonitor.fst | IfcMonitor.dyn_ifc' | val dyn_ifc' : (c:com) -> (env:label_fun) -> (pc:label) -> (h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type c env pc h))
(decreases %[c; decr_while (R?.l h) c + decr_while (R?.r h) c]) | val dyn_ifc' : (c:com) -> (env:label_fun) -> (pc:label) -> (h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type c env pc h))
(decreases %[c; decr_while (R?.l h) c + decr_while (R?.r h) c]) | let rec dyn_ifc' c env pc h =
let (R hl hr) = h in
if Low? pc then
begin
match c with
| Skip -> ()
| Assign x e -> dyn_ifc_assign x e env pc h
| If e ct cf ->
dyn_ifc_exp e h env;
(match interpret_exp hl env e, interpret_exp hr env e with
| (0, ll) , (0, lr) ->
dyn_ifc' cf env (join ll pc) h
| (0, ll) , (_, lr) ->
cut (High? ll);
high_pc cf hl env High;
high_pc ct hr env High
| (_, ll) , (0, lr) ->
cut (High? ll);
high_pc ct hl env High;
high_pc cf hr env High
| (_, ll) , (_, lr) ->
dyn_ifc' ct env (join ll pc) h)
| Seq c1 c2 ->
let ol = interpret_com hl c1 env pc in
let or = interpret_com hr c1 env pc in
if (Some? ol && Some? or) then
begin
dyn_ifc' c1 env pc h;
let hl' = Some?.v ol in
let hr' = Some?.v or in
dyn_ifc' c2 env pc (R hl' hr')
end
| While e body v ->
dyn_ifc_exp e h env;
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
(match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
dyn_ifc' body env (join ll pc) h;
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
dyn_ifc' c env pc (R hl' hr')
end
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
begin
dyn_ifc' c env pc (R hl' hr)
end
end
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
begin
dyn_ifc' c env pc (R hl hr')
end
end
| false, false -> ());
dyn_ifc_while e body v env pc h
end
else
begin
high_pc c hl env pc;
high_pc c hr env pc
end | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 571,
"start_col": 0,
"start_line": 485
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc))
let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h)
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c])
let rec high_pc c h env pc =
match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then
high_pc ct h env (join l pc)
else
high_pc cf h env (join l pc);
if (Low? pc && High? l) then
no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o then
begin
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2 then
begin
high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h''
end
end
| While e body v ->
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
high_pc c h' env pc
end
end
end
end;
high_pc_while e body v h env pc
#reset-options
#set-options "--z3rlimit 15 "
val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in
lr = ll /\ (Low? lr ==> vl = vr)))
let rec dyn_ifc_exp e h env =
match e with
| AInt _ -> ()
| AVar _ -> ()
| AOp _ e1 e2 -> dyn_ifc_exp e1 h env; dyn_ifc_exp e2 h env
type ifc_type (c:com) (env:label_fun) (pc:label) (h:rel heap) =
begin
let ol = (interpret_com (R?.l h) c env pc) in
let or = (interpret_com (R?.r h) c env pc) in
if (Some? ol && Some? or) then
begin
let h' = R (Some?.v ol) (Some?.v or) in
low_equiv env h'
end
else True
end
#set-options "--z3rlimit 30 "
val dyn_ifc_assign : (x:id) -> (e:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type (Assign x e) env pc h))
let dyn_ifc_assign x e env pc h = dyn_ifc_exp e h env
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 2 "
val dyn_ifc_while : (e:exp) -> (body:com) -> (v:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h /\
begin
let R hl hr = h in
let c = While e body v in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
ifc_type body env (join ll pc) h /\
begin
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
ifc_type c env pc (R hl' hr')
else True
end
end
else True
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
ifc_type c env pc (R hl' hr)
else True
end
else True
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
ifc_type c env pc (R hl hr')
else True
end
else True
| false, false -> True
end))
(ensures (ifc_type (While e body v) env pc h))
let dyn_ifc_while e body v env pc h =
let R hl hr = h in
let c = While e body v in
let rl = interpret_com hl c env pc in
let rr = interpret_com hr c env pc in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
dyn_ifc_exp e h env;
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc) in
let or = interpret_com hr body env (join lr pc) in
if (Some? ol && Some? or) then
begin
begin
cut (ifc_type body env (join ll pc) h);
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
begin
cut (ifc_type c env pc (R hl' hr'));
cut (rl = interpret_com hl' c env pc);
cut (rr = interpret_com hr' c env pc)
end
end
end
| true, false ->
cut (High? ll);
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
begin
cut (ifc_type c env pc (R hl' hr));
cut (rl = interpret_com hl' c env pc)
end
end
| false, true ->
cut (High? lr);
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
begin
cut (ifc_type c env pc (R hl hr'));
cut (rr = interpret_com hr' c env pc)
end
end
| false, false -> ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val dyn_ifc' : (c:com) -> (env:label_fun) -> (pc:label) -> (h:(rel heap)) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type c env pc h)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c: IfcMonitor.com ->
env: IfcMonitor.label_fun ->
pc: Label.label ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma (requires IfcMonitor.low_equiv env h)
(ensures IfcMonitor.ifc_type c env pc h)
(decreases %[c;IfcMonitor.decr_while (R?.l h) c + IfcMonitor.decr_while (R?.r h) c]) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"IfcMonitor.com",
"IfcMonitor.label_fun",
"Label.label",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Label.uu___is_Low",
"FStar.DM4F.Heap.IntStoreFixed.id",
"IfcMonitor.exp",
"IfcMonitor.dyn_ifc_assign",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"Prims.int",
"IfcMonitor.interpret_exp",
"IfcMonitor.dyn_ifc'",
"Label.join",
"IfcMonitor.high_pc",
"Label.High",
"Prims.unit",
"Prims.cut",
"Prims.b2t",
"Label.uu___is_High",
"IfcMonitor.dyn_ifc_exp",
"Prims.op_AmpAmp",
"FStar.Pervasives.Native.uu___is_Some",
"Rel.R",
"FStar.Pervasives.Native.__proj__Some__item__v",
"Prims.bool",
"FStar.Pervasives.Native.option",
"IfcMonitor.interpret_com",
"IfcMonitor.metric",
"IfcMonitor.dyn_ifc_while",
"Prims.op_disEquality",
"Prims.op_GreaterThan",
"Prims.nat",
"IfcMonitor.interpret_exp'"
] | [
"recursion"
] | false | false | true | false | false | let rec dyn_ifc' c env pc h =
| let R hl hr = h in
if Low? pc
then
match c with
| Skip -> ()
| Assign x e -> dyn_ifc_assign x e env pc h
| If e ct cf ->
dyn_ifc_exp e h env;
(match interpret_exp hl env e, interpret_exp hr env e with
| (0, ll), (0, lr) -> dyn_ifc' cf env (join ll pc) h
| (0, ll), (_, lr) ->
cut (High? ll);
high_pc cf hl env High;
high_pc ct hr env High
| (_, ll), (0, lr) ->
cut (High? ll);
high_pc ct hl env High;
high_pc cf hr env High
| (_, ll), (_, lr) -> dyn_ifc' ct env (join ll pc) h)
| Seq c1 c2 ->
let ol = interpret_com hl c1 env pc in
let or = interpret_com hr c1 env pc in
if (Some? ol && Some? or)
then
(dyn_ifc' c1 env pc h;
let hl' = Some?.v ol in
let hr' = Some?.v or in
dyn_ifc' c2 env pc (R hl' hr'))
| While e body v ->
dyn_ifc_exp e h env;
let v0l, ll = interpret_exp hl env e in
let v0r, lr = interpret_exp hr env e in
(match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc) in
let or = interpret_com hr body env (join lr pc) in
if (Some? ol && Some? or)
then
(dyn_ifc' body env (join ll pc) h;
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then dyn_ifc' c env pc (R hl' hr'))
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol)
then
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then dyn_ifc' c env pc (R hl' hr)
| false, true ->
let or = interpret_com hr body env High in
if (Some? or)
then
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then dyn_ifc' c env pc (R hl hr')
| false, false -> ());
dyn_ifc_while e body v env pc h
else
(high_pc c hl env pc;
high_pc c hr env pc) | false |
IfcMonitor.fst | IfcMonitor.dyn_ifc_while | val dyn_ifc_while : (e:exp) -> (body:com) -> (v:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h /\
begin
let R hl hr = h in
let c = While e body v in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
ifc_type body env (join ll pc) h /\
begin
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
ifc_type c env pc (R hl' hr')
else True
end
end
else True
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
ifc_type c env pc (R hl' hr)
else True
end
else True
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
ifc_type c env pc (R hl hr')
else True
end
else True
| false, false -> True
end))
(ensures (ifc_type (While e body v) env pc h)) | val dyn_ifc_while : (e:exp) -> (body:com) -> (v:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h /\
begin
let R hl hr = h in
let c = While e body v in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
ifc_type body env (join ll pc) h /\
begin
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
ifc_type c env pc (R hl' hr')
else True
end
end
else True
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
ifc_type c env pc (R hl' hr)
else True
end
else True
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
ifc_type c env pc (R hl hr')
else True
end
else True
| false, false -> True
end))
(ensures (ifc_type (While e body v) env pc h)) | let dyn_ifc_while e body v env pc h =
let R hl hr = h in
let c = While e body v in
let rl = interpret_com hl c env pc in
let rr = interpret_com hr c env pc in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
dyn_ifc_exp e h env;
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc) in
let or = interpret_com hr body env (join lr pc) in
if (Some? ol && Some? or) then
begin
begin
cut (ifc_type body env (join ll pc) h);
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
begin
cut (ifc_type c env pc (R hl' hr'));
cut (rl = interpret_com hl' c env pc);
cut (rr = interpret_com hr' c env pc)
end
end
end
| true, false ->
cut (High? ll);
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
begin
cut (ifc_type c env pc (R hl' hr));
cut (rl = interpret_com hl' c env pc)
end
end
| false, true ->
cut (High? lr);
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
begin
cut (ifc_type c env pc (R hl hr'));
cut (rr = interpret_com hr' c env pc)
end
end
| false, false -> () | {
"file_name": "examples/rel/IfcMonitor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 475,
"start_col": 0,
"start_line": 415
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module IfcMonitor
open Rel
open Label
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreExcFixed
module ISFR = FStar.DM4F.IntStoreFixedReader
module X = FStar.DM4F.IntStoreFixed
type binop =
| Plus
| Minus
| Times
| Max
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b =
match o with
| Plus -> a + b
| Minus -> a - b
| Times -> op_Multiply a b
| Max -> if b >= a then b else a
type exp =
| AInt : int -> exp
| AVar : id -> exp
| AOp : binop -> exp -> exp -> exp
(* CH: This is a termination metric (natural number expression) for
showing termination of while.
Decreasingness and positivity of this termination metric
_dynamically_ checked. *)
type metric = exp
(* Commands -- loops are annotated with metrics *)
type com =
| Skip : com
| Assign : var:id -> term:exp -> com
| Seq : first:com -> second:com -> com
| If : cond:exp -> then_branch:com -> else_branch:com -> com
| While : cond:exp -> body:com -> metric:metric -> com
type label_fun = id -> Tot label
type low_equiv (env:label_fun) (h1:rel heap) =
(forall (x:id). env x = Low ==> index (R?.l h1) x = index (R?.r h1) x)
type no_sensitive_upd (h:heap) (env:label_fun) (pc:label) (h':heap) =
forall (x:id). env x < pc ==> (index h x) = (index h' x)
(* TODO : This function is total and does not use exceptions *)
(* as such it wouldn't be that surprising that writing it in a *)
(* exception free effect helps proving properties about it *)
(* The problem is that we then need reifiable lifts from the *)
(* exceptionless effect to the exceptionfull one and this not covered yet *)
(* by the F* implementation. *)
(* val interpret_exp_st : e:exp -> INT_STORE_EXC int (fun s0 p -> forall opt. p (opt, s0)) *)
let rec interpret_exp_st (env:label_fun) (e:exp)
(* : INT_STORE_EXC int (fun s0 p -> forall x. p (Some x, s0)) *)
: ISFR.ISRNull (int * label)
=
match e with
| AInt i -> i, Low
| AVar x -> ISFR.read x, env x
| AOp o e1 e2 ->
let a,l1 = interpret_exp_st env e1 in
let b,l2 = interpret_exp_st env e2 in
interpret_binop o a b, join l1 l2
(* unfold *)
let interpret_exp (h:heap) (env:label_fun) (e:exp) : Tot (int * label) = reify (interpret_exp_st env e) h
let interpret_exp' (h:heap) (e:exp) : Tot nat =
let n,_ = interpret_exp h (fun _ -> Low) e in
if 0 > n then 0 else n
(* function used for the decreases clause *)
val decr_while : heap -> com -> GTot nat
let decr_while h c =
match c with
| While c b v -> interpret_exp' h v
| _ -> 0
exception OutOfFuel
exception IfcViolation
val interpret_com_st : c:com -> h0:heap -> env:label_fun -> pc:label -> IntStoreExc unit
(requires (fun h -> h == h0))
(ensures (fun h _ ho -> h == h0))
(decreases %[c; decr_while h0 c])
let rec interpret_com_st c h0 env pc =
match c with
| Skip -> ()
| Assign x e ->
let v, le = interpret_exp_st env e in
let lx = env x in
if join le pc <= lx then
begin
write x v
end
else
raise_ () (* IfcViolation *)
| Seq c1 c2 ->
begin
let h1 = (X.get()) in
interpret_com_st c1 h1 env pc;
let h2 = (X.get()) in
interpret_com_st c2 h2 env pc
end
| If e ct cf ->
let v,l = interpret_exp_st env e in
let c = if v = 0 then cf else ct in
let h = (X.get()) in
interpret_com_st c h env (join l pc)
| While e body v ->
let v0, l = interpret_exp_st env e in
if v0 <> 0 then
begin
(* let m0 = interpret_exp_st v in *)
(* let h = X.get () in *)
(* interpret_com_st body h; *)
(* let m1 = interpret_exp_st v in *)
(* proving recursive terminating relies of interpret_exp not *)
(* changing the state? somehow F* can't prove this although *)
(* interpret_exp_st has that in the spec! *)
let m0 = interpret_exp' h0 v in
let h1 = X.get () in
interpret_com_st body h1 env (join l pc);
let h2 = X.get() in
let m1 = interpret_exp' h2 v in
if m0 > m1 then
interpret_com_st c h2 env pc
else
raise_ () (* OutOfFuel *)
end
(* TODO : Normalization does not play very well with ensures clauses... *)
(* But there is no problem when replacing normalize_term by foobar where *)
(* abstract let foobar (#a:Type) (x:a) : a = x *)
(* unfold *)
let interpret_com (h0:heap) (c:com) (env:label_fun) (pc:label) : Tot (option heap)
=
match (* normalize_term *) (reify (interpret_com_st c h0 env pc) h0) with
| Some (), h -> Some h
| None, _ -> None
(* Proofs *)
val no_sens_trans : (env:label_fun) -> (pc:label) -> (pc2:label) -> (h1:heap) -> (h2:heap) -> (h3:heap) ->
Lemma
(requires (no_sensitive_upd h1 env pc h2 /\ no_sensitive_upd h2 env pc2 h3))
(ensures (no_sensitive_upd h1 env (meet pc pc2) h3))
let no_sens_trans env pc pc2 h1 h2 h3 = ()
val no_sens_upd_pc : unit ->
Lemma (forall env h h'. no_sensitive_upd h env High h' ==> no_sensitive_upd h env Low h')
let no_sens_upd_pc () = ()
type high_pc_type (c:com) (h:heap) (env:label_fun) (pc:label) =
begin
let o = (interpret_com h c env pc) in
(Some? o ==> no_sensitive_upd h env pc (Some?.v o))
end
#set-options "--z3rlimit 10 "
val high_pc_assign : (x:id) -> (e:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma (high_pc_type (Assign x e) h env pc)
let high_pc_assign x e h env pc = ()
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc_while : (e:exp) -> (body:com) -> (v:exp) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires
(
let c = While e body v in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc_type body h env (join l pc) /\
begin
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
high_pc_type c h' env pc
end
else True
end
else True
end
end
else True
end
else True))
(ensures (high_pc_type (While e body v) h env pc))
let high_pc_while e body v h env pc =
let c = While e body v in
let r = interpret_com h c env pc in
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc) in
if Some? o then
begin
let h' = Some?.v o in
cut (high_pc_type body h env (join l pc));
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
let h'' = Some?.v o2 in
cut (high_pc_type c h' env pc);
cut (Some? r /\ Some?.v r = h'');
no_sens_trans env (join l pc) pc h h' h''
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut(None? r)
end
else
cut (Some? r /\ Some?.v r = h)
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1"
val high_pc : (c:com) -> (h:heap) -> (env:label_fun) -> (pc:label) ->
Lemma
(requires True)
(ensures high_pc_type c h env pc)
(decreases %[c; decr_while h c])
let rec high_pc c h env pc =
match c with
| Skip -> ()
| Assign x e -> high_pc_assign x e h env pc
| If e ct cf ->
let v0, l = interpret_exp h env e in
if v0 <> 0 then
high_pc ct h env (join l pc)
else
high_pc cf h env (join l pc);
if (Low? pc && High? l) then
no_sens_upd_pc ()
| Seq c1 c2 ->
let o = interpret_com h c1 env pc in
if Some? o then
begin
let h' = Some?.v o in
high_pc c1 h env pc;
let o2 = interpret_com h' c2 env pc in
if Some? o2 then
begin
high_pc c2 h' env pc;
let h'' = Some?.v o2 in
no_sens_trans env pc pc h h' h''
end
end
| While e body v ->
let v0,l = interpret_exp h env e in
if v0 <> 0 then
begin
let o = interpret_com h body env (join l pc)in
if Some? o then
begin
let h' = Some?.v o in
high_pc body h env (join l pc);
let m0 = interpret_exp' h v in
let m1 = interpret_exp' h' v in
if m0 > m1 then
begin
let o2 = interpret_com h' c env pc in
if Some? o2 then
begin
high_pc c h' env pc
end
end
end
end;
high_pc_while e body v h env pc
#reset-options
#set-options "--z3rlimit 15 "
val dyn_ifc_exp : (e:exp) -> (h:(rel heap)) -> (env:label_fun) ->
Lemma
(requires (low_equiv env h))
(ensures (
let vl,ll = interpret_exp (R?.l h) env e in
let vr,lr = interpret_exp (R?.r h) env e in
lr = ll /\ (Low? lr ==> vl = vr)))
let rec dyn_ifc_exp e h env =
match e with
| AInt _ -> ()
| AVar _ -> ()
| AOp _ e1 e2 -> dyn_ifc_exp e1 h env; dyn_ifc_exp e2 h env
type ifc_type (c:com) (env:label_fun) (pc:label) (h:rel heap) =
begin
let ol = (interpret_com (R?.l h) c env pc) in
let or = (interpret_com (R?.r h) c env pc) in
if (Some? ol && Some? or) then
begin
let h' = R (Some?.v ol) (Some?.v or) in
low_equiv env h'
end
else True
end
#set-options "--z3rlimit 30 "
val dyn_ifc_assign : (x:id) -> (e:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h))
(ensures (ifc_type (Assign x e) env pc h))
let dyn_ifc_assign x e env pc h = dyn_ifc_exp e h env
#reset-options
#set-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 2 "
val dyn_ifc_while : (e:exp) -> (body:com) -> (v:exp) -> (env:label_fun) -> (pc:label) -> (h:rel heap) ->
Lemma
(requires (low_equiv env h /\
begin
let R hl hr = h in
let c = While e body v in
let v0l,ll = interpret_exp hl env e in
let v0r,lr = interpret_exp hr env e in
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc)in
let or = interpret_com hr body env (join lr pc)in
if (Some? ol && Some? or) then
begin
ifc_type body env (join ll pc) h /\
begin
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r then
ifc_type c env pc (R hl' hr')
else True
end
end
else True
| true, false ->
let ol = interpret_com hl body env High in
if (Some? ol) then
begin
let hl' = Some?.v ol in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l then
ifc_type c env pc (R hl' hr)
else True
end
else True
| false, true ->
let or = interpret_com hr body env High in
if (Some? or) then
begin
let hr' = Some?.v or in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r then
ifc_type c env pc (R hl hr')
else True
end
else True
| false, false -> True
end)) | {
"checked_file": "/",
"dependencies": [
"Rel.fst.checked",
"prims.fst.checked",
"label.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixedReader.fst.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.IntStoreExcFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "IfcMonitor.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": "X"
},
{
"abbrev": true,
"full_module": "FStar.DM4F.IntStoreFixedReader",
"short_module": "ISFR"
},
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreExcFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "Label",
"short_module": null
},
{
"abbrev": false,
"full_module": "Rel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 2,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
e: IfcMonitor.exp ->
body: IfcMonitor.com ->
v: IfcMonitor.exp ->
env: IfcMonitor.label_fun ->
pc: Label.label ->
h: Rel.rel FStar.DM4F.Heap.IntStoreFixed.heap
-> FStar.Pervasives.Lemma
(requires
IfcMonitor.low_equiv env h /\
(let _ = h in
(let Rel.R #_ hl hr = _ in
let c = IfcMonitor.While e body v in
let _ = IfcMonitor.interpret_exp hl env e in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ v0l ll = _ in
let _ = IfcMonitor.interpret_exp hr env e in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ v0r lr = _ in
(match v0l <> 0, v0r <> 0 with
| FStar.Pervasives.Native.Mktuple2 #_ #_ true true ->
let ol = IfcMonitor.interpret_com hl body env (Label.join ll pc) in
let or = IfcMonitor.interpret_com hr body env (Label.join lr pc) in
(match Some? ol && Some? or with
| true ->
IfcMonitor.ifc_type body env (Label.join ll pc) h /\
(let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = IfcMonitor.interpret_exp' hl v in
let m1l = IfcMonitor.interpret_exp' hl' v in
let m0r = IfcMonitor.interpret_exp' hr v in
let m1r = IfcMonitor.interpret_exp' hr' v in
(match m0l > m1l && m0r > m1r with
| true -> IfcMonitor.ifc_type c env pc (Rel.R hl' hr')
| _ -> Prims.l_True)
<:
Prims.logical)
| _ -> Prims.l_True)
<:
Prims.logical
| FStar.Pervasives.Native.Mktuple2 #_ #_ true false ->
let ol = IfcMonitor.interpret_com hl body env Label.High in
(match Some? ol with
| true ->
let hl' = Some?.v ol in
let m0l = IfcMonitor.interpret_exp' hl v in
let m1l = IfcMonitor.interpret_exp' hl' v in
(match m0l > m1l with
| true -> IfcMonitor.ifc_type c env pc (Rel.R hl' hr)
| _ -> Prims.l_True)
<:
Prims.logical
| _ -> Prims.l_True)
<:
Prims.logical
| FStar.Pervasives.Native.Mktuple2 #_ #_ false true ->
let or = IfcMonitor.interpret_com hr body env Label.High in
(match Some? or with
| true ->
let hr' = Some?.v or in
let m0r = IfcMonitor.interpret_exp' hr v in
let m1r = IfcMonitor.interpret_exp' hr' v in
(match m0r > m1r with
| true -> IfcMonitor.ifc_type c env pc (Rel.R hl hr')
| _ -> Prims.l_True)
<:
Prims.logical
| _ -> Prims.l_True)
<:
Prims.logical
| FStar.Pervasives.Native.Mktuple2 #_ #_ false false -> Prims.l_True)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)) (ensures IfcMonitor.ifc_type (IfcMonitor.While e body v) env pc h) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"IfcMonitor.exp",
"IfcMonitor.com",
"IfcMonitor.label_fun",
"Label.label",
"Rel.rel",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"Prims.bool",
"Prims.op_disEquality",
"Prims.op_AmpAmp",
"FStar.Pervasives.Native.uu___is_Some",
"Prims.op_GreaterThan",
"Prims.cut",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Pervasives.Native.option",
"IfcMonitor.interpret_com",
"Prims.unit",
"IfcMonitor.ifc_type",
"Rel.R",
"Prims.nat",
"IfcMonitor.interpret_exp'",
"FStar.Pervasives.Native.__proj__Some__item__v",
"Label.join",
"IfcMonitor.high_pc",
"Label.High",
"Label.uu___is_High",
"IfcMonitor.dyn_ifc_exp",
"FStar.Pervasives.Native.tuple2",
"IfcMonitor.interpret_exp",
"IfcMonitor.While"
] | [] | false | false | true | false | false | let dyn_ifc_while e body v env pc h =
| let R hl hr = h in
let c = While e body v in
let rl = interpret_com hl c env pc in
let rr = interpret_com hr c env pc in
let v0l, ll = interpret_exp hl env e in
let v0r, lr = interpret_exp hr env e in
dyn_ifc_exp e h env;
match v0l <> 0, v0r <> 0 with
| true, true ->
let ol = interpret_com hl body env (join ll pc) in
let or = interpret_com hr body env (join lr pc) in
if (Some? ol && Some? or)
then
(cut (ifc_type body env (join ll pc) h);
let hl' = Some?.v ol in
let hr' = Some?.v or in
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0l > m1l && m0r > m1r
then
(cut (ifc_type c env pc (R hl' hr'));
cut (rl = interpret_com hl' c env pc);
cut (rr = interpret_com hr' c env pc)))
| true, false ->
cut (High? ll);
let ol = interpret_com hl body env High in
if (Some? ol)
then
let hl' = Some?.v ol in
high_pc body hl env High;
let m0l = interpret_exp' hl v in
let m1l = interpret_exp' hl' v in
if m0l > m1l
then
(cut (ifc_type c env pc (R hl' hr));
cut (rl = interpret_com hl' c env pc))
| false, true ->
cut (High? lr);
let or = interpret_com hr body env High in
if (Some? or)
then
let hr' = Some?.v or in
high_pc body hr env High;
let m0r = interpret_exp' hr v in
let m1r = interpret_exp' hr' v in
if m0r > m1r
then
(cut (ifc_type c env pc (R hl hr'));
cut (rr = interpret_com hr' c env pc))
| false, false -> () | false |
Hacl.Spec.Chacha20.Equiv.fst | Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_multi_vec_equiv_pre_k | val chacha20_map_blocks_multi_vec_equiv_pre_k:
#w:lanes
-> k:key
-> n:nonce
-> c0:counter{c0 + w <= max_size_t}
-> hi_fv:nat // n == hi_fv == len / (w * blocksize)
-> hi_f:size_nat{w * hi_fv <= hi_f}
-> i:nat{i < hi_fv}
-> b_v:lseq uint8 (w * blocksize)
-> j:nat{j < w * blocksize} ->
Lemma
(let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
let f_v = chacha20_encrypt_block st_v0 in
let f = Scalar.chacha20_encrypt_block st0 in
VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) | val chacha20_map_blocks_multi_vec_equiv_pre_k:
#w:lanes
-> k:key
-> n:nonce
-> c0:counter{c0 + w <= max_size_t}
-> hi_fv:nat // n == hi_fv == len / (w * blocksize)
-> hi_f:size_nat{w * hi_fv <= hi_f}
-> i:nat{i < hi_fv}
-> b_v:lseq uint8 (w * blocksize)
-> j:nat{j < w * blocksize} ->
Lemma
(let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
let f_v = chacha20_encrypt_block st_v0 in
let f = Scalar.chacha20_encrypt_block st0 in
VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) | let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j =
encrypt_block_lemma_bs_i #w k n c0 i b_v j | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 569,
"start_col": 0,
"start_line": 568
} | module Hacl.Spec.Chacha20.Equiv
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.IntVector
module Scalar = Spec.Chacha20
module Lemmas = Hacl.Spec.Chacha20.Lemmas
module VecLemmas = Lib.Vec.Lemmas
module SeqLemmas = Lib.Sequence.Lemmas
open Hacl.Spec.Chacha20.Vec
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
let blocksize = size_block
///
/// Scalar-related lemmas
///
val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma
(let uc = map secret chacha20_constants in
let uk = uints_from_bytes_le #U32 #SEC #8 k in
let uctr = create 1 (u32 c0) in
let un = uints_from_bytes_le #U32 #SEC #3 n in
Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un)
let chacha20_init_scalar_lemma k n c0 =
let uc = map secret chacha20_constants in
let uk = uints_from_bytes_le #U32 #SEC #8 k in
let uctr = create 1 (u32 c0) in
let un = uints_from_bytes_le #U32 #SEC #3 n in
let res = uc @| uk @| uctr @| un in
assert (res == concat uc (concat uk (concat uctr un)));
eq_intro res (concat (concat (concat uc uk) uctr) un);
let len0 = 4 in
let len1 = 8 in
let len2 = 1 in
let len3 = 3 in
let res = concat (concat (concat uc uk) uctr) un in
let st = create 16 (u32 0) in
let st = update_sub st 0 4 (map secret chacha20_constants) in
let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in
eq_intro (sub st 0 4) uc;
let st = st.[12] <- u32 c0 in
eq_intro (sub st 0 4) uc;
eq_intro (sub st 4 8) uk;
let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in
eq_intro (sub res1 0 4) uc;
eq_intro (sub res1 4 8) uk;
eq_intro (sub res1 12 1) uctr;
eq_intro (sub res1 13 3) un;
Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1);
Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1);
Seq.Properties.lemma_split res (len0 + len1 + len2);
Seq.Properties.lemma_split res1 (len0 + len1 + len2)
val add_counter_lemma_aux:
w:lanes
-> c0:counter
-> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t}
-> i:nat{i < w}
-> b:uint32 ->
Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c))
let add_counter_lemma_aux w c0 c i b =
let lp = b +. u32 c0 +. u32 (w * c + i) in
let rp = b +. u32 (c0 + i) +. u32 (w * c) in
assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32);
assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32);
Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32);
Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32)
val chacha20_core_scalar_lemma:
w:lanes
-> st1:Scalar.state
-> st2:Scalar.state
-> c0:counter
-> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t}
-> i:nat{i < w} -> Lemma
(requires
(forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\
st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i)))
(ensures
Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
let chacha20_core_scalar_lemma w st1 st2 c0 c i =
let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in
assert (k1.[12] == u32 c0 +. u32 (w * c + i));
let k2 = Scalar.chacha20_add_counter st2 (w * c) in
assert (k2.[12] == u32 (c0 + i) +. u32 (w * c));
assert (v k1.[12] == v k2.[12]);
eq_intro k1 k2;
let k = Scalar.rounds k1 in
let k1 = Scalar.sum_state k st1 in
assert (k1.[12] == k.[12] +. u32 c0);
let k2 = Scalar.sum_state k st2 in
assert (k2.[12] == k.[12] +. u32 (c0 + i));
assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]);
let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in
assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i));
let k2 = Scalar.chacha20_add_counter k2 (w * c) in
assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c));
add_counter_lemma_aux w c0 c i k.[12];
eq_intro k1 k2
val kb_equiv_lemma:
#w:lanes
-> k:key
-> n:nonce
-> c0:counter
-> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t}
-> i:nat{i < w} -> Lemma
(let st1 = Scalar.chacha20_init k n c0 in
let st2 = Scalar.chacha20_init k n (c0 + i) in
Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
let kb_equiv_lemma #w k n c0 c i =
let st1 = Scalar.chacha20_init k n c0 in
let st2 = Scalar.chacha20_init k n (c0 + i) in
chacha20_init_scalar_lemma k n c0;
chacha20_init_scalar_lemma k n (c0 + i);
chacha20_core_scalar_lemma w st1 st2 c0 c i
///
/// Vectorised-related lemmas
///
val line_lemma_i:
#w:lanes
-> a:idx -> b:idx -> d:idx
-> s:rotval U32 -> m:state w
-> i:nat{i < w} ->
Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i])
let line_lemma_i #w a b d s m0 i =
let m0_s = (transpose_state #w m0).[i] in
let m1 = m0.[a] <- m0.[a] +| m0.[b] in
let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in
eq_intro (transpose_state m1).[i] m1_s;
let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in
let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in
eq_intro (transpose_state m2).[i] m2_s
val quarter_round_lemma_i:
#w:lanes
-> a:idx -> b:idx -> c:idx -> d:idx
-> m:state w
-> i:nat{i < w} ->
Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal`
Scalar.quarter_round a b c d (transpose_state m).[i])
let quarter_round_lemma_i #w a b c d m i =
let lp0 = line a b d (size 16) m in
let lp1 = line c d b (size 12) lp0 in
let lp2 = line a b d (size 8) lp1 in
let lp3 = line c d b (size 7) lp2 in
assert (quarter_round #w a b c d m == lp3);
line_lemma_i a b d (size 16) m i;
line_lemma_i c d b (size 12) lp0 i;
line_lemma_i a b d (size 8) lp1 i;
line_lemma_i c d b (size 7) lp2 i;
eq_intro (transpose_state (quarter_round #w a b c d m)).[i]
(Scalar.quarter_round a b c d (transpose_state m).[i])
val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} ->
Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i])
let column_round_lemma_i #w m i =
let lp0 = quarter_round 0 4 8 12 m in
let lp1 = quarter_round 1 5 9 13 lp0 in
let lp2 = quarter_round 2 6 10 14 lp1 in
let lp3 = quarter_round 3 7 11 15 lp2 in
assert (column_round #w m == lp3);
quarter_round_lemma_i 0 4 8 12 m i;
quarter_round_lemma_i 1 5 9 13 lp0 i;
quarter_round_lemma_i 2 6 10 14 lp1 i;
quarter_round_lemma_i 3 7 11 15 lp2 i;
eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i])
val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} ->
Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i])
let diagonal_round_lemma_i #w m i =
let lp0 = quarter_round 0 5 10 15 m in
let lp1 = quarter_round 1 6 11 12 lp0 in
let lp2 = quarter_round 2 7 8 13 lp1 in
let lp3 = quarter_round 3 4 9 14 lp2 in
assert (diagonal_round #w m == lp3);
quarter_round_lemma_i 0 5 10 15 m i;
quarter_round_lemma_i 1 6 11 12 lp0 i;
quarter_round_lemma_i 2 7 8 13 lp1 i;
quarter_round_lemma_i 3 4 9 14 lp2 i;
eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i])
val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} ->
Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i])
let double_round_lemma_i #w m i =
let m1 = column_round m in
let m2 = diagonal_round m1 in
column_round_lemma_i m i;
diagonal_round_lemma_i m1 i
noextract
let scalar_rounds (m:Scalar.state) : Scalar.state =
Scalar.double_round (Scalar.double_round (
Scalar.double_round (Scalar.double_round (
Scalar.double_round (Scalar.double_round (
Scalar.double_round (Scalar.double_round (
Scalar.double_round (Scalar.double_round m)))))))))
val scalar_rounds_unroll_lemma: m:Scalar.state ->
Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m)
let scalar_rounds_unroll_lemma m =
let open Lib.LoopCombinators in
eq_repeat0 Scalar.double_round m;
unfold_repeat 10 Scalar.double_round m 0;
unfold_repeat 10 Scalar.double_round m 1;
unfold_repeat 10 Scalar.double_round m 2;
unfold_repeat 10 Scalar.double_round m 3;
unfold_repeat 10 Scalar.double_round m 4;
unfold_repeat 10 Scalar.double_round m 5;
unfold_repeat 10 Scalar.double_round m 6;
unfold_repeat 10 Scalar.double_round m 7;
unfold_repeat 10 Scalar.double_round m 8;
unfold_repeat 10 Scalar.double_round m 9
val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} ->
Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i])
let rounds_lemma_i #w m i =
let ms = (transpose_state m).[i] in
let m1 = double_round m in
let m2 = double_round m1 in
let m3 = double_round m2 in
let m4 = double_round m3 in
let m5 = double_round m4 in
let m6 = double_round m5 in
let m7 = double_round m6 in
let m8 = double_round m7 in
let m9 = double_round m8 in
let m10 = double_round m9 in
assert (rounds m == m10);
double_round_lemma_i #w m i;
double_round_lemma_i #w m1 i;
double_round_lemma_i #w m2 i;
double_round_lemma_i #w m3 i;
double_round_lemma_i #w m4 i;
double_round_lemma_i #w m5 i;
double_round_lemma_i #w m6 i;
double_round_lemma_i #w m7 i;
double_round_lemma_i #w m8 i;
double_round_lemma_i #w m9 i;
assert ((transpose_state m10).[i] == scalar_rounds ms);
scalar_rounds_unroll_lemma ms
val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} ->
Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i])
let sum_state_lemma_i #w st1 st2 i =
eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i])
val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} ->
Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c))
let add_counter_lemma_i #w st c i =
Math.Lemmas.modulo_lemma (w * c) (pow2 32);
assert (v (u32 w *! u32 c) == v (u32 (w * c)));
eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c))
//kb_v_i
val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} ->
Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i])
let chacha20_core_lemma_i #w c st_v0 i =
let k0 = add_counter c st_v0 in
add_counter_lemma_i st_v0 c i;
let k1 = rounds k0 in
rounds_lemma_i k0 i;
let k2 = sum_state k1 st_v0 in
sum_state_lemma_i k1 st_v0 i;
let k3 = add_counter c k2 in
add_counter_lemma_i k2 c i
//init_v_i
val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} ->
Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i))
let chacha20_init_lemma_i #w k n c0 i =
let st1 = setup1 k n c0 in
assert (st1 == Scalar.chacha20_init k n c0);
assert (st1.[12] == u32 c0);
let st = map (vec_load_i w) st1 in
eq_intro (transpose_state st).[i] st1;
assert ((transpose_state st).[i] == st1);
let c = vec_counter U32 w in
assert ((vec_v c).[i] == u32 i);
let res = st.[12] <- st.[12] +| c in
let res1 = st1.[12] <- st1.[12] +. u32 i in
eq_intro (transpose_state res).[i] res1;
assert ((transpose_state res).[i] == res1);
assert (res1.[12] == u32 c0 +. u32 i);
assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i)));
assert (res1.[12] == u32 (c0 + i));
let res2 = Scalar.chacha20_init k n (c0 + i) in
chacha20_init_scalar_lemma k n c0;
chacha20_init_scalar_lemma k n (c0 + i);
eq_intro res1 res2
///
/// XOR-related lemmas
///
val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} ->
Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4)
let lemma_i_div_w4 w i =
let bs = w * 4 in
calc (==) {
i / bs * bs + i % bs / 4 * 4;
(==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 }
i / bs * bs + i % bs - i % bs % 4;
(==) { Math.Lemmas.euclidean_division_definition i bs }
i - i % bs % 4;
(==) { Math.Lemmas.modulo_modulo_lemma i 4 w }
i - i % 4;
(==) { Math.Lemmas.euclidean_division_definition i 4 }
i / 4 * 4;
}
val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} ->
Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4)
let lemma_i_div_blocksize w i =
calc (==) {
i / blocksize * blocksize + i % blocksize / 4 * 4;
(==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 }
i / blocksize * blocksize + i % blocksize - i % blocksize % 4;
(==) { Math.Lemmas.modulo_modulo_lemma i 4 16 }
i / blocksize * blocksize + i % blocksize - i % 4;
(==) { Math.Lemmas.euclidean_division_definition i blocksize }
i - i % 4;
(==) { Math.Lemmas.euclidean_division_definition i 4 }
i / 4 * 4;
}
val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma
(let bs = w * 4 in
let j = i / bs in
let block = sub b (i / 4 * 4) 4 in
Seq.index (xor_block k b) i ==
Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4))
let xor_block_vec_lemma_i #w k b i =
let bs = w * 4 in
let j = i / bs in
let kb_j = vec_v k.[j] in
let b_j = sub b (i / bs * bs) bs in
let b_i = sub b_j (i % bs / 4 * 4) 4 in
let block = sub b (i / 4 * 4) 4 in
let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in
calc (==) {
Seq.index (xor_block k b) i;
(==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i }
Seq.index (uints_to_bytes_le ob) (i % bs);
(==) { index_uints_to_bytes_le ob (i % bs) }
Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4);
(==) { Math.Lemmas.modulo_modulo_lemma i 4 w }
Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4);
(==) { (* def of xor *) }
Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4);
(==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4);
(==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4);
}
val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma
((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4])
let xor_block_scalar_lemma_i k b i =
let ib = uints_from_bytes_le b in
let ob = map2 (^.) ib k in
let b_i = sub b (i / 4 * 4) 4 in
calc (==) {
Seq.index (uints_to_bytes_le ob) i;
(==) { index_uints_to_bytes_le ob i }
Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4);
(==) { (* def of xor *) }
Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4);
(==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4);
}
val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma
(Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) ==
Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4))
let transpose_lemma_i #w k i =
let bs = w * 4 in
let j = i / bs in
let ki = (transpose_state k).[i / blocksize] in
calc (==) {
Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4);
(==) { Math.Lemmas.modulo_division_lemma i 4 w }
Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w);
(==) { Math.Lemmas.division_multiplication_lemma i 4 w }
Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w);
(==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 }
Seq.index ki (i / 4 % 16);
(==) { Math.Lemmas.modulo_division_lemma i 4 16 }
Seq.index ki (i % blocksize / 4);
}
val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma
(let k_i = (transpose_state k).[i / blocksize] in
let b_i = sub b (i / blocksize * blocksize) blocksize in
(xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize])
let xor_block_lemma_i #w k b i =
let bs = w * 4 in
let j = i / bs in
let ki = (transpose_state k).[i / blocksize] in
let b_i = sub b (i / blocksize * blocksize) blocksize in
let block = sub b (i / 4 * 4) 4 in
calc (==) {
Seq.index (xor_block (transpose k) b) i;
(==) { xor_block_vec_lemma_i #w (transpose k) b i }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4);
(==) { transpose_lemma_i #w k i }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4);
};
calc (==) {
Seq.index (Scalar.xor_block ki b_i) (i % blocksize);
(==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4);
(==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize)
(i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) }
Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4);
}
///
/// map_blocks_vec
///
val encrypt_block_scalar_lemma_i:
#w:lanes
-> k:key
-> n:nonce
-> c0:counter
-> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t}
-> b_i:Scalar.block
-> i:nat{i < w} ->
Lemma
(let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal`
Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i)
let encrypt_block_scalar_lemma_i #w k n c0 c b i =
let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
chacha20_init_lemma_i #w k n c0 i;
assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i));
kb_equiv_lemma #w k n c0 c i
val encrypt_block_lemma_st0_i:
#w:lanes
-> st_v0:state w
-> c:counter{w * c <= max_size_t}
-> b_v:blocks w
-> j:nat{j < w * blocksize} ->
Lemma
(Math.Lemmas.cancel_mul_div w blocksize;
let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in
div_mul_lt blocksize j w;
(chacha20_encrypt_block st_v0 c b_v).[j] ==
(Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize])
let encrypt_block_lemma_st0_i #w st_v0 c b_v j =
let k = chacha20_core c st_v0 in
chacha20_core_lemma_i #w c st_v0 (j / blocksize);
xor_block_lemma_i #w k b_v j
val encrypt_block_lemma_bs_i:
#w:lanes
-> k:key
-> n:nonce
-> c0:counter{c0 + w <= max_size_t}
-> c:counter{w * c <= max_size_t}
-> b_v:blocks w
-> j:nat{j < w * blocksize} ->
Lemma
(let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
Math.Lemmas.cancel_mul_div w blocksize;
let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in
div_mul_lt blocksize j w;
(chacha20_encrypt_block st_v0 c b_v).[j] ==
(Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize])
let encrypt_block_lemma_bs_i #w k n c0 c b_v j =
let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
Math.Lemmas.cancel_mul_div w blocksize;
let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in
encrypt_block_lemma_st0_i #w st_v0 c b_v j;
div_mul_lt blocksize j w;
encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize)
val chacha20_map_blocks_multi_vec_equiv_pre_k:
#w:lanes
-> k:key
-> n:nonce
-> c0:counter{c0 + w <= max_size_t}
-> hi_fv:nat // n == hi_fv == len / (w * blocksize)
-> hi_f:size_nat{w * hi_fv <= hi_f}
-> i:nat{i < hi_fv}
-> b_v:lseq uint8 (w * blocksize)
-> j:nat{j < w * blocksize} ->
Lemma
(let st_v0 = chacha20_init #w k n c0 in
let st0 = Scalar.chacha20_init k n c0 in
let f_v = chacha20_encrypt_block st_v0 in
let f = Scalar.chacha20_encrypt_block st0 in
VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) | {
"checked_file": "/",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Vec.Lemmas.fsti.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Chacha20.Vec.fst.checked",
"Hacl.Spec.Chacha20.Lemmas.fst.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Equiv.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20.Vec",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.Sequence.Lemmas",
"short_module": "SeqLemmas"
},
{
"abbrev": true,
"full_module": "Lib.Vec.Lemmas",
"short_module": "VecLemmas"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Chacha20.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} ->
hi_fv: Prims.nat ->
hi_f: Lib.IntTypes.size_nat{w * hi_fv <= hi_f} ->
i: Prims.nat{i < hi_fv} ->
b_v: Lib.Sequence.lseq Lib.IntTypes.uint8 (w * Hacl.Spec.Chacha20.Equiv.blocksize) ->
j: Prims.nat{j < w * Hacl.Spec.Chacha20.Equiv.blocksize}
-> FStar.Pervasives.Lemma
(ensures
(let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in
let st0 = Spec.Chacha20.chacha20_init k n c0 in
let f_v = Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block st_v0 in
let f = Spec.Chacha20.chacha20_encrypt_block st0 in
Lib.Vec.Lemmas.map_blocks_multi_vec_equiv_pre_k w
Hacl.Spec.Chacha20.Equiv.blocksize
hi_fv
hi_f
f
f_v
i
b_v
j)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Prims.nat",
"Lib.IntTypes.size_nat",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Hacl.Spec.Chacha20.Equiv.blocksize",
"Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_bs_i",
"Prims.unit"
] | [] | true | false | true | false | false | let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j =
| encrypt_block_lemma_bs_i #w k n c0 i b_v j | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.dh_c64 | val dh_c64:dh_st (DH.DH_Curve25519) vale_p | val dh_c64:dh_st (DH.DH_Curve25519) vale_p | let dh_c64 : dh_st (DH.DH_Curve25519) vale_p = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_64.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 97,
"start_col": 0,
"start_line": 91
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul
inline_for_extraction noextract
let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res
inline_for_extraction noextract
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
inline_for_extraction noextract
let secret_to_public_c64 : secret_to_public_st (DH.DH_Curve25519) vale_p = fun o i ->
Hacl.Curve25519_64.secret_to_public o i;
0ul | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.HPKE.Interface.DH.dh_st Spec.Agile.DH.DH_Curve25519 Hacl.HPKE.Interface.DH.vale_p | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Spec.Agile.DH.DH_Curve25519",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.t",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Lib.ByteBuffer.lbytes_eq",
"Hacl.Curve25519_64.scalarmult",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | false | false | false | true | false | let dh_c64:dh_st (DH.DH_Curve25519) vale_p =
| fun o k i ->
push_frame ();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_64.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame ();
res | false |
Hacl.HPKE.Interface.DH.fst | Hacl.HPKE.Interface.DH.dh_c51 | val dh_c51:dh_st (DH.DH_Curve25519) True | val dh_c51:dh_st (DH.DH_Curve25519) True | let dh_c51 : dh_st (DH.DH_Curve25519) True = fun o k i ->
push_frame();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame();
res | {
"file_name": "code/hpke/Hacl.HPKE.Interface.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 81,
"start_col": 0,
"start_line": 75
} | module Hacl.HPKE.Interface.DH
open FStar.HyperStack
open FStar.HyperStack.All
module HST = FStar.HyperStack.ST
open Lib.Buffer
open Lib.IntTypes
open Lib.ByteBuffer
module DH = Spec.Agile.DH
module S = Spec.Agile.HPKE
#reset-options "--z3rlimit 20 --fuel 0 --ifuel 1"
unfold noextract
let nsize_key (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 32ul
unfold noextract
let nsize_public (a:DH.algorithm) =
match a with
| DH.DH_Curve25519 -> 32ul
| DH.DH_P256 -> 64ul
inline_for_extraction noextract
let dh_st (a:DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> k:lbuffer uint8 (nsize_key a)
-> i:lbuffer uint8 (nsize_public a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\ (
let output = DH.dh a (as_seq h0 k) (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output // DH succeeded
| 1ul -> None? output
| _ -> False))
inline_for_extraction noextract
let secret_to_public_st (a: DH.algorithm) (p:Type0) =
o:lbuffer uint8 (nsize_public a)
-> i:lbuffer uint8 (nsize_key a)
-> Stack UInt32.t
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 result h1 -> modifies (loc o) h0 h1 /\
(let output = DH.secret_to_public a (as_seq h0 i) in
match result with
| 0ul -> Some? output /\ as_seq h1 o `Seq.equal` Some?.v output
| 1ul -> None? output
| _ -> False))
[@ Meta.Attribute.specialize]
noextract
assume val dh: #a:S.ciphersuite -> dh_st (S.kem_dh_of_cs a) True
[@ Meta.Attribute.specialize]
noextract
assume val secret_to_public: #a:S.ciphersuite -> secret_to_public_st (S.kem_dh_of_cs a) True
(** Instantiations for Curve25519 **)
inline_for_extraction noextract
let secret_to_public_c51 : secret_to_public_st (DH.DH_Curve25519) True = fun o i ->
Hacl.Curve25519_51.secret_to_public o i;
0ul | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.DH.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.P256.DH.fsti.checked",
"Hacl.Curve25519_64.fsti.checked",
"Hacl.Curve25519_51.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Interface.DH.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE.Interface",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.HPKE.Interface.DH.dh_st Spec.Agile.DH.DH_Curve25519 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.HPKE.Interface.DH.nsize_public",
"Spec.Agile.DH.DH_Curve25519",
"Hacl.HPKE.Interface.DH.nsize_key",
"FStar.UInt32.t",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Lib.ByteBuffer.lbytes_eq",
"Hacl.Curve25519_51.scalarmult",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | false | false | false | true | false | let dh_c51:dh_st (DH.DH_Curve25519) True =
| fun o k i ->
push_frame ();
let zeros = create 32ul (u8 0) in
Hacl.Curve25519_51.scalarmult o k i;
let res = if lbytes_eq o zeros then 1ul else 0ul in
pop_frame ();
res | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.