file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DoublyLinkedList.fst | DoublyLinkedList.loc_includes_union_l_nodelist_fp0 | val loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2: loc) (nl: nodelist t)
: Lemma (requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] | val loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2: loc) (nl: nodelist t)
: Lemma (requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] | let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 252,
"start_col": 0,
"start_line": 247
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s1: LowStar.Monotonic.Buffer.loc ->
s2: LowStar.Monotonic.Buffer.loc ->
nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
LowStar.Monotonic.Buffer.loc_includes s1 (DoublyLinkedList.nodelist_fp0 nl) \/
LowStar.Monotonic.Buffer.loc_includes s2 (DoublyLinkedList.nodelist_fp0 nl))
(ensures
LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2)
(DoublyLinkedList.nodelist_fp0 nl))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2)
(DoublyLinkedList.nodelist_fp0 nl))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowStar.Monotonic.Buffer.loc",
"DoublyLinkedList.nodelist",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"DoublyLinkedList.nodelist_fp0",
"Prims.unit",
"Prims.l_or",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2: loc) (nl: nodelist t)
: Lemma (requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
| loc_includes_union_l s1 s2 (nodelist_fp0 nl) | false |
DoublyLinkedList.fst | DoublyLinkedList.fragment_conn | val fragment_conn (#t: Type) (h0: heap) (f: fragment t) : GTot Type0 | val fragment_conn (#t: Type) (h0: heap) (f: fragment t) : GTot Type0 | let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 376,
"start_col": 0,
"start_line": 375
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> f: DoublyLinkedList.fragment t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.fragment",
"DoublyLinkedList.fragment_for_each1",
"DoublyLinkedList.piece_conn"
] | [
"recursion"
] | false | false | false | false | true | let rec fragment_conn (#t: Type) (h0: heap) (f: fragment t) : GTot Type0 =
| fragment_for_each1 piece_conn h0 f | false |
DoublyLinkedList.fst | DoublyLinkedList.fragment_valid | val fragment_valid (#t: Type) (h0: heap) (f: fragment t) : GTot Type0 | val fragment_valid (#t: Type) (h0: heap) (f: fragment t) : GTot Type0 | let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 407,
"start_col": 0,
"start_line": 403
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> f: DoublyLinkedList.fragment t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.fragment",
"Prims.l_and",
"DoublyLinkedList.fragment_ghostly_connections",
"DoublyLinkedList.fragment_contained",
"DoublyLinkedList.fragment_aa",
"DoublyLinkedList.fragment_conn"
] | [] | false | false | false | false | true | let fragment_valid (#t: Type) (h0: heap) (f: fragment t) : GTot Type0 =
| fragment_ghostly_connections f /\ fragment_contained h0 f /\ fragment_aa f /\ fragment_conn h0 f | false |
DoublyLinkedList.fst | DoublyLinkedList.piece_ghostly_connections | val piece_ghostly_connections (#t: Type) (p: piece t) : GTot Type0 | val piece_ghostly_connections (#t: Type) (p: piece t) : GTot Type0 | let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 152,
"start_col": 0,
"start_line": 147
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: DoublyLinkedList.piece t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.piece",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"Prims.l_False",
"Prims.int",
"Prims.l_and",
"Prims.eq2",
"DoublyLinkedList.__proj__Mkpiece__item__phead",
"FStar.List.Tot.Base.hd",
"DoublyLinkedList.__proj__Mkpiece__item__ptail",
"FStar.List.Tot.Base.last",
"FStar.Ghost.erased",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes"
] | [] | false | false | false | false | true | let piece_ghostly_connections (#t: Type) (p: piece t) : GTot Type0 =
| let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\ p.ptail == last nodes | false |
DoublyLinkedList.fst | DoublyLinkedList.loc_includes_union_l_piece_fp0 | val loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2: loc) (p: piece t)
: Lemma (requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] | val loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2: loc) (p: piece t)
: Lemma (requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] | let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 266,
"start_col": 0,
"start_line": 261
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> p: DoublyLinkedList.piece t
-> FStar.Pervasives.Lemma
(requires
LowStar.Monotonic.Buffer.loc_includes s1 (DoublyLinkedList.piece_fp0 p) \/
LowStar.Monotonic.Buffer.loc_includes s2 (DoublyLinkedList.piece_fp0 p))
(ensures
LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2)
(DoublyLinkedList.piece_fp0 p))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2)
(DoublyLinkedList.piece_fp0 p))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowStar.Monotonic.Buffer.loc",
"DoublyLinkedList.piece",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"DoublyLinkedList.piece_fp0",
"Prims.unit",
"Prims.l_or",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2: loc) (p: piece t)
: Lemma (requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
| loc_includes_union_l s1 s2 (piece_fp0 p) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_aa_r | val nodelist_aa_r (#t: Type) (nl: nodelist t) : GTot Type0 | val nodelist_aa_r (#t: Type) (nl: nodelist t) : GTot Type0 | let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 319,
"start_col": 0,
"start_line": 314
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.l_True",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_fp0",
"DoublyLinkedList.nodelist_aa_r"
] | [
"recursion"
] | false | false | false | false | true | let rec nodelist_aa_r (#t: Type) (nl: nodelist t) : GTot Type0 =
| match nl with
| [] -> True
| n :: ns -> Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\ nodelist_aa_r ns | false |
Hacl.HPKE.Curve64_CP32_SHA512.fsti | Hacl.HPKE.Curve64_CP32_SHA512.cs | val cs:S.ciphersuite | val cs:S.ciphersuite | let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_512) | {
"file_name": "code/hpke/Hacl.HPKE.Curve64_CP32_SHA512.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 102,
"end_line": 10,
"start_col": 0,
"start_line": 10
} | module Hacl.HPKE.Curve64_CP32_SHA512
open Hacl.Impl.HPKE
module S = Spec.Agile.HPKE
module DH = Spec.Agile.DH
module AEAD = Spec.Agile.AEAD
module Hash = Spec.Agile.Hash | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.HPKE.fsti.checked",
"Spec.Agile.Hash.fsti.checked",
"Spec.Agile.DH.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"Hacl.Impl.HPKE.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.HPKE.Curve64_CP32_SHA512.fsti"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "AEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.Agile.HPKE.ciphersuite | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.Mktuple4",
"Spec.Agile.DH.algorithm",
"Spec.Agile.HPKE.hash_algorithm",
"Spec.Agile.HPKE.aead",
"Spec.Hash.Definitions.hash_alg",
"Spec.Agile.DH.DH_Curve25519",
"Spec.Hash.Definitions.SHA2_256",
"Spec.Agile.HPKE.Seal",
"Spec.Agile.AEAD.CHACHA20_POLY1305",
"Spec.Hash.Definitions.SHA2_512"
] | [] | false | false | false | true | false | let cs:S.ciphersuite =
| (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_512) | false |
DoublyLinkedList.fst | DoublyLinkedList.loc_includes_union_l_fragment_fp0 | val loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2: loc) (f: fragment t)
: Lemma (requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] | val loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2: loc) (f: fragment t)
: Lemma (requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] | let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 273,
"start_col": 0,
"start_line": 268
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s1: LowStar.Monotonic.Buffer.loc ->
s2: LowStar.Monotonic.Buffer.loc ->
f: DoublyLinkedList.fragment t
-> FStar.Pervasives.Lemma
(requires
LowStar.Monotonic.Buffer.loc_includes s1 (DoublyLinkedList.fragment_fp0 f) \/
LowStar.Monotonic.Buffer.loc_includes s2 (DoublyLinkedList.fragment_fp0 f))
(ensures
LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2)
(DoublyLinkedList.fragment_fp0 f))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2)
(DoublyLinkedList.fragment_fp0 f))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowStar.Monotonic.Buffer.loc",
"DoublyLinkedList.fragment",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"DoublyLinkedList.fragment_fp0",
"Prims.unit",
"Prims.l_or",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2: loc) (f: fragment t)
: Lemma (requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
| loc_includes_union_l s1 s2 (fragment_fp0 f) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_conn | val nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t) : GTot Type0 (decreases (length nl)) | val nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t) : GTot Type0 (decreases (length nl)) | let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 365,
"start_col": 0,
"start_line": 357
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl: DoublyLinkedList.nodelist t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial",
""
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"Prims.l_True",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.l_and",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"DoublyLinkedList.op_Less_Less_Bar",
"DoublyLinkedList.nodelist_conn"
] | [
"recursion"
] | false | false | false | false | true | let rec nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t) : GTot Type0 (decreases (length nl)) =
| match nl with
| [] -> True
| n1 :: rest ->
match rest with
| [] -> True
| n2 :: ns -> n1 @ h0 |>> n2 /\ n1 <<| n2 @ h0 /\ nodelist_conn h0 rest | false |
DoublyLinkedList.fst | DoublyLinkedList.dll_conn | val dll_conn (#t: Type) (h0: heap) (d: dll t) : GTot Type0 | val dll_conn (#t: Type) (h0: heap) (d: dll t) : GTot Type0 | let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 370,
"start_col": 0,
"start_line": 367
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> d: DoublyLinkedList.dll t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.dll",
"Prims.l_and",
"DoublyLinkedList.nodelist_conn",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.l_imp",
"Prims.l_not",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.node",
"DoublyLinkedList.__proj__Mkdll__item__lhead",
"LowStar.Buffer.null",
"DoublyLinkedList.__proj__Mknode__item__blink",
"DoublyLinkedList.op_At",
"DoublyLinkedList.__proj__Mkdll__item__ltail",
"DoublyLinkedList.__proj__Mknode__item__flink"
] | [] | false | false | false | false | true | let dll_conn (#t: Type) (h0: heap) (d: dll t) : GTot Type0 =
| nodelist_conn h0 d.nodes /\ (d.lhead =!= null ==> (d.lhead @ h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail @ h0).flink == null) | false |
DoublyLinkedList.fst | DoublyLinkedList.fragment_aa_lr | val fragment_aa_lr (#t: Type) (f: fragment t) : GTot Type0 | val fragment_aa_lr (#t: Type) (f: fragment t) : GTot Type0 | let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1))) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 345,
"start_col": 0,
"start_line": 338
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 = | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: DoublyLinkedList.fragment t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.fragment",
"Prims.l_True",
"DoublyLinkedList.piece",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.piece_fp0",
"Prims.l_and"
] | [
"recursion"
] | false | false | false | false | true | let rec fragment_aa_lr (#t: Type) (f: fragment t) : GTot Type0 =
| match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 ->
((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1))) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_aa_l | val nodelist_aa_l (#t: Type) (nl: nodelist t) : GTot Type0 (decreases (length nl)) | val nodelist_aa_l (#t: Type) (nl: nodelist t) : GTot Type0 (decreases (length nl)) | let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 326,
"start_col": 0,
"start_line": 320
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial",
""
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.l_True",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_fp0",
"DoublyLinkedList.nodelist_aa_l",
"Prims.unit",
"FStar.List.Tot.Properties.lemma_unsnoc_length",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.unsnoc"
] | [
"recursion"
] | false | false | false | false | true | let rec nodelist_aa_l (#t: Type) (nl: nodelist t) : GTot Type0 (decreases (length nl)) =
| match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in
lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\ nodelist_aa_l ns | false |
DoublyLinkedList.fst | DoublyLinkedList.loc_equiv_union_union_loc | val loc_equiv_union_union_loc (a b c: Mod.loc)
: Lemma (requires (loc_equiv b c))
(ensures (loc_equiv (Mod.loc_union a b) (Mod.loc_union a c)))
[SMTPat (loc_equiv (Mod.loc_union a b) (Mod.loc_union a c))] | val loc_equiv_union_union_loc (a b c: Mod.loc)
: Lemma (requires (loc_equiv b c))
(ensures (loc_equiv (Mod.loc_union a b) (Mod.loc_union a c)))
[SMTPat (loc_equiv (Mod.loc_union a b) (Mod.loc_union a c))] | let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 307,
"start_col": 0,
"start_line": 289
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: LowStar.Monotonic.Buffer.loc ->
b: LowStar.Monotonic.Buffer.loc ->
c: LowStar.Monotonic.Buffer.loc
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.loc_equiv b c)
(ensures
DoublyLinkedList.loc_equiv (LowStar.Monotonic.Buffer.loc_union a b)
(LowStar.Monotonic.Buffer.loc_union a c))
[
SMTPat (DoublyLinkedList.loc_equiv (LowStar.Monotonic.Buffer.loc_union a b)
(LowStar.Monotonic.Buffer.loc_union a c))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowStar.Monotonic.Buffer.loc",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"Prims.unit",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_includes",
"DoublyLinkedList.loc_equiv",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.logical",
"Prims.Nil"
] | [] | true | false | true | false | false | let loc_equiv_union_union_loc (a b c: Mod.loc)
: Lemma (requires (loc_equiv b c))
(ensures (loc_equiv (Mod.loc_union a b) (Mod.loc_union a c)))
[SMTPat (loc_equiv (Mod.loc_union a b) (Mod.loc_union a c))] =
| let incl = Mod.loc_includes in
let u = Mod.loc_union in
Mod.loc_includes_union_l a b c;
Mod.loc_includes_union_l a b a;
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a | false |
DoublyLinkedList.fst | DoublyLinkedList.unchanged_node_val | val unchanged_node_val : h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
n:
b:
LowStar.Monotonic.Buffer.mbuffer (DoublyLinkedList.node _)
(LowStar.Buffer.trivial_preorder (DoublyLinkedList.node _))
(LowStar.Buffer.trivial_preorder (DoublyLinkedList.node _))
{LowStar.Monotonic.Buffer.length b == 1 /\ LowStar.Monotonic.Buffer.length b == 1}
-> Prims.logical | let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n)) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 413,
"start_col": 0,
"start_line": 411
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
n:
b:
LowStar.Monotonic.Buffer.mbuffer (DoublyLinkedList.node _)
(LowStar.Buffer.trivial_preorder (DoublyLinkedList.node _))
(LowStar.Buffer.trivial_preorder (DoublyLinkedList.node _))
{LowStar.Monotonic.Buffer.length b == 1 /\ LowStar.Monotonic.Buffer.length b == 1}
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.mbuffer",
"DoublyLinkedList.node",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"Prims.l_imp",
"DoublyLinkedList.contains",
"DoublyLinkedList.__proj__Mknode__item__p",
"DoublyLinkedList.op_At",
"Prims.logical"
] | [] | false | false | false | false | true | let unchanged_node_val h0 h1 n =
| (h0 `contains` n ==> ((n @ h0).p == (n @ h1).p /\ h1 `contains` n)) | false |
|
DoublyLinkedList.fst | DoublyLinkedList.unchanged_node_vals | val unchanged_node_vals (h0 h1: HS.mem) (ns: nodelist 'a) : GTot prop | val unchanged_node_vals (h0 h1: HS.mem) (ns: nodelist 'a) : GTot prop | let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns' | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 75,
"end_line": 418,
"start_col": 0,
"start_line": 415
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
ns: DoublyLinkedList.nodelist 'a
-> Prims.GTot Prims.prop | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedList.nodelist",
"Prims.l_True",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.l_and",
"DoublyLinkedList.unchanged_node_val",
"DoublyLinkedList.unchanged_node_vals",
"Prims.prop"
] | [
"recursion"
] | false | false | false | false | true | let rec unchanged_node_vals (h0 h1: HS.mem) (ns: nodelist 'a) : GTot prop =
| match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns' | false |
DoublyLinkedList.fst | DoublyLinkedList.extract_nodelist_fp0 | val extract_nodelist_fp0 (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer nl.[ i ]))) | val extract_nodelist_fp0 (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer nl.[ i ]))) | let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 483,
"start_col": 0,
"start_line": 476
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> i: Prims.nat{i < FStar.List.Tot.Base.length nl}
-> FStar.Pervasives.Lemma
(ensures
LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 nl)
(LowStar.Monotonic.Buffer.loc_buffer nl.[ i ])) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.int",
"DoublyLinkedList.extract_nodelist_fp0",
"FStar.List.Tot.Base.tl",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_includes",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.op_String_Access",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec extract_nodelist_fp0 (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer nl.[ i ]))) =
| match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1) | false |
DoublyLinkedList.fst | DoublyLinkedList.extract_nodelist_aa_l | val extract_nodelist_aa_l (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_aa_l nl))
(ensures
(let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) | val extract_nodelist_aa_l (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_aa_l nl))
(ensures
(let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) | let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 509,
"start_col": 0,
"start_line": 495
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> i: Prims.nat{i < FStar.List.Tot.Base.length nl}
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_aa_l nl)
(ensures
(let _ = FStar.List.Tot.Base.split3 nl i in
(let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ left n _ = _ in
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer n)
(DoublyLinkedList.nodelist_fp0 left))
<:
Type0))
(decreases FStar.List.Tot.Base.length nl) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.list",
"FStar.List.Pure.Properties.lemma_split3_unsnoc",
"Prims.unit",
"DoublyLinkedList.extract_nodelist_aa_l",
"FStar.List.Pure.Properties.lemma_unsnoc_split3",
"FStar.Pervasives.Native.tuple3",
"FStar.List.Tot.Base.split3",
"FStar.List.Tot.Properties.lemma_unsnoc_length",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.unsnoc",
"DoublyLinkedList.nodelist_aa_l",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_fp0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec extract_nodelist_aa_l (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_aa_l nl))
(ensures
(let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
| if i = length nl - 1
then ()
else
(let a, b = unsnoc nl in
lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i) | false |
DoublyLinkedList.fst | DoublyLinkedList.extract_nodelist_contained | val extract_nodelist_contained (#t: Type) (h0: heap) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_contained h0 nl)) (ensures (h0 `contains` nl.[ i ])) | val extract_nodelist_contained (#t: Type) (h0: heap) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_contained h0 nl)) (ensures (h0 `contains` nl.[ i ])) | let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 474,
"start_col": 0,
"start_line": 468
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
nl: DoublyLinkedList.nodelist t ->
i: Prims.nat{i < FStar.List.Tot.Base.length nl}
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_contained h0 nl)
(ensures DoublyLinkedList.contains h0 nl.[ i ]) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.int",
"DoublyLinkedList.extract_nodelist_contained",
"FStar.List.Tot.Base.tl",
"Prims.op_Subtraction",
"Prims.unit",
"DoublyLinkedList.nodelist_contained",
"Prims.squash",
"DoublyLinkedList.contains",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.op_String_Access",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec extract_nodelist_contained (#t: Type) (h0: heap) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_contained h0 nl)) (ensures (h0 `contains` nl.[ i ])) =
| match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1) | false |
DoublyLinkedList.fst | DoublyLinkedList.extract_nodelist_aa_r | val extract_nodelist_aa_r (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_aa_r nl))
(ensures
(let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) | val extract_nodelist_aa_r (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_aa_r nl))
(ensures
(let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) | let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 493,
"start_col": 0,
"start_line": 485
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> i: Prims.nat{i < FStar.List.Tot.Base.length nl}
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_aa_r nl)
(ensures
(let _ = FStar.List.Tot.Base.split3 nl i in
(let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ _ n right = _ in
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer n)
(DoublyLinkedList.nodelist_fp0 right))
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.int",
"DoublyLinkedList.extract_nodelist_aa_r",
"FStar.List.Tot.Base.tl",
"Prims.op_Subtraction",
"Prims.unit",
"DoublyLinkedList.nodelist_aa_r",
"Prims.squash",
"Prims.list",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_fp0",
"FStar.Pervasives.Native.tuple3",
"FStar.List.Tot.Base.split3",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec extract_nodelist_aa_r (#t: Type) (nl: nodelist t) (i: nat{i < length nl})
: Lemma (requires (nodelist_aa_r nl))
(ensures
(let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
| match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1) | false |
DoublyLinkedList.fst | DoublyLinkedList.node_not_in_dll | val node_not_in_dll : h0: DoublyLinkedList.heap ->
n: LowStar.Buffer.pointer (DoublyLinkedList.node t) ->
d: DoublyLinkedList.dll t
-> Prims.GTot Type0 | let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 1367,
"start_col": 0,
"start_line": 1364
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
n: LowStar.Buffer.pointer (DoublyLinkedList.node t) ->
d: DoublyLinkedList.dll t
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.heap",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.dll",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc",
"DoublyLinkedList.dll_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder"
] | [] | false | false | false | false | true | let node_not_in_dll (#t: Type) (h0: heap) (n: pointer (node t)) (d: dll t) =
| let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2 | false |
|
DoublyLinkedList.fst | DoublyLinkedList.fst_unsnoc_nodelist_conn | val fst_unsnoc_nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) | val fst_unsnoc_nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) | let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 595,
"start_col": 0,
"start_line": 589
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires DoublyLinkedList.nodelist_conn h0 nl /\ FStar.List.Tot.Base.length nl > 0)
(ensures
DoublyLinkedList.nodelist_conn h0
(FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc nl))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.fst_unsnoc_nodelist_conn",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_conn",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"FStar.List.Tot.Base.unsnoc",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec fst_unsnoc_nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
| match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_aa | val nodelist_append_aa (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) | val nodelist_append_aa (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) | let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 765,
"start_col": 0,
"start_line": 760
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_aa nl1 /\ DoublyLinkedList.nodelist_aa nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2)) (ensures DoublyLinkedList.nodelist_aa (nl1 @ nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"DoublyLinkedList.nodelist_append_aa_r",
"Prims.unit",
"DoublyLinkedList.nodelist_append_aa_l",
"Prims.l_and",
"DoublyLinkedList.nodelist_aa",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"Prims.squash",
"FStar.List.Tot.Base.append",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let nodelist_append_aa (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
| nodelist_append_aa_l nl1 nl2;
nodelist_append_aa_r nl1 nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.tot_piece_to_dll | val tot_piece_to_dll
(#t: Type)
(h0: heap)
(p: piece t {piece_valid h0 p /\ (p.phead @ h0).blink == null /\ (p.ptail @ h0).flink == null}
)
: Tot (d: dll t {dll_valid h0 d}) | val tot_piece_to_dll
(#t: Type)
(h0: heap)
(p: piece t {piece_valid h0 p /\ (p.phead @ h0).blink == null /\ (p.ptail @ h0).flink == null}
)
: Tot (d: dll t {dll_valid h0 d}) | let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes } | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 671,
"start_col": 0,
"start_line": 666
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
p:
DoublyLinkedList.piece t
{ DoublyLinkedList.piece_valid h0 p /\
Mknode?.blink (Mkpiece?.phead p @ h0) == LowStar.Buffer.null /\
Mknode?.flink (Mkpiece?.ptail p @ h0) == LowStar.Buffer.null }
-> d: DoublyLinkedList.dll t {DoublyLinkedList.dll_valid h0 d} | Prims.Tot | [
"total"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.piece",
"Prims.l_and",
"DoublyLinkedList.piece_valid",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.node",
"DoublyLinkedList.__proj__Mknode__item__blink",
"DoublyLinkedList.op_At",
"DoublyLinkedList.__proj__Mkpiece__item__phead",
"LowStar.Buffer.null",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.__proj__Mkpiece__item__ptail",
"DoublyLinkedList.Mkdll",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"DoublyLinkedList.dll",
"DoublyLinkedList.dll_valid"
] | [] | false | false | false | false | false | let tot_piece_to_dll
(#t: Type)
(h0: heap)
(p:
piece t {piece_valid h0 p /\ (p.phead @ h0).blink == null /\ (p.ptail @ h0).flink == null}
)
: Tot (d: dll t {dll_valid h0 d}) =
| { lhead = p.phead; ltail = p.ptail; nodes = p.pnodes } | false |
DoublyLinkedList.fst | DoublyLinkedList.extract_nodelist_conn | val extract_nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t) (i: nat{i < length nl - 1})
: Lemma (requires (nodelist_conn h0 nl))
(ensures ((nl.[ i ] @ h0 |>> nl.[ i + 1 ]) /\ (nl.[ i ] <<| nl.[ i + 1 ] @ h0)))
(decreases (length nl)) | val extract_nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t) (i: nat{i < length nl - 1})
: Lemma (requires (nodelist_conn h0 nl))
(ensures ((nl.[ i ] @ h0 |>> nl.[ i + 1 ]) /\ (nl.[ i ] <<| nl.[ i + 1 ] @ h0)))
(decreases (length nl)) | let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 520,
"start_col": 0,
"start_line": 511
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
nl: DoublyLinkedList.nodelist t ->
i: Prims.nat{i < FStar.List.Tot.Base.length nl - 1}
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_conn h0 nl)
(ensures nl.[ i ] @ h0 |>> nl.[ i + 1 ] /\ nl.[ i ] <<| nl.[ i + 1 ] @ h0)
(decreases FStar.List.Tot.Base.length nl) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.int",
"DoublyLinkedList.extract_nodelist_conn",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"DoublyLinkedList.nodelist_conn",
"Prims.squash",
"Prims.l_and",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"DoublyLinkedList.op_String_Access",
"Prims.op_Addition",
"DoublyLinkedList.op_Less_Less_Bar",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec extract_nodelist_conn (#t: Type) (h0: heap) (nl: nodelist t) (i: nat{i < length nl - 1})
: Lemma (requires (nodelist_conn h0 nl))
(ensures ((nl.[ i ] @ h0 |>> nl.[ i + 1 ]) /\ (nl.[ i ] <<| nl.[ i + 1 ] @ h0)))
(decreases (length nl)) =
| match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_contained | val nodelist_append_contained (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) | val nodelist_append_contained (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) | let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 683,
"start_col": 0,
"start_line": 677
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_contained h0 nl1 /\ DoublyLinkedList.nodelist_contained h0 nl2)
(ensures DoublyLinkedList.nodelist_contained h0 (nl1 @ nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.nodelist_append_contained",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_contained",
"Prims.squash",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_append_contained (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
| match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.fst_unsnoc_nodelist_valid | val fst_unsnoc_nodelist_valid (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) | val fst_unsnoc_nodelist_valid (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) | let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 603,
"start_col": 0,
"start_line": 597
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires DoublyLinkedList.nodelist_valid h0 nl /\ FStar.List.Tot.Base.length nl > 0)
(ensures
DoublyLinkedList.nodelist_valid h0
(FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc nl))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.fst_unsnoc_nodelist_conn",
"Prims.unit",
"DoublyLinkedList.fst_unsnoc_nodelist_aa",
"DoublyLinkedList.fst_unsnoc_nodelist_contained",
"Prims.l_and",
"DoublyLinkedList.nodelist_valid",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"Prims.list",
"FStar.List.Tot.Base.unsnoc",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let fst_unsnoc_nodelist_valid (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
| fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl | false |
DoublyLinkedList.fst | DoublyLinkedList.tot_dll_to_fragment | val tot_dll_to_fragment (#t: Type) (h0: heap) (d: dll t {dll_valid h0 d /\ d.lhead =!= null})
: Tot (f: fragment t {fragment_valid h0 f}) | val tot_dll_to_fragment (#t: Type) (h0: heap) (d: dll t {dll_valid h0 d /\ d.lhead =!= null})
: Tot (f: fragment t {fragment_valid h0 f}) | let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 664,
"start_col": 0,
"start_line": 662
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
d:
DoublyLinkedList.dll t
{DoublyLinkedList.dll_valid h0 d /\ ~(Mkdll?.lhead d == LowStar.Buffer.null)}
-> f: DoublyLinkedList.fragment t {DoublyLinkedList.fragment_valid h0 f} | Prims.Tot | [
"total"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.dll",
"Prims.l_and",
"DoublyLinkedList.dll_valid",
"Prims.l_not",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.node",
"DoublyLinkedList.__proj__Mkdll__item__lhead",
"LowStar.Buffer.null",
"DoublyLinkedList.Frag1",
"DoublyLinkedList.tot_dll_to_piece",
"DoublyLinkedList.fragment",
"DoublyLinkedList.fragment_valid"
] | [] | false | false | false | false | false | let tot_dll_to_fragment (#t: Type) (h0: heap) (d: dll t {dll_valid h0 d /\ d.lhead =!= null})
: Tot (f: fragment t {fragment_valid h0 f}) =
| Frag1 (tot_dll_to_piece h0 d) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_includes_l_fp0 | val nodelist_includes_l_fp0 (#t: Type) (nl: nodelist t) (i j: nat)
: Lemma (requires (i <= j /\ j < length nl))
(ensures
(let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) | val nodelist_includes_l_fp0 (#t: Type) (nl: nodelist t) (i j: nat)
: Lemma (requires (i <= j /\ j < length nl))
(ensures
(let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) | let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 654,
"start_col": 0,
"start_line": 630
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> i: Prims.nat -> j: Prims.nat
-> FStar.Pervasives.Lemma (requires i <= j /\ j < FStar.List.Tot.Base.length nl)
(ensures
(let _ = FStar.List.Tot.Base.splitAt i nl in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ a _ = _ in
let _ = FStar.List.Tot.Base.splitAt j nl in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ b _ = _ in
LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 b)
(DoublyLinkedList.nodelist_fp0 a))
<:
Type0)
<:
Type0))
(decreases j - i) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.op_Equality",
"Prims.bool",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.int",
"Prims.op_Subtraction",
"DoublyLinkedList.fst_unsnoc_nodelist_fp0",
"Prims.unit",
"FStar.List.Tot.Properties.lemma_unsnoc_append",
"Prims.Cons",
"FStar.List.Tot.Base.hd",
"Prims.Nil",
"FStar.List.Pure.Properties.splitAt_assoc",
"LowStar.Monotonic.Buffer.loc_includes_trans",
"DoublyLinkedList.nodelist_fp0",
"FStar.List.Pure.Properties.lemma_splitAt",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.splitAt",
"DoublyLinkedList.nodelist_includes_l_fp0",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_includes",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_includes_l_fp0 (#t: Type) (nl: nodelist t) (i j: nat)
: Lemma (requires (i <= j /\ j < length nl))
(ensures
(let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
| if i = j
then ()
else
(let a, a' = splitAt i nl in
lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in
lemma_splitAt nl b b' j;
if i = j - 1
then
(List.Pure.Properties.splitAt_assoc i 1 nl;
lemma_unsnoc_append a [hd a'];
fst_unsnoc_nodelist_fp0 b)
else
(nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in
lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a))) | false |
DoublyLinkedList.fst | DoublyLinkedList.snd_unsnoc_nodelist_fp0 | val snd_unsnoc_nodelist_fp0 (#t: Type) (nl: nodelist t)
: Lemma (requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] | val snd_unsnoc_nodelist_fp0 (#t: Type) (nl: nodelist t)
: Lemma (requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] | let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 562,
"start_col": 0,
"start_line": 555
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length nl > 0)
(ensures
LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 nl)
(LowStar.Monotonic.Buffer.loc_buffer (FStar.Pervasives.Native.snd (FStar.List.Tot.Base.unsnoc
nl))))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 nl)
(LowStar.Monotonic.Buffer.loc_buffer (FStar.Pervasives.Native.snd (FStar.List.Tot.Base.unsnoc
nl))))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.snd_unsnoc_nodelist_fp0",
"Prims.unit",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_includes",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"FStar.Pervasives.Native.snd",
"FStar.List.Tot.Base.unsnoc",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec snd_unsnoc_nodelist_fp0 (#t: Type) (nl: nodelist t)
: Lemma (requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
| match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_contained | val nodelist_split_contained (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) | val nodelist_split_contained (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) | let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 939,
"start_col": 0,
"start_line": 933
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_contained h0 (nl1 @ nl2))
(ensures
DoublyLinkedList.nodelist_contained h0 nl1 /\ DoublyLinkedList.nodelist_contained h0 nl2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.nodelist_split_contained",
"Prims.unit",
"DoublyLinkedList.nodelist_contained",
"FStar.List.Tot.Base.append",
"Prims.squash",
"Prims.l_and",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_split_contained (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
| match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_fp0 | val nodelist_append_fp0 (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(ensures
(loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) | val nodelist_append_fp0 (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(ensures
(loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) | let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
() | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 717,
"start_col": 0,
"start_line": 685
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(ensures
DoublyLinkedList.loc_equiv (DoublyLinkedList.nodelist_fp0 (nl1 @ nl2))
(LowStar.Monotonic.Buffer.loc_union (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.unit",
"DoublyLinkedList.loc_equiv_trans",
"LowStar.Monotonic.Buffer.loc_union",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"FStar.List.Tot.Base.append",
"DoublyLinkedList.nodelist_append_fp0",
"Prims.l_True",
"Prims.squash",
"DoublyLinkedList.loc_equiv",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_append_fp0 (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(ensures
(loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
| match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
loc_equiv_trans (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
() | false |
DoublyLinkedList.fst | DoublyLinkedList.loc_includes_union_r_inv | val loc_includes_union_r_inv (a b c: Mod.loc)
: Lemma (requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) | val loc_includes_union_r_inv (a b c: Mod.loc)
: Lemma (requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) | let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 800,
"start_col": 0,
"start_line": 793
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: LowStar.Monotonic.Buffer.loc ->
b: LowStar.Monotonic.Buffer.loc ->
c: LowStar.Monotonic.Buffer.loc
-> FStar.Pervasives.Lemma
(requires LowStar.Monotonic.Buffer.loc_includes a (LowStar.Monotonic.Buffer.loc_union b c))
(ensures
LowStar.Monotonic.Buffer.loc_includes a b /\ LowStar.Monotonic.Buffer.loc_includes a c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowStar.Monotonic.Buffer.loc",
"LowStar.Monotonic.Buffer.loc_includes_trans",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.unit",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.squash",
"Prims.l_and",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let loc_includes_union_r_inv (a b c: Mod.loc)
: Lemma (requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
| Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_aa_r | val nodelist_split_aa_r (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) | val nodelist_split_aa_r (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) | let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 1032,
"start_col": 0,
"start_line": 1024
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_aa_r (nl1 @ nl2))
(ensures DoublyLinkedList.nodelist_aa_r nl1 /\ DoublyLinkedList.nodelist_aa_r nl2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.nodelist_append_fp0",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"DoublyLinkedList.nodelist_split_aa_r",
"DoublyLinkedList.nodelist_aa_r",
"FStar.List.Tot.Base.append",
"Prims.squash",
"Prims.l_and",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_split_aa_r (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
| match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.tot_dll_to_piece | val tot_dll_to_piece (#t: Type) (h0: heap) (d: nonempty_dll t {dll_valid h0 d})
: Tot (p: piece t {piece_valid h0 p}) | val tot_dll_to_piece (#t: Type) (h0: heap) (d: nonempty_dll t {dll_valid h0 d})
: Tot (p: piece t {piece_valid h0 p}) | let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes } | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 660,
"start_col": 0,
"start_line": 658
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> d: DoublyLinkedList.nonempty_dll t {DoublyLinkedList.dll_valid h0 d}
-> p: DoublyLinkedList.piece t {DoublyLinkedList.piece_valid h0 p} | Prims.Tot | [
"total"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nonempty_dll",
"DoublyLinkedList.dll_valid",
"DoublyLinkedList.Mkpiece",
"DoublyLinkedList.__proj__Mkdll__item__lhead",
"DoublyLinkedList.__proj__Mkdll__item__ltail",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"DoublyLinkedList.piece",
"DoublyLinkedList.piece_valid"
] | [] | false | false | false | false | false | let tot_dll_to_piece (#t: Type) (h0: heap) (d: nonempty_dll t {dll_valid h0 d})
: Tot (p: piece t {piece_valid h0 p}) =
| { phead = d.lhead; ptail = d.ltail; pnodes = d.nodes } | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_aa_r | val nodelist_append_aa_r (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) | val nodelist_append_aa_r (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) | let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 758,
"start_col": 0,
"start_line": 749
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_aa_r nl1 /\ DoublyLinkedList.nodelist_aa_r nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2)) (ensures DoublyLinkedList.nodelist_aa_r (nl1 @ nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.nodelist_append_aa_r",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"DoublyLinkedList.nodelist_append_fp0",
"Prims.l_and",
"DoublyLinkedList.nodelist_aa_r",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"Prims.squash",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_append_aa_r (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
| match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.fst_unsnoc_nodelist_fp0 | val fst_unsnoc_nodelist_fp0 (#t: Type) (nl: nodelist t)
: Lemma (requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] | val fst_unsnoc_nodelist_fp0 (#t: Type) (nl: nodelist t)
: Lemma (requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] | let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 553,
"start_col": 0,
"start_line": 546
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.length nl > 0)
(ensures
LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 nl)
(DoublyLinkedList.nodelist_fp0 (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc nl
))))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 nl)
(DoublyLinkedList.nodelist_fp0 (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc
nl))))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.fst_unsnoc_nodelist_fp0",
"Prims.unit",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_includes",
"DoublyLinkedList.nodelist_fp0",
"FStar.Pervasives.Native.fst",
"FStar.List.Tot.Base.unsnoc",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec fst_unsnoc_nodelist_fp0 (#t: Type) (nl: nodelist t)
: Lemma (requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
| match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns | false |
DoublyLinkedList.fst | DoublyLinkedList.fst_unsnoc_nodelist_contained | val fst_unsnoc_nodelist_contained (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) | val fst_unsnoc_nodelist_contained (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) | let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 570,
"start_col": 0,
"start_line": 564
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires DoublyLinkedList.nodelist_contained h0 nl /\ FStar.List.Tot.Base.length nl > 0)
(ensures
DoublyLinkedList.nodelist_contained h0
(FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc nl))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.fst_unsnoc_nodelist_contained",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_contained",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"FStar.Pervasives.Native.fst",
"FStar.List.Tot.Base.unsnoc",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec fst_unsnoc_nodelist_contained (#t: Type) (h0: heap) (nl: nodelist t)
: Lemma (requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
| match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_includes_r_fp0 | val nodelist_includes_r_fp0 (#t: Type) (nl: nodelist t) (i j: nat)
: Lemma (requires (i <= j /\ j < length nl))
(ensures
(let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) | val nodelist_includes_r_fp0 (#t: Type) (nl: nodelist t) (i j: nat)
: Lemma (requires (i <= j /\ j < length nl))
(ensures
(let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) | let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 628,
"start_col": 0,
"start_line": 607
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t -> i: Prims.nat -> j: Prims.nat
-> FStar.Pervasives.Lemma (requires i <= j /\ j < FStar.List.Tot.Base.length nl)
(ensures
(let _ = FStar.List.Tot.Base.splitAt i nl in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ _ a = _ in
let _ = FStar.List.Tot.Base.splitAt j nl in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ _ b = _ in
LowStar.Monotonic.Buffer.loc_includes (DoublyLinkedList.nodelist_fp0 a)
(DoublyLinkedList.nodelist_fp0 b))
<:
Type0)
<:
Type0))
(decreases j - i) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.nodelist",
"Prims.nat",
"Prims.op_Equality",
"Prims.bool",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.int",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.List.Pure.Properties.splitAt_assoc",
"LowStar.Monotonic.Buffer.loc_includes_trans",
"DoublyLinkedList.nodelist_fp0",
"FStar.List.Pure.Properties.lemma_splitAt",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.splitAt",
"DoublyLinkedList.nodelist_includes_r_fp0",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_includes_r_fp0 (#t: Type) (nl: nodelist t) (i j: nat)
: Lemma (requires (i <= j /\ j < length nl))
(ensures
(let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
| if i = j
then ()
else
(let temp, a = splitAt i nl in
lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in
lemma_splitAt nl temp b j;
if i = j - 1
then
(List.Pure.Properties.splitAt_assoc i 1 nl;
())
else
(nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in
lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b))) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_valid | val nodelist_append_valid (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ length nl1 > 0 /\ length nl2 > 0 /\
(last nl1) @ h0 |>> (hd nl2) /\ (last nl1) <<| (hd nl2) @ h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) | val nodelist_append_valid (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ length nl1 > 0 /\ length nl2 > 0 /\
(last nl1) @ h0 |>> (hd nl2) /\ (last nl1) <<| (hd nl2) @ h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) | let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 789,
"start_col": 0,
"start_line": 779
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_valid h0 nl1 /\ DoublyLinkedList.nodelist_valid h0 nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2) /\ FStar.List.Tot.Base.length nl1 > 0 /\
FStar.List.Tot.Base.length nl2 > 0 /\
FStar.List.Tot.Base.last nl1 @ h0 |>> FStar.List.Tot.Base.hd nl2 /\
FStar.List.Tot.Base.last nl1 <<| FStar.List.Tot.Base.hd nl2 @ h0)
(ensures DoublyLinkedList.nodelist_valid h0 (nl1 @ nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.nodelist_append_conn",
"Prims.unit",
"DoublyLinkedList.nodelist_append_aa",
"DoublyLinkedList.nodelist_append_contained",
"Prims.l_and",
"DoublyLinkedList.nodelist_valid",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"FStar.List.Tot.Base.last",
"FStar.List.Tot.Base.hd",
"DoublyLinkedList.op_Less_Less_Bar",
"Prims.squash",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let nodelist_append_valid (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ length nl1 > 0 /\ length nl2 > 0 /\
(last nl1) @ h0 |>> (hd nl2) /\ (last nl1) <<| (hd nl2) @ h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
| nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.fragment_defragmentable | val fragment_defragmentable (#t: Type) (h0: heap) (f: fragment t {fragment_valid h0 f}) : GTot Type0 | val fragment_defragmentable (#t: Type) (h0: heap) (f: fragment t {fragment_valid h0 f}) : GTot Type0 | let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 888,
"start_col": 0,
"start_line": 879
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> f: DoublyLinkedList.fragment t {DoublyLinkedList.fragment_valid h0 f}
-> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.fragment",
"DoublyLinkedList.fragment_valid",
"Prims.l_True",
"DoublyLinkedList.piece",
"Prims.l_and",
"DoublyLinkedList.piece_valid",
"Prims.logical",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"DoublyLinkedList.op_Less_Less_Bar",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.List.Tot.Base.last",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"FStar.List.Tot.Base.hd"
] | [
"recursion"
] | false | false | false | false | true | let rec fragment_defragmentable (#t: Type) (h0: heap) (f: fragment t {fragment_valid h0 f})
: GTot Type0 =
| let aux (p1 p2: (p: piece t {piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a @ h0 |>> b) /\ (a <<| b @ h0)
in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3 | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_aa | val nodelist_split_aa (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa (append nl1 nl2)))
(ensures
(nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) | val nodelist_split_aa (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa (append nl1 nl2)))
(ensures
(nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) | let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 1041,
"start_col": 0,
"start_line": 1034
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_aa (nl1 @ nl2))
(ensures
DoublyLinkedList.nodelist_aa nl1 /\ DoublyLinkedList.nodelist_aa nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"DoublyLinkedList.nodelist_split_aa_r",
"Prims.unit",
"DoublyLinkedList.nodelist_split_aa_l",
"DoublyLinkedList.nodelist_split_fp0",
"DoublyLinkedList.nodelist_aa",
"FStar.List.Tot.Base.append",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.squash",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let nodelist_split_aa (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa (append nl1 nl2)))
(ensures
(nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
| nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.singleton_dll | val singleton_dll (#t: Type) (n: pointer (node t))
: StackInline (dll t)
(requires (fun h0 -> (h0 `contains` n)))
(ensures
(fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\ dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\ reveal d.nodes == [n])) | val singleton_dll (#t: Type) (n: pointer (node t))
: StackInline (dll t)
(requires (fun h0 -> (h0 `contains` n)))
(ensures
(fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\ dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\ reveal d.nodes == [n])) | let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 1176,
"start_col": 0,
"start_line": 1165
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: LowStar.Buffer.pointer (DoublyLinkedList.node t)
-> FStar.HyperStack.ST.StackInline (DoublyLinkedList.dll t) | FStar.HyperStack.ST.StackInline | [] | [] | [
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.tot_node_to_dll",
"DoublyLinkedList.dll",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.unit",
"DoublyLinkedList.op_Bang_Less_Bar_Equals",
"DoublyLinkedList.op_Bang_Equals_Bar_Greater",
"DoublyLinkedList.contains",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"DoublyLinkedList.dll_valid",
"DoublyLinkedList.unchanged_node_vals",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.eq2",
"Prims.list",
"Prims.Cons",
"Prims.Nil"
] | [] | false | true | false | false | false | let singleton_dll (#t: Type) (n: pointer (node t))
: StackInline (dll t)
(requires (fun h0 -> (h0 `contains` n)))
(ensures
(fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\ dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\ reveal d.nodes == [n])) =
| !=|>n;
!<|=n;
tot_node_to_dll (ST.get ()) n | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_fp0_equiv | val nodelist_split_fp0_equiv (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(ensures
((loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))))) | val nodelist_split_fp0_equiv (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(ensures
((loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))))) | let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 998,
"start_col": 0,
"start_line": 970
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(ensures
DoublyLinkedList.loc_equiv (DoublyLinkedList.nodelist_fp0 (nl1 @ nl2))
(LowStar.Monotonic.Buffer.loc_union (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims._assert",
"DoublyLinkedList.loc_equiv",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_fp0",
"Prims.unit",
"FStar.List.Tot.Base.append",
"DoublyLinkedList.nodelist_split_fp0_equiv",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_split_fp0_equiv (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(ensures
((loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))))) =
| match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 ns) (nodelist_fp0 nl2))));
assert (loc_equiv (Mod.loc_union (Mod.loc_buffer n)
(Mod.loc_union (nodelist_fp0 ns) (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)) (nodelist_fp0 nl2))) | false |
DoublyLinkedList.fst | DoublyLinkedList.fst_unsnoc_nodelist_aa | val fst_unsnoc_nodelist_aa (#t: Type) (nl: nodelist t)
: Lemma (requires (nodelist_aa nl /\ length nl > 0)) (ensures (nodelist_aa (fst (unsnoc nl)))) | val fst_unsnoc_nodelist_aa (#t: Type) (nl: nodelist t)
: Lemma (requires (nodelist_aa nl /\ length nl > 0)) (ensures (nodelist_aa (fst (unsnoc nl)))) | let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
() | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 587,
"start_col": 0,
"start_line": 572
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires DoublyLinkedList.nodelist_aa nl /\ FStar.List.Tot.Base.length nl > 0)
(ensures
DoublyLinkedList.nodelist_aa (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.unsnoc nl))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.unit",
"LowStar.Monotonic.Buffer.loc_disjoint_includes",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_fp0",
"FStar.List.Tot.Base.tl",
"FStar.Pervasives.Native.fst",
"FStar.List.Tot.Base.unsnoc",
"DoublyLinkedList.fst_unsnoc_nodelist_aa",
"Prims.l_and",
"DoublyLinkedList.nodelist_aa",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec fst_unsnoc_nodelist_aa (#t: Type) (nl: nodelist t)
: Lemma (requires (nodelist_aa nl /\ length nl > 0)) (ensures (nodelist_aa (fst (unsnoc nl)))) =
| match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes (Mod.loc_buffer n)
(nodelist_fp0 (tl nl))
(Mod.loc_buffer n)
(nodelist_fp0 ns);
() | false |
DoublyLinkedList.fst | DoublyLinkedList.dll_fp0_is_nodelist_fp0 | val dll_fp0_is_nodelist_fp0 (#t: Type) (d: dll t)
: Lemma (requires (dll_ghostly_connections d))
(ensures (loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) | val dll_fp0_is_nodelist_fp0 (#t: Type) (d: dll t)
: Lemma (requires (dll_ghostly_connections d))
(ensures (loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) | let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
() | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 1077,
"start_col": 0,
"start_line": 1070
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: DoublyLinkedList.dll t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.dll_ghostly_connections d)
(ensures
DoublyLinkedList.loc_equiv (DoublyLinkedList.dll_fp0 d)
(DoublyLinkedList.nodelist_fp0 (FStar.Ghost.reveal (Mkdll?.nodes d)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.dll",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"Prims.bool",
"Prims.unit",
"DoublyLinkedList.dll_ghostly_connections",
"Prims.squash",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.dll_fp0",
"DoublyLinkedList.nodelist_fp0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let dll_fp0_is_nodelist_fp0 (#t: Type) (d: dll t)
: Lemma (requires (dll_ghostly_connections d))
(ensures (loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
| if length d.nodes > 0 then lemma_unsnoc_is_last d.nodes | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_aa_l | val nodelist_split_aa_l (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) | val nodelist_split_aa_l (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) | let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
() | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 1020,
"start_col": 0,
"start_line": 1000
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_aa_l (nl1 @ nl2))
(ensures DoublyLinkedList.nodelist_aa_l nl1 /\ DoublyLinkedList.nodelist_aa_l nl2)
(decreases FStar.List.Tot.Base.length nl2) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.nodelist",
"FStar.List.Tot.Properties.append_l_nil",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.unit",
"DoublyLinkedList.nodelist_append_fp0",
"DoublyLinkedList.nodelist_split_aa_l",
"FStar.List.Tot.Properties.lemma_unsnoc_append",
"FStar.List.Tot.Properties.lemma_unsnoc_length",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.unsnoc",
"DoublyLinkedList.nodelist_aa_l",
"FStar.List.Tot.Base.append",
"Prims.squash",
"Prims.l_and",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_split_aa_l (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
| match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in
lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
nodelist_split_aa_l nl1 nl2';
nodelist_append_fp0 nl1 nl2';
() | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_fp0 | val nodelist_split_fp0 (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) | val nodelist_split_fp0 (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) | let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
() | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 8,
"end_line": 966,
"start_col": 0,
"start_line": 941
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.nodelist_aa_r (nl1 @ nl2))
(ensures
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.unit",
"LowStar.Monotonic.Buffer.loc_disjoint_union_r",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"FStar.List.Tot.Base.hd",
"FStar.List.Tot.Base.tl",
"FStar.List.Pure.Properties.lemma_append_splitAt",
"DoublyLinkedList.nodelist_includes_r_fp0",
"FStar.List.Tot.Base.append",
"Prims.op_Subtraction",
"FStar.List.Tot.Base.length",
"FStar.List.Tot.Properties.append_length",
"DoublyLinkedList.nodelist_split_fp0",
"DoublyLinkedList.nodelist_aa_r",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_split_fp0 (#t: Type) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
| match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
lemma_append_splitAt nl1 nl2;
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
() | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_remains_aa_l | val nodelist_remains_aa_l (#t: Type) (nl: nodelist t)
: Lemma (requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] | val nodelist_remains_aa_l (#t: Type) (nl: nodelist t)
: Lemma (requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] | let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 539,
"start_col": 0,
"start_line": 524
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires DoublyLinkedList.nodelist_aa_l nl /\ FStar.List.Tot.Base.length nl > 0)
(ensures DoublyLinkedList.nodelist_aa_l (FStar.List.Tot.Base.tl nl))
(decreases FStar.List.Tot.Base.length nl)
[SMTPat (DoublyLinkedList.nodelist_aa_l (FStar.List.Tot.Base.tl nl))] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.nodelist_remains_aa_l",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.unsnoc",
"FStar.List.Tot.Base.tl",
"FStar.List.Tot.Properties.lemma_unsnoc_length",
"Prims.l_and",
"DoublyLinkedList.nodelist_aa_l",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_remains_aa_l (#t: Type) (nl: nodelist t)
: Lemma (requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
| match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in
lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
nodelist_remains_aa_l ns | false |
DoublyLinkedList.fst | DoublyLinkedList.piece_fp0_is_nodelist_fp0 | val piece_fp0_is_nodelist_fp0 (#t: Type) (p: piece t)
: Lemma (requires (piece_ghostly_connections p))
(ensures (loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) | val piece_fp0_is_nodelist_fp0 (#t: Type) (p: piece t)
: Lemma (requires (piece_ghostly_connections p))
(ensures (loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) | let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 1083,
"start_col": 0,
"start_line": 1079
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: DoublyLinkedList.piece t
-> FStar.Pervasives.Lemma (requires DoublyLinkedList.piece_ghostly_connections p)
(ensures
DoublyLinkedList.loc_equiv (DoublyLinkedList.piece_fp0 p)
(DoublyLinkedList.nodelist_fp0 (FStar.Ghost.reveal (Mkpiece?.pnodes p)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.piece",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"Prims.unit",
"DoublyLinkedList.piece_ghostly_connections",
"Prims.squash",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.piece_fp0",
"DoublyLinkedList.nodelist_fp0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let piece_fp0_is_nodelist_fp0 (#t: Type) (p: piece t)
: Lemma (requires (piece_ghostly_connections p))
(ensures (loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
| lemma_unsnoc_is_last (reveal p.pnodes) | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_valid | val nodelist_split_valid (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_valid h0 (append nl1 nl2) /\ length nl1 > 0 /\ length nl2 > 0))
(ensures
(nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ (last nl1) @ h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2) @ h0)) | val nodelist_split_valid (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_valid h0 (append nl1 nl2) /\ length nl1 > 0 /\ length nl2 > 0))
(ensures
(nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ (last nl1) @ h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2) @ h0)) | let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 1065,
"start_col": 0,
"start_line": 1055
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_valid h0 (nl1 @ nl2) /\ FStar.List.Tot.Base.length nl1 > 0 /\
FStar.List.Tot.Base.length nl2 > 0)
(ensures
DoublyLinkedList.nodelist_valid h0 nl1 /\ DoublyLinkedList.nodelist_valid h0 nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2) /\
FStar.List.Tot.Base.last nl1 @ h0 |>> FStar.List.Tot.Base.hd nl2 /\
FStar.List.Tot.Base.last nl1 <<| FStar.List.Tot.Base.hd nl2 @ h0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.nodelist_split_conn",
"Prims.unit",
"DoublyLinkedList.nodelist_split_aa",
"DoublyLinkedList.nodelist_split_contained",
"Prims.l_and",
"DoublyLinkedList.nodelist_valid",
"FStar.List.Tot.Base.append",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"FStar.List.Tot.Base.last",
"FStar.List.Tot.Base.hd",
"DoublyLinkedList.op_Less_Less_Bar",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let nodelist_split_valid (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires (nodelist_valid h0 (append nl1 nl2) /\ length nl1 > 0 /\ length nl2 > 0))
(ensures
(nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ (last nl1) @ h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2) @ h0)) =
| nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.tot_node_to_dll | val tot_node_to_dll (#t: Type) (h0: heap) (n: pointer (node t))
: Pure (dll t)
(requires ((h0 `contains` n) /\ (((n @ h0).flink == null)) /\ ((n @ h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) | val tot_node_to_dll (#t: Type) (h0: heap) (n: pointer (node t))
: Pure (dll t)
(requires ((h0 `contains` n) /\ (((n @ h0).flink == null)) /\ ((n @ h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) | let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n } | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 1163,
"start_col": 0,
"start_line": 1156
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> n: LowStar.Buffer.pointer (DoublyLinkedList.node t)
-> Prims.Pure (DoublyLinkedList.dll t) | Prims.Pure | [] | [] | [
"DoublyLinkedList.heap",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.Mkdll",
"DoublyLinkedList.op_Tilde_Dot",
"DoublyLinkedList.dll",
"Prims.l_and",
"DoublyLinkedList.contains",
"LowStar.Buffer.trivial_preorder",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.op_At",
"LowStar.Buffer.null",
"DoublyLinkedList.__proj__Mknode__item__blink",
"DoublyLinkedList.dll_valid"
] | [] | false | false | false | false | false | let tot_node_to_dll (#t: Type) (h0: heap) (n: pointer (node t))
: Pure (dll t)
(requires ((h0 `contains` n) /\ (((n @ h0).flink == null)) /\ ((n @ h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
| { lhead = n; ltail = n; nodes = ~.n } | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_aa_l | val nodelist_append_aa_l (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) | val nodelist_append_aa_l (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) | let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
() | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 745,
"start_col": 0,
"start_line": 721
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_aa_l nl1 /\ DoublyLinkedList.nodelist_aa_l nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2))
(ensures DoublyLinkedList.nodelist_aa_l (nl1 @ nl2))
(decreases FStar.List.Tot.Base.length nl2) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"DoublyLinkedList.nodelist",
"FStar.List.Tot.Properties.append_l_nil",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.unit",
"FStar.List.Tot.Properties.lemma_unsnoc_append",
"DoublyLinkedList.nodelist_append_aa_l",
"Prims._assert",
"LowStar.Monotonic.Buffer.loc_includes",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"DoublyLinkedList.nodelist_append_fp0",
"FStar.List.Tot.Properties.lemma_unsnoc_length",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.unsnoc",
"Prims.l_and",
"DoublyLinkedList.nodelist_aa_l",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Prims.squash",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_append_aa_l (#t: Type) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
| match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in
lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n));
nodelist_append_aa_l nl1 nl2';
lemma_unsnoc_append nl1 nl2;
() | false |
DoublyLinkedList.fst | DoublyLinkedList._aux_fp_split_by_node | val _aux_fp_split_by_node : d0: DoublyLinkedList.dll 'a ->
d1: DoublyLinkedList.dll 'a ->
n: LowStar.Buffer.pointer (DoublyLinkedList.node 'a)
-> Prims.logical | let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 1720,
"start_col": 0,
"start_line": 1718
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
d0: DoublyLinkedList.dll 'a ->
d1: DoublyLinkedList.dll 'a ->
n: LowStar.Buffer.pointer (DoublyLinkedList.node 'a)
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"DoublyLinkedList.dll",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.l_and",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.dll_fp0",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Prims.logical"
] | [] | false | false | false | true | true | let _aux_fp_split_by_node (d0 d1: dll 'a) (n: pointer (node 'a)) =
| (dll_fp0 d0) `loc_equiv` (B.loc_union (dll_fp0 d1) (Mod.loc_buffer n)) /\
(dll_fp0 d1) `B.loc_disjoint` (Mod.loc_buffer n) | false |
|
DoublyLinkedList.fst | DoublyLinkedList.tot_node_to_piece | val tot_node_to_piece (#t: Type) (h0: heap) (n: pointer (node t))
: Pure (piece t) (requires ((h0 `contains` n))) (ensures (fun p -> piece_valid h0 p)) | val tot_node_to_piece (#t: Type) (h0: heap) (n: pointer (node t))
: Pure (piece t) (requires ((h0 `contains` n))) (ensures (fun p -> piece_valid h0 p)) | let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n } | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 1185,
"start_col": 0,
"start_line": 1180
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> n: LowStar.Buffer.pointer (DoublyLinkedList.node t)
-> Prims.Pure (DoublyLinkedList.piece t) | Prims.Pure | [] | [] | [
"DoublyLinkedList.heap",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.Mkpiece",
"DoublyLinkedList.op_Tilde_Dot",
"DoublyLinkedList.piece",
"DoublyLinkedList.contains",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.piece_valid"
] | [] | false | false | false | false | false | let tot_node_to_piece (#t: Type) (h0: heap) (n: pointer (node t))
: Pure (piece t) (requires ((h0 `contains` n))) (ensures (fun p -> piece_valid h0 p)) =
| { phead = n; ptail = n; pnodes = ~.n } | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_append_conn | val nodelist_append_conn (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ length nl1 > 0 /\ length nl2 > 0 /\
(last nl1) @ h0 |>> (hd nl2) /\ (last nl1) <<| (hd nl2) @ h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) | val nodelist_append_conn (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ length nl1 > 0 /\ length nl2 > 0 /\
(last nl1) @ h0 |>> (hd nl2) /\ (last nl1) <<| (hd nl2) @ h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) | let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 777,
"start_col": 0,
"start_line": 767
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_conn h0 nl1 /\ DoublyLinkedList.nodelist_conn h0 nl2 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.nodelist_fp0 nl1)
(DoublyLinkedList.nodelist_fp0 nl2) /\ FStar.List.Tot.Base.length nl1 > 0 /\
FStar.List.Tot.Base.length nl2 > 0 /\
FStar.List.Tot.Base.last nl1 @ h0 |>> FStar.List.Tot.Base.hd nl2 /\
FStar.List.Tot.Base.last nl1 <<| FStar.List.Tot.Base.hd nl2 @ h0)
(ensures DoublyLinkedList.nodelist_conn h0 (nl1 @ nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.nodelist_append_conn",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_conn",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"FStar.List.Tot.Base.last",
"FStar.List.Tot.Base.hd",
"DoublyLinkedList.op_Less_Less_Bar",
"Prims.squash",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_append_conn (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma
(requires
(nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\ length nl1 > 0 /\ length nl2 > 0 /\
(last nl1) @ h0 |>> (hd nl2) /\ (last nl1) <<| (hd nl2) @ h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
| match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_split_conn | val nodelist_split_conn (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires ((nodelist_conn h0 (append nl1 nl2)) /\ length nl1 > 0 /\ length nl2 > 0))
(ensures
(nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\ (last nl1) @ h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2) @ h0)) | val nodelist_split_conn (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires ((nodelist_conn h0 (append nl1 nl2)) /\ length nl1 > 0 /\ length nl2 > 0))
(ensures
(nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\ (last nl1) @ h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2) @ h0)) | let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 1053,
"start_col": 0,
"start_line": 1043
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> nl1: DoublyLinkedList.nodelist t -> nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_conn h0 (nl1 @ nl2) /\ FStar.List.Tot.Base.length nl1 > 0 /\
FStar.List.Tot.Base.length nl2 > 0)
(ensures
DoublyLinkedList.nodelist_conn h0 nl1 /\ DoublyLinkedList.nodelist_conn h0 nl2 /\
FStar.List.Tot.Base.last nl1 @ h0 |>> FStar.List.Tot.Base.hd nl2 /\
FStar.List.Tot.Base.last nl1 <<| FStar.List.Tot.Base.hd nl2 @ h0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.nodelist_split_conn",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_conn",
"FStar.List.Tot.Base.append",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"Prims.squash",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"FStar.List.Tot.Base.last",
"FStar.List.Tot.Base.hd",
"DoublyLinkedList.op_Less_Less_Bar",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_split_conn (#t: Type) (h0: heap) (nl1 nl2: nodelist t)
: Lemma (requires ((nodelist_conn h0 (append nl1 nl2)) /\ length nl1 > 0 /\ length nl2 > 0))
(ensures
(nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\ (last nl1) @ h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2) @ h0)) =
| match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.nodelist_remains_valid | val nodelist_remains_valid (#t: Type) (h0 h1: heap) (loc: Mod.loc) (nl: nodelist t)
: Lemma
(requires
((nodelist_valid h0 nl) /\ (Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl)))) (ensures (nodelist_valid h1 nl)) | val nodelist_remains_valid (#t: Type) (h0 h1: heap) (loc: Mod.loc) (nl: nodelist t)
: Lemma
(requires
((nodelist_valid h0 nl) /\ (Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl)))) (ensures (nodelist_valid h1 nl)) | let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 1278,
"start_col": 0,
"start_line": 1269
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
h1: DoublyLinkedList.heap ->
loc: LowStar.Monotonic.Buffer.loc ->
nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_valid h0 nl /\ LowStar.Monotonic.Buffer.modifies loc h0 h1 /\
LowStar.Monotonic.Buffer.loc_disjoint loc (DoublyLinkedList.nodelist_fp0 nl))
(ensures DoublyLinkedList.nodelist_valid h1 nl) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"LowStar.Monotonic.Buffer.loc",
"DoublyLinkedList.nodelist",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.nodelist_remains_valid",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_valid",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.nodelist_fp0",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec nodelist_remains_valid (#t: Type) (h0 h1: heap) (loc: Mod.loc) (nl: nodelist t)
: Lemma
(requires
((nodelist_valid h0 nl) /\ (Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl)))) (ensures (nodelist_valid h1 nl)) =
| match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl) | false |
DoublyLinkedList.fst | DoublyLinkedList.piece_remains_valid | val piece_remains_valid (#t: Type) (h0 h1: heap) (loc: Mod.loc) (p: piece t)
: Lemma
(requires
((piece_valid h0 p) /\ (Mod.modifies loc h0 h1) /\ (Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) | val piece_remains_valid (#t: Type) (h0 h1: heap) (loc: Mod.loc) (p: piece t)
: Lemma
(requires
((piece_valid h0 p) /\ (Mod.modifies loc h0 h1) /\ (Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) | let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 1287,
"start_col": 0,
"start_line": 1280
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
h1: DoublyLinkedList.heap ->
loc: LowStar.Monotonic.Buffer.loc ->
p: DoublyLinkedList.piece t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.piece_valid h0 p /\ LowStar.Monotonic.Buffer.modifies loc h0 h1 /\
LowStar.Monotonic.Buffer.loc_disjoint loc (DoublyLinkedList.piece_fp0 p))
(ensures DoublyLinkedList.piece_valid h1 p) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"LowStar.Monotonic.Buffer.loc",
"DoublyLinkedList.piece",
"DoublyLinkedList.nodelist_remains_valid",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.piece_valid",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_disjoint",
"DoublyLinkedList.piece_fp0",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let piece_remains_valid (#t: Type) (h0 h1: heap) (loc: Mod.loc) (p: piece t)
: Lemma
(requires
((piece_valid h0 p) /\ (Mod.modifies loc h0 h1) /\ (Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
| nodelist_remains_valid h0 h1 loc p.pnodes | false |
DoublyLinkedList.fst | DoublyLinkedList.aux_unchanged_payload_nomod | val aux_unchanged_payload_nomod (#t h0 h1: _) (nl: nodelist t)
: Lemma (requires (Mod.modifies Mod.loc_none h0 h1)) (ensures (unchanged_node_vals h0 h1 nl)) | val aux_unchanged_payload_nomod (#t h0 h1: _) (nl: nodelist t)
: Lemma (requires (Mod.modifies Mod.loc_none h0 h1)) (ensures (unchanged_node_vals h0 h1 nl)) | let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl' | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 1411,
"start_col": 0,
"start_line": 1404
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires LowStar.Monotonic.Buffer.modifies LowStar.Monotonic.Buffer.loc_none h0 h1)
(ensures DoublyLinkedList.unchanged_node_vals h0 h1 nl) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.aux_unchanged_payload_nomod",
"Prims.unit",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.squash",
"DoublyLinkedList.unchanged_node_vals",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec aux_unchanged_payload_nomod #t h0 h1 (nl: nodelist t)
: Lemma (requires (Mod.modifies Mod.loc_none h0 h1)) (ensures (unchanged_node_vals h0 h1 nl)) =
| match nl with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_nomod h0 h1 nl' | false |
DoublyLinkedList.fst | DoublyLinkedList.tot_piece_tail | val tot_piece_tail (#t: Type) (h0: heap) (p: piece t) (n: pointer (node t))
: Pure (piece t)
(requires ((piece_valid h0 p) /\ (n == (((p.phead) @ h0).flink)) /\ (length p.pnodes > 1)))
(ensures (fun q -> (piece_valid h0 q) /\ (reveal q.pnodes) == tl p.pnodes)) | val tot_piece_tail (#t: Type) (h0: heap) (p: piece t) (n: pointer (node t))
: Pure (piece t)
(requires ((piece_valid h0 p) /\ (n == (((p.phead) @ h0).flink)) /\ (length p.pnodes > 1)))
(ensures (fun q -> (piece_valid h0 q) /\ (reveal q.pnodes) == tl p.pnodes)) | let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes } | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 79,
"end_line": 1198,
"start_col": 0,
"start_line": 1189
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
p: DoublyLinkedList.piece t ->
n: LowStar.Buffer.pointer (DoublyLinkedList.node t)
-> Prims.Pure (DoublyLinkedList.piece t) | Prims.Pure | [] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.piece",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.Mkpiece",
"DoublyLinkedList.__proj__Mkpiece__item__ptail",
"FStar.Ghost.elift1_p",
"Prims.list",
"Prims.b2t",
"Prims.uu___is_Cons",
"FStar.Ghost.tot_to_gtot",
"FStar.List.Tot.Base.tl",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"Prims.l_and",
"DoublyLinkedList.piece_valid",
"Prims.eq2",
"LowStar.Buffer.buffer",
"Prims.l_or",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.g_is_null",
"Prims.l_True",
"Prims.bool",
"Prims.logical",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.op_At",
"DoublyLinkedList.__proj__Mkpiece__item__phead",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist"
] | [] | false | false | false | false | false | let tot_piece_tail (#t: Type) (h0: heap) (p: piece t) (n: pointer (node t))
: Pure (piece t)
(requires ((piece_valid h0 p) /\ (n == (((p.phead) @ h0).flink)) /\ (length p.pnodes > 1)))
(ensures (fun q -> (piece_valid h0 q) /\ (reveal q.pnodes) == tl p.pnodes)) =
| { phead = n; ptail = p.ptail; pnodes = elift1_p (tot_to_gtot tl) p.pnodes } | false |
DoublyLinkedList.fst | DoublyLinkedList.aux_unchanged_payload_transitive | val aux_unchanged_payload_transitive (#t h0 h1 h2: _) (nl: nodelist t)
: Lemma (requires (unchanged_node_vals h0 h1 nl /\ unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) | val aux_unchanged_payload_transitive (#t h0 h1 h2: _) (nl: nodelist t)
: Lemma (requires (unchanged_node_vals h0 h1 nl /\ unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) | let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl' | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 1420,
"start_col": 0,
"start_line": 1413
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
h2: FStar.Monotonic.HyperStack.mem ->
nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.unchanged_node_vals h0 h1 nl /\
DoublyLinkedList.unchanged_node_vals h1 h2 nl)
(ensures DoublyLinkedList.unchanged_node_vals h0 h2 nl) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.aux_unchanged_payload_transitive",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.unchanged_node_vals",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl: nodelist t)
: Lemma (requires (unchanged_node_vals h0 h1 nl /\ unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
| match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl' | false |
DoublyLinkedList.fst | DoublyLinkedList.aux_unchanged_payload_append | val aux_unchanged_payload_append (#t h0 h1: _) (nl1 nl2: nodelist t)
: Lemma (requires (unchanged_node_vals h0 h1 nl1 /\ unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) | val aux_unchanged_payload_append (#t h0 h1: _) (nl1 nl2: nodelist t)
: Lemma (requires (unchanged_node_vals h0 h1 nl1 /\ unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) | let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 1429,
"start_col": 0,
"start_line": 1422
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
nl1: DoublyLinkedList.nodelist t ->
nl2: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.unchanged_node_vals h0 h1 nl1 /\
DoublyLinkedList.unchanged_node_vals h0 h1 nl2)
(ensures DoublyLinkedList.unchanged_node_vals h0 h1 (nl1 @ nl2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"DoublyLinkedList.aux_unchanged_payload_append",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.unchanged_node_vals",
"Prims.squash",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec aux_unchanged_payload_append #t h0 h1 (nl1: nodelist t) (nl2: nodelist t)
: Lemma (requires (unchanged_node_vals h0 h1 nl1 /\ unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
| match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2 | false |
DoublyLinkedList.fst | DoublyLinkedList.piece_remains_valid_b | val piece_remains_valid_b (#t: Type) (h0 h1: heap) (p: piece t)
: Lemma
(requires
((piece_valid h0 p) /\ (Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\ (p.phead @ h0).flink == (p.phead @ h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail @ h0).flink == (p.ptail @ h1).flink) | val piece_remains_valid_b (#t: Type) (h0 h1: heap) (p: piece t)
: Lemma
(requires
((piece_valid h0 p) /\ (Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\ (p.phead @ h0).flink == (p.phead @ h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail @ h0).flink == (p.ptail @ h1).flink) | let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else () | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 1311,
"start_col": 0,
"start_line": 1294
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> h1: DoublyLinkedList.heap -> p: DoublyLinkedList.piece t
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.piece_valid h0 p /\
LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_buffer (Mkpiece?.phead p))
h0
h1 /\ DoublyLinkedList.contains h1 (Mkpiece?.phead p) /\
Mknode?.flink (Mkpiece?.phead p @ h0) == Mknode?.flink (Mkpiece?.phead p @ h1))
(ensures
DoublyLinkedList.piece_valid h1 p /\
Mknode?.flink (Mkpiece?.ptail p @ h0) == Mknode?.flink (Mkpiece?.ptail p @ h1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.piece",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.nodelist_remains_valid",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.__proj__Mkpiece__item__phead",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"DoublyLinkedList.nodelist_includes_r_fp0",
"Prims.op_Subtraction",
"Prims.bool",
"FStar.Ghost.erased",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"Prims.l_and",
"DoublyLinkedList.piece_valid",
"LowStar.Monotonic.Buffer.modifies",
"DoublyLinkedList.contains",
"Prims.eq2",
"LowStar.Buffer.pointer_or_null",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.op_At",
"Prims.squash",
"DoublyLinkedList.__proj__Mkpiece__item__ptail",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let piece_remains_valid_b (#t: Type) (h0 h1: heap) (p: piece t)
: Lemma
(requires
((piece_valid h0 p) /\ (Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\ (p.phead @ h0).flink == (p.phead @ h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail @ h0).flink == (p.ptail @ h1).flink) =
| let nodes = p.pnodes in
if length nodes > 1
then
(nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)) | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.a_spec | val a_spec : a: Spec.Hash.Definitions.fixed_len_alg -> i: Prims.nat -> Type0 | let a_spec (a:fixed_len_alg) (i:nat) = Lib.Sequence.lseq uint8 (hash_length a) | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 78,
"end_line": 66,
"start_col": 0,
"start_line": 66
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True)
let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v
let instantiate #a entropy_input nonce personalization_string =
let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1
let reseed #a st entropy_input additional_input =
let seed_material = entropy_input @| additional_input in
let k, v = update #a seed_material st.k st.v in
State k v 1 | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.fixed_len_alg -> i: Prims.nat -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.fixed_len_alg",
"Prims.nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.hash_length"
] | [] | false | false | false | true | true | let a_spec (a: fixed_len_alg) (i: nat) =
| Lib.Sequence.lseq uint8 (hash_length a) | false |
|
DoublyLinkedList.fst | DoublyLinkedList.piece_merge | val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes))) | val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes))) | let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 821,
"start_col": 0,
"start_line": 817
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
p1: DoublyLinkedList.piece t {DoublyLinkedList.piece_valid h0 p1} ->
p2: DoublyLinkedList.piece t {DoublyLinkedList.piece_valid h0 p2}
-> Prims.Pure (DoublyLinkedList.piece t) | Prims.Pure | [] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.piece",
"DoublyLinkedList.piece_valid",
"Prims.unit",
"DoublyLinkedList.nodelist_append_valid",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"FStar.List.Tot.Properties.lemma_append_last",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.Mkpiece",
"DoublyLinkedList.__proj__Mkpiece__item__phead",
"DoublyLinkedList.__proj__Mkpiece__item__ptail",
"DoublyLinkedList.op_Hat_At_Hat"
] | [] | false | false | false | false | false | let piece_merge #t h0 p1 p2 =
| let p = { phead = p1.phead; ptail = p2.ptail; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.exists_elim | val exists_elim
(#t:Type)
(#p:t -> Type)
(#q:Type)
($s_ex_p: squash (exists (x:t). p x))
(f: (x:t -> squash (p x) -> Tot (squash q)))
: Tot (squash q) | val exists_elim
(#t:Type)
(#p:t -> Type)
(#q:Type)
($s_ex_p: squash (exists (x:t). p x))
(f: (x:t -> squash (p x) -> Tot (squash q)))
: Tot (squash q) | let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px))) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 34,
"start_col": 0,
"start_line": 29
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $s_ex_p: Prims.squash (exists (x: t). p x) -> f: (x: t -> _: Prims.squash (p x) -> Prims.squash q)
-> Prims.squash q | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_Exists",
"FStar.Squash.bind_squash",
"Prims.dtuple2",
"FStar.Squash.return_squash"
] | [] | false | false | true | false | false | let exists_elim #t #p #q s_ex_p f =
| let open FStar.Squash in
bind_squash s_ex_p
(fun ex_p ->
bind_squash ex_p
(fun (sig_p: (x: t & p x)) ->
let (| x , px |) = sig_p in
f x (return_squash px))) | false |
DoublyLinkedList.fst | DoublyLinkedList._l_insert_after | val _l_insert_after (x0: 'a) (l: list 'a {x0 `memP` l}) (x: 'a) : GTot (list 'a) | val _l_insert_after (x0: 'a) (l: list 'a {x0 `memP` l}) (x: 'a) : GTot (list 'a) | let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2)) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 1548,
"start_col": 0,
"start_line": 1545
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x0: 'a -> l: Prims.list 'a {FStar.List.Tot.Base.memP x0 l} -> x: 'a -> Prims.GTot (Prims.list 'a) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.list",
"FStar.List.Tot.Base.memP",
"FStar.List.Tot.Base.append",
"Prims.Cons",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Properties.split_using",
"FStar.List.Tot.Properties.lemma_split_using"
] | [] | false | false | false | false | false | let _l_insert_after (x0: 'a) (l: list 'a {x0 `memP` l}) (x: 'a) : GTot (list 'a) =
| let l1, x1 :: l2 =
lemma_split_using l x0;
split_using l x0
in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2)) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.forall_intro | val forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x)) | val forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x)) | let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f')) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 89,
"start_col": 0,
"start_line": 79
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> p: (_: a -> Type0) -> f: (x: a -> Prims.squash (p x))
-> Prims.squash (forall (x: a). p x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"FStar.Squash.return_squash",
"Prims.l_Forall",
"FStar.Squash.squash_double_arrow"
] | [] | false | false | true | false | false | let forall_intro (a: Type) (p: (a -> Type)) (f: (x: a -> Tot (squash (p x))))
: Tot (squash (forall x. p x)) =
| let open FStar.Squash in
let f' (x: a) : GTot (squash (p x)) = f x in
return_squash (squash_double_arrow (return_squash f')) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.exists_intro | val exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(x: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x)) | val exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(x: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x)) | let exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(f: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x))
= exists_intro_simple a p v (f()) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 107,
"start_col": 0,
"start_line": 101
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q)))
let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f'))
let exists_intro_simple
(a:Type)
(p:a -> Type)
(v:a)
(f: squash (p v))
: Tot (squash (exists x. p x))
= let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> p: (_: a -> Type0) -> v: a -> x: (_: Prims.unit -> Prims.squash (p v))
-> Prims.squash (exists (x: a). p x) | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.squash",
"FStar.Classical.Sugar.exists_intro_simple",
"Prims.l_Exists"
] | [] | false | false | true | false | false | let exists_intro (a: Type) (p: (a -> Type)) (v: a) (f: (unit -> Tot (squash (p v))))
: Tot (squash (exists x. p x)) =
| exists_intro_simple a p v (f ()) | false |
DoublyLinkedList.fst | DoublyLinkedList.piece_merge_fp0 | val piece_merge_fp0
(#t: Type)
(h0: heap)
(p1: piece t {piece_valid h0 p1})
(p2: piece t {piece_valid h0 p2})
: Lemma
(requires
(let a, b = last p1.pnodes, hd p2.pnodes in
(a @ h0 |>> b) /\ (a <<| b @ h0) /\ Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures
(loc_equiv (piece_fp0 (piece_merge h0 p1 p2)) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))
) | val piece_merge_fp0
(#t: Type)
(h0: heap)
(p1: piece t {piece_valid h0 p1})
(p2: piece t {piece_valid h0 p2})
: Lemma
(requires
(let a, b = last p1.pnodes, hd p2.pnodes in
(a @ h0 |>> b) /\ (a <<| b @ h0) /\ Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures
(loc_equiv (piece_fp0 (piece_merge h0 p1 p2)) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))
) | let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 875,
"start_col": 0,
"start_line": 825
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
p1: DoublyLinkedList.piece t {DoublyLinkedList.piece_valid h0 p1} ->
p2: DoublyLinkedList.piece t {DoublyLinkedList.piece_valid h0 p2}
-> FStar.Pervasives.Lemma
(requires
(let _ =
FStar.List.Tot.Base.last (FStar.Ghost.reveal (Mkpiece?.pnodes p1)),
FStar.List.Tot.Base.hd (FStar.Ghost.reveal (Mkpiece?.pnodes p2))
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ a b = _ in
a @ h0 |>> b /\ a <<| b @ h0 /\
LowStar.Monotonic.Buffer.loc_disjoint (DoublyLinkedList.piece_fp0 p1)
(DoublyLinkedList.piece_fp0 p2))
<:
Type0))
(ensures
DoublyLinkedList.loc_equiv (DoublyLinkedList.piece_fp0 (DoublyLinkedList.piece_merge h0
p1
p2))
(LowStar.Monotonic.Buffer.loc_union (DoublyLinkedList.piece_fp0 p1)
(DoublyLinkedList.piece_fp0 p2))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.piece",
"DoublyLinkedList.piece_valid",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.loc_equiv_trans",
"DoublyLinkedList.piece_fp0",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.unit",
"LowStar.Monotonic.Buffer.loc_includes_trans",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"DoublyLinkedList.extract_nodelist_fp0",
"Prims.op_Subtraction",
"FStar.List.Tot.Base.length",
"DoublyLinkedList.loc_includes_union_r_inv",
"DoublyLinkedList.nodelist_append_fp0",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"DoublyLinkedList.piece_merge",
"Prims.l_and",
"DoublyLinkedList.op_Bar_Greater_Greater",
"DoublyLinkedList.op_At",
"DoublyLinkedList.op_Less_Less_Bar",
"LowStar.Monotonic.Buffer.loc_disjoint",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.List.Tot.Base.last",
"FStar.List.Tot.Base.hd",
"Prims.squash",
"DoublyLinkedList.loc_equiv",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let piece_merge_fp0
(#t: Type)
(h0: heap)
(p1: piece t {piece_valid h0 p1})
(p2: piece t {piece_valid h0 p2})
: Lemma
(requires
(let a, b = last p1.pnodes, hd p2.pnodes in
(a @ h0 |>> b) /\ (a <<| b @ h0) /\ Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures
(loc_equiv (piece_fp0 (piece_merge h0 p1 p2)) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))
) =
| let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
Mod.loc_includes_trans (nodelist_fp0 n)
(piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.or_elim_simple | val or_elim_simple
(p q r: Type)
(x: squash (p \/ q))
(f: (squash p -> Tot (squash r)))
(g: (squash q -> Tot (squash r)))
: Tot (squash r) | val or_elim_simple
(p q r: Type)
(x: squash (p \/ q))
(f: (squash p -> Tot (squash r)))
(g: (squash q -> Tot (squash r)))
: Tot (squash r) | let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q))) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 51,
"start_col": 0,
"start_line": 36
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Type0 ->
q: Type0 ->
r: Type ->
x: Prims.squash (p \/ q) ->
f: (_: Prims.squash p -> Prims.squash r) ->
g: (_: Prims.squash q -> Prims.squash r)
-> Prims.squash r | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_or",
"FStar.Squash.bind_squash",
"Prims.sum",
"FStar.Squash.return_squash"
] | [] | false | false | true | true | false | let or_elim_simple
(p q r: Type)
(x: squash (p \/ q))
(f: (squash p -> Tot (squash r)))
(g: (squash q -> Tot (squash r)))
: Tot (squash r) =
| let open FStar.Squash in
bind_squash x
(fun p_or_q ->
bind_squash p_or_q
(function
| Prims.Left p -> f (return_squash p)
| Prims.Right q -> g (return_squash q))) | false |
DoublyLinkedList.fst | DoublyLinkedList._l_insert_before | val _l_insert_before (x0: 'a) (l: list 'a {x0 `memP` l}) (x: 'a) : GTot (list 'a) | val _l_insert_before (x0: 'a) (l: list 'a {x0 `memP` l}) (x: 'a) : GTot (list 'a) | let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 1674,
"start_col": 0,
"start_line": 1672
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x0: 'a -> l: Prims.list 'a {FStar.List.Tot.Base.memP x0 l} -> x: 'a -> Prims.GTot (Prims.list 'a) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.list",
"FStar.List.Tot.Base.memP",
"FStar.List.Tot.Base.append",
"Prims.Cons",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Properties.split_using"
] | [] | false | false | false | false | false | let _l_insert_before (x0: 'a) (l: list 'a {x0 `memP` l}) (x: 'a) : GTot (list 'a) =
| let l1, l2 = split_using l x0 in
l1 `append` (x :: l2) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.implies_intro | val implies_intro
(p:Type)
(q:squash p -> Type)
(f:(squash p -> Tot (squash (q()))))
: Tot (squash (p ==> q())) | val implies_intro
(p:Type)
(q:squash p -> Type)
(f:(squash p -> Tot (squash (q()))))
: Tot (squash (p ==> q())) | let implies_intro
(p:Type)
(q:squash p -> Type)
(f:(squash p -> Tot (squash (q()))))
: Tot (squash (p ==> q()))
= let open FStar.Squash in
let f' (x:p)
: GTot (squash (q ()))
= f (return_squash x)
in
return_squash (squash_double_arrow (return_squash f')) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 120,
"start_col": 0,
"start_line": 110
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q)))
let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f'))
let exists_intro_simple
(a:Type)
(p:a -> Type)
(v:a)
(f: squash (p v))
: Tot (squash (exists x. p x))
= let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p)
let exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(f: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x))
= exists_intro_simple a p v (f()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> q: (_: Prims.squash p -> Type0) -> f: (_: Prims.squash p -> Prims.squash (q ()))
-> Prims.squash (p ==> q ()) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"FStar.Squash.return_squash",
"Prims.l_imp",
"FStar.Squash.squash_double_arrow"
] | [] | false | false | true | false | false | let implies_intro (p: Type) (q: (squash p -> Type)) (f: (squash p -> Tot (squash (q ()))))
: Tot (squash (p ==> q ())) =
| let open FStar.Squash in
let f' (x: p) : GTot (squash (q ())) = f (return_squash x) in
return_squash (squash_double_arrow (return_squash f')) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.or_intro_left | val or_intro_left
(p:Type)
(q:squash (~p) -> Type)
(f:unit -> Tot (squash p))
: Tot (squash (p \/ q())) | val or_intro_left
(p:Type)
(q:squash (~p) -> Type)
(f:unit -> Tot (squash p))
: Tot (squash (p \/ q())) | let or_intro_left
(p:Type)
(q:squash (~p) -> Type)
(f:unit -> Tot (squash p))
: Tot (squash (p \/ q()))
= f() | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 127,
"start_col": 0,
"start_line": 122
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q)))
let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f'))
let exists_intro_simple
(a:Type)
(p:a -> Type)
(v:a)
(f: squash (p v))
: Tot (squash (exists x. p x))
= let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p)
let exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(f: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x))
= exists_intro_simple a p v (f())
let implies_intro
(p:Type)
(q:squash p -> Type)
(f:(squash p -> Tot (squash (q()))))
: Tot (squash (p ==> q()))
= let open FStar.Squash in
let f' (x:p)
: GTot (squash (q ()))
= f (return_squash x)
in
return_squash (squash_double_arrow (return_squash f')) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> q: (_: Prims.squash (~p) -> Type0) -> f: (_: Prims.unit -> Prims.squash p)
-> Prims.squash (p \/ q ()) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_not",
"Prims.unit",
"Prims.l_or"
] | [] | false | false | true | false | false | let or_intro_left (p: Type) (q: (squash (~p) -> Type)) (f: (unit -> Tot (squash p)))
: Tot (squash (p \/ q ())) =
| f () | false |
DoublyLinkedList.fst | DoublyLinkedList.lemma_dll_links_contained | val lemma_dll_links_contained (#t: Type) (h0: heap) (d: dll t) (i: nat)
: Lemma (requires ((dll_valid h0 d) /\ (i < length d.nodes)))
(ensures
(let nodes = d.nodes in
(h0 `contains` (nodes.[ i ] @ h0).flink) /\ (h0 `contains` (nodes.[ i ] @ h0).blink))) | val lemma_dll_links_contained (#t: Type) (h0: heap) (d: dll t) (i: nat)
: Lemma (requires ((dll_valid h0 d) /\ (i < length d.nodes)))
(ensures
(let nodes = d.nodes in
(h0 `contains` (nodes.[ i ] @ h0).flink) /\ (h0 `contains` (nodes.[ i ] @ h0).blink))) | let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 1221,
"start_col": 0,
"start_line": 1204
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> d: DoublyLinkedList.dll t -> i: Prims.nat
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.dll_valid h0 d /\
i < FStar.List.Tot.Base.length (FStar.Ghost.reveal (Mkdll?.nodes d)))
(ensures
(let nodes = Mkdll?.nodes d in
DoublyLinkedList.contains h0 (Mknode?.flink ((FStar.Ghost.reveal nodes).[ i ] @ h0)) /\
DoublyLinkedList.contains h0 (Mknode?.blink ((FStar.Ghost.reveal nodes).[ i ] @ h0)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.dll",
"Prims.nat",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"FStar.List.Tot.Base.length",
"Prims.bool",
"DoublyLinkedList.extract_nodelist_contained",
"Prims.op_Addition",
"DoublyLinkedList.extract_nodelist_conn",
"DoublyLinkedList.nodelist",
"FStar.Ghost.reveal",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.l_and",
"DoublyLinkedList.dll_valid",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.squash",
"DoublyLinkedList.contains",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.op_At",
"DoublyLinkedList.op_String_Access",
"DoublyLinkedList.__proj__Mknode__item__blink",
"FStar.Ghost.erased",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_dll_links_contained (#t: Type) (h0: heap) (d: dll t) (i: nat)
: Lemma (requires ((dll_valid h0 d) /\ (i < length d.nodes)))
(ensures
(let nodes = d.nodes in
(h0 `contains` (nodes.[ i ] @ h0).flink) /\ (h0 `contains` (nodes.[ i ] @ h0).blink))) =
| let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.exists_intro_simple | val exists_intro_simple (a: Type) (p: (a -> Type)) (v: a) (f: squash (p v))
: Tot (squash (exists x. p x)) | val exists_intro_simple (a: Type) (p: (a -> Type)) (v: a) (f: squash (p v))
: Tot (squash (exists x. p x)) | let exists_intro_simple
(a:Type)
(p:a -> Type)
(v:a)
(f: squash (p v))
: Tot (squash (exists x. p x))
= let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 99,
"start_col": 0,
"start_line": 91
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q)))
let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f')) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> p: (_: a -> Type0) -> v: a -> f: Prims.squash (p v) -> Prims.squash (exists (x: a). p x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"FStar.Squash.squash_double_sum",
"FStar.Squash.return_squash",
"Prims.dtuple2",
"Prims.Mkdtuple2",
"Prims.l_Exists"
] | [] | false | false | true | false | false | let exists_intro_simple (a: Type) (p: (a -> Type)) (v: a) (f: squash (p v))
: Tot (squash (exists x. p x)) =
| let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.and_elim | val and_elim
(p:Type)
(q:squash p -> Type)
(r:Type)
(_:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r) | val and_elim
(p:Type)
(q:squash p -> Type)
(r:Type)
(_:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r) | let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q))) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 77,
"start_col": 0,
"start_line": 68
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Type0 ->
q: (_: Prims.squash p -> Type0) ->
r: Type ->
x: Prims.squash (p /\ q ()) ->
f: (_: Prims.squash p -> _: Prims.squash (q ()) -> Prims.squash r)
-> Prims.squash r | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_and",
"FStar.Squash.bind_squash",
"Prims.pair",
"FStar.Squash.return_squash"
] | [] | false | false | true | false | false | let and_elim
(p: Type)
(q: (squash p -> Type))
(r: Type)
(x: squash (p /\ q ()))
(f: (squash p -> squash (q ()) -> Tot (squash r)))
: Tot (squash r) =
| let open FStar.Squash in
bind_squash x
(fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) -> f (return_squash p) (return_squash q))) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.or_intro_right | val or_intro_right
(p:Type)
(q:squash (~p) -> Type)
(f:squash (~p) -> Tot (squash (q())))
: Tot (squash (p \/ q())) | val or_intro_right
(p:Type)
(q:squash (~p) -> Type)
(f:squash (~p) -> Tot (squash (q())))
: Tot (squash (p \/ q())) | let or_intro_right
(p:Type)
(q:squash (~p) -> Type)
(f:squash (~p) -> Tot (squash (q())))
: Tot (squash (p \/ q()))
= or_elim_simple p (~p)
(p \/ q())
()
(fun s_p -> or_intro_left p q (fun _ -> s_p))
(fun s_np -> f s_np) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 138,
"start_col": 0,
"start_line": 129
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q)))
let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f'))
let exists_intro_simple
(a:Type)
(p:a -> Type)
(v:a)
(f: squash (p v))
: Tot (squash (exists x. p x))
= let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p)
let exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(f: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x))
= exists_intro_simple a p v (f())
let implies_intro
(p:Type)
(q:squash p -> Type)
(f:(squash p -> Tot (squash (q()))))
: Tot (squash (p ==> q()))
= let open FStar.Squash in
let f' (x:p)
: GTot (squash (q ()))
= f (return_squash x)
in
return_squash (squash_double_arrow (return_squash f'))
let or_intro_left
(p:Type)
(q:squash (~p) -> Type)
(f:unit -> Tot (squash p))
: Tot (squash (p \/ q()))
= f() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> q: (_: Prims.squash (~p) -> Type0) -> f: (_: Prims.squash (~p) -> Prims.squash (q ()))
-> Prims.squash (p \/ q ()) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_not",
"FStar.Classical.Sugar.or_elim_simple",
"Prims.l_or",
"FStar.Classical.Sugar.or_intro_left",
"Prims.unit"
] | [] | false | false | true | false | false | let or_intro_right (p: Type) (q: (squash (~p) -> Type)) (f: (squash (~p) -> Tot (squash (q ()))))
: Tot (squash (p \/ q ())) =
| or_elim_simple p
(~p)
(p \/ q ())
()
(fun s_p -> or_intro_left p q (fun _ -> s_p))
(fun s_np -> f s_np) | false |
DoublyLinkedList.fst | DoublyLinkedList.tot_defragmentable_fragment_to_dll | val tot_defragmentable_fragment_to_dll
(#t: Type)
(h0: heap)
(f:
fragment t
{ fragment_valid h0 f /\ fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b =
match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3
in
((a.phead @ h0).blink == null) /\ ((b.ptail @ h0).flink == null))) })
: Tot
(d:
dll t
{ dll_valid h0 d /\ (dll_fp0 d) `loc_equiv` (fragment_fp0 f) /\
(reveal d.nodes ==
(match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> (reveal p1.pnodes) `append` (reveal p2.pnodes)
| Frag3 p1 p2 p3 ->
((reveal p1.pnodes) `append` (reveal p2.pnodes)) `append` (reveal p3.pnodes))) }) | val tot_defragmentable_fragment_to_dll
(#t: Type)
(h0: heap)
(f:
fragment t
{ fragment_valid h0 f /\ fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b =
match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3
in
((a.phead @ h0).blink == null) /\ ((b.ptail @ h0).flink == null))) })
: Tot
(d:
dll t
{ dll_valid h0 d /\ (dll_fp0 d) `loc_equiv` (fragment_fp0 f) /\
(reveal d.nodes ==
(match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> (reveal p1.pnodes) `append` (reveal p2.pnodes)
| Frag3 p1 p2 p3 ->
((reveal p1.pnodes) `append` (reveal p2.pnodes)) `append` (reveal p3.pnodes))) }) | let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 927,
"start_col": 0,
"start_line": 897
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
f:
DoublyLinkedList.fragment t
{ DoublyLinkedList.fragment_valid h0 f /\ DoublyLinkedList.fragment_defragmentable h0 f /\
(DoublyLinkedList.fragment_length f > 0 ==>
(let _ =
(match f with
| DoublyLinkedList.Frag1 #_ p1 -> p1, p1
| DoublyLinkedList.Frag2 #_ p1 p2 -> p1, p2
| DoublyLinkedList.Frag3 #_ p1 _ p3 -> p1, p3)
<:
DoublyLinkedList.piece t * DoublyLinkedList.piece t
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ a b = _ in
Mknode?.blink (Mkpiece?.phead a @ h0) == LowStar.Buffer.null /\
Mknode?.flink (Mkpiece?.ptail b @ h0) == LowStar.Buffer.null)
<:
Prims.logical)) }
-> d:
DoublyLinkedList.dll t
{ DoublyLinkedList.dll_valid h0 d /\
DoublyLinkedList.loc_equiv (DoublyLinkedList.dll_fp0 d) (DoublyLinkedList.fragment_fp0 f) /\
FStar.Ghost.reveal (Mkdll?.nodes d) ==
(match f with
| DoublyLinkedList.Frag0 #_ -> []
| DoublyLinkedList.Frag1 #_ p1 -> FStar.Ghost.reveal (Mkpiece?.pnodes p1)
| DoublyLinkedList.Frag2 #_ p1 p2 ->
FStar.Ghost.reveal (Mkpiece?.pnodes p1) @ FStar.Ghost.reveal (Mkpiece?.pnodes p2)
| DoublyLinkedList.Frag3 #_ p1 p2 p3 ->
(FStar.Ghost.reveal (Mkpiece?.pnodes p1) @ FStar.Ghost.reveal (Mkpiece?.pnodes p2)) @
FStar.Ghost.reveal (Mkpiece?.pnodes p3)) } | Prims.Tot | [
"total"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.fragment",
"Prims.l_and",
"DoublyLinkedList.fragment_valid",
"DoublyLinkedList.fragment_defragmentable",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThan",
"DoublyLinkedList.fragment_length",
"DoublyLinkedList.piece",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.node",
"DoublyLinkedList.__proj__Mknode__item__blink",
"DoublyLinkedList.op_At",
"DoublyLinkedList.__proj__Mkpiece__item__phead",
"LowStar.Buffer.null",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.__proj__Mkpiece__item__ptail",
"Prims.logical",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"DoublyLinkedList.empty_list",
"DoublyLinkedList.tot_piece_to_dll",
"DoublyLinkedList.piece_merge",
"Prims.unit",
"DoublyLinkedList.piece_merge_fp0",
"DoublyLinkedList.dll",
"DoublyLinkedList.dll_valid",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.dll_fp0",
"DoublyLinkedList.fragment_fp0",
"Prims.list",
"LowStar.Buffer.pointer",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.Nil",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"FStar.List.Tot.Base.append"
] | [] | false | false | false | false | false | let tot_defragmentable_fragment_to_dll
(#t: Type)
(h0: heap)
(f:
fragment t
{ fragment_valid h0 f /\ fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b =
match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3
in
((a.phead @ h0).blink == null) /\ ((b.ptail @ h0).flink == null))) })
: Tot
(d:
dll t
{ dll_valid h0 d /\ (dll_fp0 d) `loc_equiv` (fragment_fp0 f) /\
(reveal d.nodes ==
(match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> (reveal p1.pnodes) `append` (reveal p2.pnodes)
| Frag3 p1 p2 p3 ->
((reveal p1.pnodes) `append` (reveal p2.pnodes)) `append` (reveal p3.pnodes))) }) =
| match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.or_elim | val or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r) | val or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r) | let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q)) | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 66,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Type0 ->
q: (_: Prims.squash (~p) -> Type0) ->
r: Type ->
p_or: Prims.squash (p \/ q ()) ->
left: (_: Prims.squash p -> Prims.squash r) ->
right: (_: Prims.squash (~p) -> _: Prims.squash (q ()) -> Prims.squash r)
-> Prims.squash r | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_not",
"Prims.l_or",
"FStar.Classical.Sugar.or_elim_simple"
] | [] | false | false | true | false | false | let or_elim
(p: Type)
(q: (squash (~p) -> Type))
(r: Type)
(p_or: squash (p \/ q ()))
(left: (squash p -> Tot (squash r)))
(right: (squash (~p) -> squash (q ()) -> Tot (squash r)))
: Tot (squash r) =
| or_elim_simple p
(~p)
r
()
(fun (s: squash p) -> left s)
(fun (np: squash (~p)) ->
or_elim_simple p
(q ())
r
p_or
(fun (pf_p: squash p) -> left pf_p)
(fun (pf_q: squash (q ())) -> right np pf_q)) | false |
FStar.Classical.Sugar.fst | FStar.Classical.Sugar.and_intro | val and_intro
(p:Type)
(q:squash p -> Type)
(left:unit -> Tot (squash p))
(right:squash p -> Tot (squash (q())))
: Tot (squash (p /\ q())) | val and_intro
(p:Type)
(q:squash p -> Type)
(left:unit -> Tot (squash p))
(right:squash p -> Tot (squash (q())))
: Tot (squash (p /\ q())) | let and_intro
(p:Type)
(q:squash p -> Type)
(f:unit -> Tot (squash p))
(g:squash p -> Tot (squash (q())))
: Tot (squash (p /\ q()))
= let _ = f() in g() | {
"file_name": "ulib/FStar.Classical.Sugar.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 146,
"start_col": 0,
"start_line": 140
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical.Sugar
/// This module provides a few combinators that are targeted
/// by the desugaring phase of the F* front end
let forall_elim
(#a:Type)
(#p:a -> Type)
(v:a)
(f:squash (forall (x:a). p x))
: Tot (squash (p v))
= ()
let exists_elim #t #p #q s_ex_p f
= let open FStar.Squash in
bind_squash s_ex_p (fun ex_p ->
bind_squash ex_p (fun (sig_p: (x:t & p x)) ->
let (| x, px |) = sig_p in
f x (return_squash px)))
let or_elim_simple
(p:Type)
(q:Type)
(r:Type)
(x:squash (p \/ q))
(f:squash p -> Tot (squash r))
(g:squash q -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_or_q ->
bind_squash p_or_q (fun p_cor_q ->
match p_cor_q with
| Prims.Left p ->
f (return_squash p)
| Prims.Right q ->
g (return_squash q)))
let or_elim
(p:Type)
(q:squash (~p) -> Type)
(r:Type)
(p_or:squash (p \/ q()))
(left:squash p -> Tot (squash r))
(right:squash (~p) -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= or_elim_simple p (~p) r ()
(fun (s:squash p) -> left s)
(fun (np:squash (~p)) ->
or_elim_simple p (q ()) r p_or
(fun (pf_p:squash p) -> left pf_p)
(fun (pf_q:squash (q())) -> right np pf_q))
let and_elim (p:Type)
(q:squash p -> Type)
(r:Type)
(x:squash (p /\ q()))
(f:squash p -> squash (q()) -> Tot (squash r))
: Tot (squash r)
= let open FStar.Squash in
bind_squash x (fun p_and_q ->
bind_squash p_and_q (fun (Prims.Pair p q) ->
f (return_squash p) (return_squash q)))
let forall_intro
(a:Type)
(p:a -> Type)
(f: (x:a -> Tot (squash (p x))))
: Tot (squash (forall x. p x))
= let open FStar.Squash in
let f' (x:a)
: GTot (squash (p x))
= f x
in
return_squash (squash_double_arrow (return_squash f'))
let exists_intro_simple
(a:Type)
(p:a -> Type)
(v:a)
(f: squash (p v))
: Tot (squash (exists x. p x))
= let open FStar.Squash in
let p = (| v, f |) in
squash_double_sum (return_squash p)
let exists_intro
(a:Type)
(p:a -> Type)
(v:a)
(f: unit -> Tot (squash (p v)))
: Tot (squash (exists x. p x))
= exists_intro_simple a p v (f())
let implies_intro
(p:Type)
(q:squash p -> Type)
(f:(squash p -> Tot (squash (q()))))
: Tot (squash (p ==> q()))
= let open FStar.Squash in
let f' (x:p)
: GTot (squash (q ()))
= f (return_squash x)
in
return_squash (squash_double_arrow (return_squash f'))
let or_intro_left
(p:Type)
(q:squash (~p) -> Type)
(f:unit -> Tot (squash p))
: Tot (squash (p \/ q()))
= f()
let or_intro_right
(p:Type)
(q:squash (~p) -> Type)
(f:squash (~p) -> Tot (squash (q())))
: Tot (squash (p \/ q()))
= or_elim_simple p (~p)
(p \/ q())
()
(fun s_p -> or_intro_left p q (fun _ -> s_p))
(fun s_np -> f s_np) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.Sugar.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Type0 ->
q: (_: Prims.squash p -> Type0) ->
left: (_: Prims.unit -> Prims.squash p) ->
right: (_: Prims.squash p -> Prims.squash (q ()))
-> Prims.squash (p /\ q ()) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.unit",
"Prims.l_and"
] | [] | false | false | true | false | false | let and_intro
(p: Type)
(q: (squash p -> Type))
(f: (unit -> Tot (squash p)))
(g: (squash p -> Tot (squash (q ()))))
: Tot (squash (p /\ q ())) =
| let _ = f () in
g () | false |
DoublyLinkedList.fst | DoublyLinkedList.aux_unchanged_payload | val aux_unchanged_payload (#t h0 h1 n0: _) (nl: nodelist t)
: Lemma
(requires
(Mod.modifies (Mod.loc_buffer n0) h0 h1 /\ (n0 @ h0).p == (n0 @ h1).p /\ (nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) | val aux_unchanged_payload (#t h0 h1 n0: _) (nl: nodelist t)
: Lemma
(requires
(Mod.modifies (Mod.loc_buffer n0) h0 h1 /\ (n0 @ h0).p == (n0 @ h1).p /\ (nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) | let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ()) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 82,
"end_line": 1402,
"start_col": 0,
"start_line": 1380
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
n0:
b:
LowStar.Monotonic.Buffer.mbuffer (DoublyLinkedList.node t)
(LowStar.Buffer.trivial_preorder (DoublyLinkedList.node t))
(LowStar.Buffer.trivial_preorder (DoublyLinkedList.node t))
{ LowStar.Monotonic.Buffer.length b == 1 /\ LowStar.Monotonic.Buffer.length b == 1 /\
LowStar.Monotonic.Buffer.length b == 1 } ->
nl: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_buffer n0) h0 h1 /\
Mknode?.p (n0 @ h0) == Mknode?.p (n0 @ h1) /\ DoublyLinkedList.nodelist_aa_r nl /\
(FStar.List.Tot.Base.memP n0 nl \/
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer n0)
(DoublyLinkedList.nodelist_fp0 nl)))
(ensures DoublyLinkedList.unchanged_node_vals h0 h1 nl)
(decreases FStar.List.Tot.Base.length nl) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.mbuffer",
"DoublyLinkedList.node",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"DoublyLinkedList.nodelist",
"LowStar.Buffer.pointer",
"Prims.list",
"FStar.Classical.or_elim",
"FStar.List.Tot.Base.memP",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"DoublyLinkedList.nodelist_fp0",
"Prims.unit",
"Prims.l_False",
"Prims.l_or",
"DoublyLinkedList.extract_nodelist_fp0",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"FStar.List.Tot.Base.index",
"FStar.List.Tot.Properties.index_of",
"Prims.logical",
"DoublyLinkedList.unchanged_node_val",
"Prims._assert",
"Prims.l_imp",
"DoublyLinkedList.aux_unchanged_payload",
"LowStar.Monotonic.Buffer.modifies",
"DoublyLinkedList.__proj__Mknode__item__p",
"DoublyLinkedList.op_At",
"DoublyLinkedList.nodelist_aa_r",
"Prims.squash",
"DoublyLinkedList.unchanged_node_vals",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec aux_unchanged_payload #t h0 h1 n0 (nl: nodelist t)
: Lemma
(requires
(Mod.modifies (Mod.loc_buffer n0) h0 h1 /\ (n0 @ h0).p == (n0 @ h1).p /\ (nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
| match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_
#_
#goal
(fun
(_:
(_:
unit
{ match _ with
| _ -> n0 `memP` nl
| _ -> False }))
->
FStar.Classical.or_elim #_
#_
#goal
(fun
(_:
(_:
unit
{ match _ with
| _ -> n == n0
| _ -> False }))
->
())
(fun
(_:
(_:
unit
{ match _ with
| _ -> n0 `memP` nl'
| _ -> False }))
->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun
(_:
(_:
unit
{ match _ with
| _ -> Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)
| _ -> False }))
->
()) | false |
DoublyLinkedList.fst | DoublyLinkedList._l_remove_mid | val _l_remove_mid (l: list 'a {length l > 0}) (x: 'a{x `memP` l}) : GTot (list 'a) | val _l_remove_mid (l: list 'a {length l > 0}) (x: 'a{x `memP` l}) : GTot (list 'a) | let _l_remove_mid (l:list 'a{length l > 0}) (x:'a {x `memP` l}) : GTot (list 'a) =
let l1, x0 :: l2 = lemma_split_using l x; split_using l x in
assert (x == x0);
l1 `append` l2 | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 1840,
"start_col": 0,
"start_line": 1837
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options
unfold
let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n
#set-options "--z3rlimit 20"
let dll_remove_head (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead@h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2 then (
empty_list
) else (
!<|= e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
// assert (p1.phead == e);
// assert (p1.ptail == e);
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y
)
#reset-options
let rec _lemma_only_head_can_point_left_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) =
match l with
| [_] -> ()
| _ ->
FStar.Classical.or_elim #(e == hd l) #(e =!= hd l) #(fun () -> e == hd l)
(fun _ -> ())
(fun _ ->
_lemma_only_head_can_point_left_to_null h0 e (tl l);
extract_nodelist_conn h0 l 0)
let rec _lemma_only_tail_can_point_right_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) =
match l with
| [_] -> ()
| _ -> _lemma_only_tail_can_point_right_to_null h0 e (tl l)
let rec _lemma_all_nodes_are_unique (#t:Type) (h0:heap) (l:nodelist t) (i j:nat) :
Lemma
(requires (
(nodelist_conn h0 l) /\
(i < length l) /\
(j < length l) /\
(((hd l)@h0).blink == null) /\
(index l i == index l j)))
(ensures (i = j)) =
match i, j with
| 0, 0 -> ()
| 0, _ -> extract_nodelist_conn h0 l (j - 1)
| _, 0 -> extract_nodelist_conn h0 l (i - 1)
| _ ->
extract_nodelist_conn h0 l (i - 1);
extract_nodelist_conn h0 l (j - 1);
_lemma_all_nodes_are_unique h0 l (i - 1) (j - 1)
#set-options "--z3rlimit 50"
let dll_remove_tail (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.ltail@h0).blink) h0 h1 /\
_aux_fp_split_by_node d y d.ltail /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == fst (unsnoc (reveal d.nodes)))) =
let h0 = ST.get () in
let e = d.ltail in
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
if is_null e1 then (
_lemma_only_head_can_point_left_to_null h0 e d.nodes;
empty_list
) else (
extract_nodelist_contained h0 d.nodes (length (d.nodes) - 2);
extract_nodelist_conn h0 d.nodes (length (d.nodes) - 2);
// assert (e == (reveal d.nodes).[length (reveal d.nodes) - 1]);
// assert (e1 == (reveal d.nodes).[length (reveal d.nodes) - 2]);
!=|> e1;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e1 e in
let Frag2 p1 p2 = f in
lemma_snoc_length (reveal p1.pnodes, e);
// assert (reveal p1.pnodes == fst (unsnoc (reveal d.nodes)));
let f' = Frag1 p1 in
piece_remains_valid_f h0 h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e1 (d.nodes);
// assert (reveal y.nodes == reveal p1.pnodes);
y
)
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.list 'a {FStar.List.Tot.Base.length l > 0} -> x: 'a{FStar.List.Tot.Base.memP x l}
-> Prims.GTot (Prims.list 'a) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.list",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"FStar.List.Tot.Base.memP",
"FStar.List.Tot.Base.append",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Properties.split_using",
"FStar.List.Tot.Properties.lemma_split_using"
] | [] | false | false | false | false | false | let _l_remove_mid (l: list 'a {length l > 0}) (x: 'a{x `memP` l}) : GTot (list 'a) =
| let l1, x0 :: l2 =
lemma_split_using l x;
split_using l x
in
assert (x == x0);
l1 `append` l2 | false |
DoublyLinkedList.fst | DoublyLinkedList._lemma_only_head_can_point_left_to_null | val _lemma_only_head_can_point_left_to_null
(#t: Type)
(h0: heap)
(e: pointer (node t))
(l: nodelist t)
: Lemma (requires (e `memP` l /\ (e @ h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) | val _lemma_only_head_can_point_left_to_null
(#t: Type)
(h0: heap)
(e: pointer (node t))
(l: nodelist t)
: Lemma (requires (e `memP` l /\ (e @ h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) | let rec _lemma_only_head_can_point_left_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) =
match l with
| [_] -> ()
| _ ->
FStar.Classical.or_elim #(e == hd l) #(e =!= hd l) #(fun () -> e == hd l)
(fun _ -> ())
(fun _ ->
_lemma_only_head_can_point_left_to_null h0 e (tl l);
extract_nodelist_conn h0 l 0) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 1767,
"start_col": 0,
"start_line": 1756
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options
unfold
let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n
#set-options "--z3rlimit 20"
let dll_remove_head (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead@h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2 then (
empty_list
) else (
!<|= e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
// assert (p1.phead == e);
// assert (p1.ptail == e);
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y
)
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
e: LowStar.Buffer.pointer (DoublyLinkedList.node t) ->
l: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
FStar.List.Tot.Base.memP e l /\ Mknode?.blink (e @ h0) == LowStar.Buffer.null /\
DoublyLinkedList.nodelist_conn h0 l) (ensures e == FStar.List.Tot.Base.hd l) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.nodelist",
"Prims.list",
"FStar.Classical.or_elim",
"Prims.eq2",
"FStar.List.Tot.Base.hd",
"Prims.l_not",
"Prims.unit",
"Prims.squash",
"DoublyLinkedList.extract_nodelist_conn",
"DoublyLinkedList._lemma_only_head_can_point_left_to_null",
"FStar.List.Tot.Base.tl",
"Prims.l_and",
"FStar.List.Tot.Base.memP",
"LowStar.Buffer.buffer",
"DoublyLinkedList.__proj__Mknode__item__blink",
"DoublyLinkedList.op_At",
"LowStar.Buffer.null",
"DoublyLinkedList.nodelist_conn",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec _lemma_only_head_can_point_left_to_null
(#t: Type)
(h0: heap)
(e: pointer (node t))
(l: nodelist t)
: Lemma (requires (e `memP` l /\ (e @ h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) =
| match l with
| [_] -> ()
| _ ->
FStar.Classical.or_elim #(e == hd l)
#(e =!= hd l)
#(fun () -> e == hd l)
(fun _ -> ())
(fun _ ->
_lemma_only_head_can_point_left_to_null h0 e (tl l);
extract_nodelist_conn h0 l 0) | false |
DoublyLinkedList.fst | DoublyLinkedList._lemma_all_nodes_are_unique | val _lemma_all_nodes_are_unique (#t: Type) (h0: heap) (l: nodelist t) (i j: nat)
: Lemma
(requires
((nodelist_conn h0 l) /\ (i < length l) /\ (j < length l) /\ (((hd l) @ h0).blink == null) /\
(index l i == index l j))) (ensures (i = j)) | val _lemma_all_nodes_are_unique (#t: Type) (h0: heap) (l: nodelist t) (i j: nat)
: Lemma
(requires
((nodelist_conn h0 l) /\ (i < length l) /\ (j < length l) /\ (((hd l) @ h0).blink == null) /\
(index l i == index l j))) (ensures (i = j)) | let rec _lemma_all_nodes_are_unique (#t:Type) (h0:heap) (l:nodelist t) (i j:nat) :
Lemma
(requires (
(nodelist_conn h0 l) /\
(i < length l) /\
(j < length l) /\
(((hd l)@h0).blink == null) /\
(index l i == index l j)))
(ensures (i = j)) =
match i, j with
| 0, 0 -> ()
| 0, _ -> extract_nodelist_conn h0 l (j - 1)
| _, 0 -> extract_nodelist_conn h0 l (i - 1)
| _ ->
extract_nodelist_conn h0 l (i - 1);
extract_nodelist_conn h0 l (j - 1);
_lemma_all_nodes_are_unique h0 l (i - 1) (j - 1) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 1793,
"start_col": 0,
"start_line": 1777
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options
unfold
let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n
#set-options "--z3rlimit 20"
let dll_remove_head (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead@h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2 then (
empty_list
) else (
!<|= e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
// assert (p1.phead == e);
// assert (p1.ptail == e);
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y
)
#reset-options
let rec _lemma_only_head_can_point_left_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) =
match l with
| [_] -> ()
| _ ->
FStar.Classical.or_elim #(e == hd l) #(e =!= hd l) #(fun () -> e == hd l)
(fun _ -> ())
(fun _ ->
_lemma_only_head_can_point_left_to_null h0 e (tl l);
extract_nodelist_conn h0 l 0)
let rec _lemma_only_tail_can_point_right_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) =
match l with
| [_] -> ()
| _ -> _lemma_only_tail_can_point_right_to_null h0 e (tl l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> l: DoublyLinkedList.nodelist t -> i: Prims.nat -> j: Prims.nat
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.nodelist_conn h0 l /\ i < FStar.List.Tot.Base.length l /\
j < FStar.List.Tot.Base.length l /\
Mknode?.blink (FStar.List.Tot.Base.hd l @ h0) == LowStar.Buffer.null /\
FStar.List.Tot.Base.index l i == FStar.List.Tot.Base.index l j) (ensures i = j) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.nodelist",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"DoublyLinkedList.extract_nodelist_conn",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"DoublyLinkedList._lemma_all_nodes_are_unique",
"Prims.unit",
"Prims.l_and",
"DoublyLinkedList.nodelist_conn",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.__proj__Mknode__item__blink",
"DoublyLinkedList.op_At",
"FStar.List.Tot.Base.hd",
"LowStar.Buffer.null",
"FStar.List.Tot.Base.index",
"Prims.squash",
"Prims.op_Equality",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec _lemma_all_nodes_are_unique (#t: Type) (h0: heap) (l: nodelist t) (i j: nat)
: Lemma
(requires
((nodelist_conn h0 l) /\ (i < length l) /\ (j < length l) /\ (((hd l) @ h0).blink == null) /\
(index l i == index l j))) (ensures (i = j)) =
| match i, j with
| 0, 0 -> ()
| 0, _ -> extract_nodelist_conn h0 l (j - 1)
| _, 0 -> extract_nodelist_conn h0 l (i - 1)
| _ ->
extract_nodelist_conn h0 l (i - 1);
extract_nodelist_conn h0 l (j - 1);
_lemma_all_nodes_are_unique h0 l (i - 1) (j - 1) | false |
DoublyLinkedList.fst | DoublyLinkedList._lemma_only_tail_can_point_right_to_null | val _lemma_only_tail_can_point_right_to_null
(#t: Type)
(h0: heap)
(e: pointer (node t))
(l: nodelist t)
: Lemma (requires (e `memP` l /\ (e @ h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) | val _lemma_only_tail_can_point_right_to_null
(#t: Type)
(h0: heap)
(e: pointer (node t))
(l: nodelist t)
: Lemma (requires (e `memP` l /\ (e @ h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) | let rec _lemma_only_tail_can_point_right_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) =
match l with
| [_] -> ()
| _ -> _lemma_only_tail_can_point_right_to_null h0 e (tl l) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 1775,
"start_col": 0,
"start_line": 1769
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options
unfold
let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n
#set-options "--z3rlimit 20"
let dll_remove_head (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead@h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2 then (
empty_list
) else (
!<|= e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
// assert (p1.phead == e);
// assert (p1.ptail == e);
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y
)
#reset-options
let rec _lemma_only_head_can_point_left_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) =
match l with
| [_] -> ()
| _ ->
FStar.Classical.or_elim #(e == hd l) #(e =!= hd l) #(fun () -> e == hd l)
(fun _ -> ())
(fun _ ->
_lemma_only_head_can_point_left_to_null h0 e (tl l);
extract_nodelist_conn h0 l 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: DoublyLinkedList.heap ->
e: LowStar.Buffer.pointer (DoublyLinkedList.node t) ->
l: DoublyLinkedList.nodelist t
-> FStar.Pervasives.Lemma
(requires
FStar.List.Tot.Base.memP e l /\ Mknode?.flink (e @ h0) == LowStar.Buffer.null /\
DoublyLinkedList.nodelist_conn h0 l) (ensures e == FStar.List.Tot.Base.last l) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.nodelist",
"Prims.list",
"DoublyLinkedList._lemma_only_tail_can_point_right_to_null",
"FStar.List.Tot.Base.tl",
"Prims.unit",
"Prims.l_and",
"FStar.List.Tot.Base.memP",
"Prims.eq2",
"LowStar.Buffer.buffer",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.op_At",
"LowStar.Buffer.null",
"DoublyLinkedList.nodelist_conn",
"Prims.squash",
"FStar.List.Tot.Base.last",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec _lemma_only_tail_can_point_right_to_null
(#t: Type)
(h0: heap)
(e: pointer (node t))
(l: nodelist t)
: Lemma (requires (e `memP` l /\ (e @ h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) =
| match l with
| [_] -> ()
| _ -> _lemma_only_tail_can_point_right_to_null h0 e (tl l) | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.generate_loop | val generate_loop:
a:supported_alg
-> k:lbytes (hash_length a)
-> max:nat
-> i:nat{i < max}
-> a_spec a i
-> Pure (a_spec a (i + 1) & Lib.Sequence.lseq uint8 (hash_length a))
(requires True)
(ensures fun _ -> True) | val generate_loop:
a:supported_alg
-> k:lbytes (hash_length a)
-> max:nat
-> i:nat{i < max}
-> a_spec a i
-> Pure (a_spec a (i + 1) & Lib.Sequence.lseq uint8 (hash_length a))
(requires True)
(ensures fun _ -> True) | let generate_loop a k max i vi =
hmac_input_bound a;
let v = hmac a k vi in v, v | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 79,
"start_col": 0,
"start_line": 77
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True)
let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v
let instantiate #a entropy_input nonce personalization_string =
let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1
let reseed #a st entropy_input additional_input =
let seed_material = entropy_input @| additional_input in
let k, v = update #a seed_material st.k st.v in
State k v 1
let a_spec (a:fixed_len_alg) (i:nat) = Lib.Sequence.lseq uint8 (hash_length a)
val generate_loop:
a:supported_alg
-> k:lbytes (hash_length a)
-> max:nat
-> i:nat{i < max}
-> a_spec a i
-> Pure (a_spec a (i + 1) & Lib.Sequence.lseq uint8 (hash_length a))
(requires True) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.HMAC_DRBG.supported_alg ->
k: Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.hash_length a) ->
max: Prims.nat ->
i: Prims.nat{i < max} ->
vi: Spec.HMAC_DRBG.a_spec a i
-> Prims.Pure
(Spec.HMAC_DRBG.a_spec a (i + 1) *
Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.hash_length a)) | Prims.Pure | [] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"Spec.Agile.HMAC.lbytes",
"Spec.Hash.Definitions.hash_length",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.HMAC_DRBG.a_spec",
"FStar.Pervasives.Native.Mktuple2",
"Prims.op_Addition",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.Agile.HMAC.hmac",
"Prims.unit",
"Spec.HMAC_DRBG.hmac_input_bound",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let generate_loop a k max i vi =
| hmac_input_bound a;
let v = hmac a k vi in
v, v | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.instantiate | val instantiate: #a:supported_alg
-> entropy_input:bytes
-> nonce:bytes
-> personalization_string:bytes
-> Pure (state a)
(requires
(hash_length a
+ Seq.length entropy_input
+ Seq.length nonce
+ Seq.length personalization_string
+ 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | val instantiate: #a:supported_alg
-> entropy_input:bytes
-> nonce:bytes
-> personalization_string:bytes
-> Pure (state a)
(requires
(hash_length a
+ Seq.length entropy_input
+ Seq.length nonce
+ Seq.length personalization_string
+ 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | let instantiate #a entropy_input nonce personalization_string =
let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1 | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 59,
"start_col": 0,
"start_line": 54
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True)
let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
entropy_input: Spec.Hash.Definitions.bytes ->
nonce: Spec.Hash.Definitions.bytes ->
personalization_string: Spec.Hash.Definitions.bytes
-> Prims.Pure (Spec.HMAC_DRBG.state a) | Prims.Pure | [] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"Spec.Hash.Definitions.bytes",
"Spec.Agile.HMAC.lbytes",
"Spec.Hash.Definitions.hash_length",
"Spec.HMAC_DRBG.State",
"Spec.HMAC_DRBG.state",
"FStar.Pervasives.Native.tuple2",
"Spec.HMAC_DRBG.update",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Seq.Base.create",
"Lib.IntTypes.uint8",
"Lib.IntTypes.u8",
"FStar.Seq.Base.op_At_Bar"
] | [] | false | false | false | false | false | let instantiate #a entropy_input nonce personalization_string =
| let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1 | false |
DoublyLinkedList.fst | DoublyLinkedList.dll_insert_at_head | val dll_insert_at_head (#t: Type) (d: dll t) (n: pointer (node t))
: StackInline (dll t)
(requires (fun h0 -> (dll_valid h0 d) /\ (h0 `contains` n) /\ (node_not_in_dll h0 n d)))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\ unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) | val dll_insert_at_head (#t: Type) (d: dll t) (n: pointer (node t))
: StackInline (dll t)
(requires (fun h0 -> (dll_valid h0 d) /\ (h0 `contains` n) /\ (node_not_in_dll h0 n d)))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\ unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) | let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 1492,
"start_col": 0,
"start_line": 1435
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 2,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 500,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: DoublyLinkedList.dll t -> n: LowStar.Buffer.pointer (DoublyLinkedList.node t)
-> FStar.HyperStack.ST.StackInline (DoublyLinkedList.dll t) | FStar.HyperStack.ST.StackInline | [] | [] | [
"DoublyLinkedList.dll",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.singleton_dll",
"Prims.bool",
"DoublyLinkedList.piece",
"Prims.l_and",
"DoublyLinkedList.dll_valid",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.dll_fp0",
"DoublyLinkedList.fragment_fp0",
"Prims.eq2",
"Prims.list",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.Nil",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"FStar.List.Tot.Base.append",
"DoublyLinkedList.tot_defragmentable_fragment_to_dll",
"Prims.unit",
"DoublyLinkedList.piece_remains_valid_b",
"DoublyLinkedList.piece_remains_valid",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.fragment",
"DoublyLinkedList.Frag2",
"DoublyLinkedList.tot_node_to_piece",
"DoublyLinkedList.fragment_valid",
"DoublyLinkedList.tot_dll_to_fragment",
"DoublyLinkedList.aux_unchanged_payload_transitive",
"DoublyLinkedList.aux_unchanged_payload",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"DoublyLinkedList.op_Less_Bar_Equals",
"DoublyLinkedList.op_Equals_Bar_Greater",
"DoublyLinkedList.op_Bang_Less_Bar_Equals",
"LowStar.Buffer.pointer_or_null",
"DoublyLinkedList.__proj__Mkdll__item__lhead",
"LowStar.Monotonic.Buffer.is_null",
"DoublyLinkedList.contains",
"DoublyLinkedList.node_not_in_dll",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_union",
"DoublyLinkedList.unchanged_node_vals",
"Prims.Cons"
] | [] | false | true | false | false | false | let dll_insert_at_head (#t: Type) (d: dll t) (n: pointer (node t))
: StackInline (dll t)
(requires (fun h0 -> (dll_valid h0 d) /\ (h0 `contains` n) /\ (node_not_in_dll h0 n d)))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\ unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
| if is_null d.lhead
then (singleton_dll n)
else
(let h = d.lhead in
let h0 = ST.get () in
!<|=n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_b h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
y) | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.hmac_input_bound | val hmac_input_bound: a:supported_alg -> Lemma
((hash_length a + pow2 32 + pow2 32
+ 1 + block_length a + block_length a) `less_than_max_input_length` a) | val hmac_input_bound: a:supported_alg -> Lemma
((hash_length a + pow2 32 + pow2 32
+ 1 + block_length a + block_length a) `less_than_max_input_length` a) | let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a) | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 122,
"end_line": 32,
"start_col": 0,
"start_line": 20
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.HMAC_DRBG.supported_alg
-> FStar.Pervasives.Lemma
(ensures
Spec.Hash.Definitions.less_than_max_input_length (Spec.Hash.Definitions.hash_length a +
Prims.pow2 32 +
Prims.pow2 32 +
1 +
Spec.Hash.Definitions.block_length a +
Spec.Hash.Definitions.block_length a)
a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Prims.pow2",
"Spec.Hash.Definitions.block_length",
"Spec.Hash.Definitions.hash_alg",
"Spec.Hash.Definitions.SHA1",
"Spec.Hash.Definitions.SHA2_256",
"Spec.Hash.Definitions.SHA2_384",
"Spec.Hash.Definitions.SHA2_512",
"Prims.unit"
] | [] | false | false | true | false | false | let hmac_input_bound =
| function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a)
`less_than_max_input_length`
a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a)
`less_than_max_input_length`
a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a)
`less_than_max_input_length`
a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a)
`less_than_max_input_length`
a) | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.reseed | val reseed: #a:supported_alg
-> state a
-> entropy_input:bytes
-> additional_input:bytes
-> Pure (state a)
(requires
(hash_length a +
Seq.length entropy_input +
Seq.length additional_input +
1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | val reseed: #a:supported_alg
-> state a
-> entropy_input:bytes
-> additional_input:bytes
-> Pure (state a)
(requires
(hash_length a +
Seq.length entropy_input +
Seq.length additional_input +
1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | let reseed #a st entropy_input additional_input =
let seed_material = entropy_input @| additional_input in
let k, v = update #a seed_material st.k st.v in
State k v 1 | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 64,
"start_col": 0,
"start_line": 61
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True)
let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v
let instantiate #a entropy_input nonce personalization_string =
let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1 | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
st: Spec.HMAC_DRBG.state a ->
entropy_input: Spec.Hash.Definitions.bytes ->
additional_input: Spec.Hash.Definitions.bytes
-> Prims.Pure (Spec.HMAC_DRBG.state a) | Prims.Pure | [] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"Spec.HMAC_DRBG.state",
"Spec.Hash.Definitions.bytes",
"Spec.Agile.HMAC.lbytes",
"Spec.Hash.Definitions.hash_length",
"Spec.HMAC_DRBG.State",
"FStar.Pervasives.Native.tuple2",
"Spec.HMAC_DRBG.update",
"Spec.HMAC_DRBG.__proj__State__item__k",
"Spec.HMAC_DRBG.__proj__State__item__v",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Seq.Base.op_At_Bar",
"Lib.IntTypes.uint8"
] | [] | false | false | false | false | false | let reseed #a st entropy_input additional_input =
| let seed_material = entropy_input @| additional_input in
let k, v = update #a seed_material st.k st.v in
State k v 1 | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.update | val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 52,
"start_col": 0,
"start_line": 42
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
data: Spec.Hash.Definitions.bytes ->
k: Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.hash_length a) ->
v: Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.hash_length a)
-> Prims.Pure
(Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.hash_length a) *
Spec.Agile.HMAC.lbytes (Spec.Hash.Definitions.hash_length a)) | Prims.Pure | [] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"Spec.Hash.Definitions.bytes",
"Spec.Agile.HMAC.lbytes",
"Spec.Hash.Definitions.hash_length",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Lib.IntTypes.uint8",
"FStar.Pervasives.Native.Mktuple2",
"Prims.bool",
"Spec.Agile.HMAC.hmac",
"FStar.Seq.Base.op_At_Bar",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Seq.Base.cons",
"Lib.IntTypes.u8",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let update #a data k v =
| let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0
then k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v | false |
Hacl.Spec.Bignum.Definitions.fst | Hacl.Spec.Bignum.Definitions.lbignum | val lbignum : t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_nat -> Type0 | let lbignum (t:limb_t) len = lseq (limb t) len | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Hacl.Spec.Bignum.Definitions
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val blocks0: x:size_nat -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks0 x m = if x = 0 then 1 else (x - 1) / m + 1
inline_for_extraction noextract
let limb_t = t:inttype{t = U32 \/ t = U64}
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Definitions.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_nat -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb"
] | [] | false | false | false | true | true | let lbignum (t: limb_t) len =
| lseq (limb t) len | false |
|
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.generate | val generate: #a:supported_alg
-> state a
-> n:nat
-> additional_input:bytes
-> Pure (option (lbytes n & state a))
(requires
n <= max_output_length /\
(hash_length a + Seq.length additional_input
+ 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | val generate: #a:supported_alg
-> state a
-> n:nat
-> additional_input:bytes
-> Pure (option (lbytes n & state a))
(requires
n <= max_output_length /\
(hash_length a + Seq.length additional_input
+ 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | let generate #a st n additional_input =
if st.reseed_counter > reseed_interval then
None
else
let k, v =
if Seq.length additional_input > 0 then
update additional_input st.k st.v
else st.k, st.v
in
let max = n / hash_length a in
let v, output =
Lib.Sequence.generate_blocks (hash_length a) max max (a_spec a)
(generate_loop a k max)
v
in
let v, output =
if max * hash_length a < n then
let v = hmac a k v in
v, output @| Lib.Sequence.sub #_ #(hash_length a) v 0 (n - max * hash_length a)
else
v, output
in
let k, v = update additional_input k v in
Some (output, State k v (st.reseed_counter + 1)) | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 104,
"start_col": 0,
"start_line": 81
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True)
let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v
let instantiate #a entropy_input nonce personalization_string =
let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1
let reseed #a st entropy_input additional_input =
let seed_material = entropy_input @| additional_input in
let k, v = update #a seed_material st.k st.v in
State k v 1
let a_spec (a:fixed_len_alg) (i:nat) = Lib.Sequence.lseq uint8 (hash_length a)
val generate_loop:
a:supported_alg
-> k:lbytes (hash_length a)
-> max:nat
-> i:nat{i < max}
-> a_spec a i
-> Pure (a_spec a (i + 1) & Lib.Sequence.lseq uint8 (hash_length a))
(requires True)
(ensures fun _ -> True)
let generate_loop a k max i vi =
hmac_input_bound a;
let v = hmac a k vi in v, v | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Spec.HMAC_DRBG.state a -> n: Prims.nat -> additional_input: Spec.Hash.Definitions.bytes
-> Prims.Pure (FStar.Pervasives.Native.option (Spec.Agile.HMAC.lbytes n * Spec.HMAC_DRBG.state a)) | Prims.Pure | [] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"Spec.HMAC_DRBG.state",
"Prims.nat",
"Spec.Hash.Definitions.bytes",
"Prims.op_GreaterThan",
"Spec.HMAC_DRBG.__proj__State__item__reseed_counter",
"Spec.HMAC_DRBG.reseed_interval",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"Spec.Agile.HMAC.lbytes",
"Prims.bool",
"Spec.Hash.Definitions.hash_length",
"Spec.HMAC_DRBG.a_spec",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Spec.HMAC_DRBG.State",
"Prims.op_Addition",
"FStar.Pervasives.Native.option",
"Spec.HMAC_DRBG.update",
"Prims.op_LessThan",
"FStar.Seq.Base.op_At_Bar",
"Lib.Sequence.sub",
"Prims.op_Subtraction",
"Spec.Agile.HMAC.hmac",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Lib.Sequence.generate_blocks",
"Spec.HMAC_DRBG.generate_loop",
"Prims.op_Division",
"FStar.Seq.Base.length",
"Spec.HMAC_DRBG.__proj__State__item__k",
"Spec.HMAC_DRBG.__proj__State__item__v"
] | [] | false | false | false | false | false | let generate #a st n additional_input =
| if st.reseed_counter > reseed_interval
then None
else
let k, v =
if Seq.length additional_input > 0 then update additional_input st.k st.v else st.k, st.v
in
let max = n / hash_length a in
let v, output =
Lib.Sequence.generate_blocks (hash_length a) max max (a_spec a) (generate_loop a k max) v
in
let v, output =
if max * hash_length a < n
then
let v = hmac a k v in
v, output @| Lib.Sequence.sub #_ #(hash_length a) v 0 (n - max * hash_length a)
else v, output
in
let k, v = update additional_input k v in
Some (output, State k v (st.reseed_counter + 1)) | false |
Spec.HMAC_DRBG.fst | Spec.HMAC_DRBG.generate' | val generate': #a:supported_alg
-> state a
-> n:nat
-> additional_input:bytes
-> Pure (option (lbytes n & state a))
(requires
n <= max_output_length /\
(hash_length a + Seq.length additional_input
+ 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | val generate': #a:supported_alg
-> state a
-> n:nat
-> additional_input:bytes
-> Pure (option (lbytes n & state a))
(requires
n <= max_output_length /\
(hash_length a + Seq.length additional_input
+ 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True) | let generate' #a st n additional_input =
hmac_input_bound a;
if st.reseed_counter > reseed_interval then
None
else
let k, v =
if Seq.length additional_input > 0 then
update additional_input st.k st.v
else st.k, st.v
in
// let max = ceil (n / hash_length a) in
let max = (n + hash_length a - 1) / hash_length a in
let v, output =
Lib.Sequence.generate_blocks (hash_length a) max max (a_spec a)
(generate_loop a k max)
v
in
let k, v = update additional_input k v in
Some (Seq.slice output 0 n, State k v (st.reseed_counter + 1)) | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 135,
"start_col": 0,
"start_line": 117
} | module Spec.HMAC_DRBG
open Lib.IntTypes
open FStar.Seq
open FStar.Mul
open Spec.Hash.Definitions
open Spec.Agile.HMAC
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
noeq
type state (a:supported_alg) =
| State:
k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> reseed_counter:nat
-> state a
let hmac_input_bound = function
| SHA1 ->
let a = SHA1 in
assert_norm ((hash_length a + pow2 32 + pow2 32 +1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_256 ->
let a = SHA2_256 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_384 ->
let a = SHA2_384 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
| SHA2_512 ->
let a = SHA2_512 in
assert_norm ((hash_length a + pow2 32 + pow2 32 + 1 + block_length a + block_length a) `less_than_max_input_length` a)
val update: #a:supported_alg
-> data:bytes
-> k:lbytes (hash_length a)
-> v:lbytes (hash_length a)
-> Pure (lbytes (hash_length a) & lbytes (hash_length a))
(requires (hash_length a + Seq.length data + 1 + block_length a) `less_than_max_input_length` a)
(ensures fun _ -> True)
let update #a data k v =
let zero_data = Seq.cons (u8 0) data in
let k = hmac a k (v @| zero_data) in
let v = hmac a k v in
if Seq.length data = 0 then
k, v
else
let one_data = Seq.cons (u8 1) data in
let k = hmac a k (v @| one_data) in
let v = hmac a k v in
k, v
let instantiate #a entropy_input nonce personalization_string =
let seed_material = entropy_input @| nonce @| personalization_string in
let k = Seq.create (hash_length a) (u8 0) in
let v = Seq.create (hash_length a) (u8 1) in
let k, v = update #a seed_material k v in
State k v 1
let reseed #a st entropy_input additional_input =
let seed_material = entropy_input @| additional_input in
let k, v = update #a seed_material st.k st.v in
State k v 1
let a_spec (a:fixed_len_alg) (i:nat) = Lib.Sequence.lseq uint8 (hash_length a)
val generate_loop:
a:supported_alg
-> k:lbytes (hash_length a)
-> max:nat
-> i:nat{i < max}
-> a_spec a i
-> Pure (a_spec a (i + 1) & Lib.Sequence.lseq uint8 (hash_length a))
(requires True)
(ensures fun _ -> True)
let generate_loop a k max i vi =
hmac_input_bound a;
let v = hmac a k vi in v, v
let generate #a st n additional_input =
if st.reseed_counter > reseed_interval then
None
else
let k, v =
if Seq.length additional_input > 0 then
update additional_input st.k st.v
else st.k, st.v
in
let max = n / hash_length a in
let v, output =
Lib.Sequence.generate_blocks (hash_length a) max max (a_spec a)
(generate_loop a k max)
v
in
let v, output =
if max * hash_length a < n then
let v = hmac a k v in
v, output @| Lib.Sequence.sub #_ #(hash_length a) v 0 (n - max * hash_length a)
else
v, output
in
let k, v = update additional_input k v in
Some (output, State k v (st.reseed_counter + 1))
(** Equivalently, but proving it requires proving extensionality of generate_blocks *)
val generate': #a:supported_alg
-> state a
-> n:nat
-> additional_input:bytes
-> Pure (option (lbytes n & state a))
(requires
n <= max_output_length /\
(hash_length a + Seq.length additional_input
+ 1 + block_length a) `less_than_max_input_length` a) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.HMAC.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.HMAC_DRBG.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.HMAC",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Spec.HMAC_DRBG.state a -> n: Prims.nat -> additional_input: Spec.Hash.Definitions.bytes
-> Prims.Pure (FStar.Pervasives.Native.option (Spec.Agile.HMAC.lbytes n * Spec.HMAC_DRBG.state a)) | Prims.Pure | [] | [] | [
"Spec.HMAC_DRBG.supported_alg",
"Spec.HMAC_DRBG.state",
"Prims.nat",
"Spec.Hash.Definitions.bytes",
"Prims.op_GreaterThan",
"Spec.HMAC_DRBG.__proj__State__item__reseed_counter",
"Spec.HMAC_DRBG.reseed_interval",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"Spec.Agile.HMAC.lbytes",
"Prims.bool",
"Spec.Hash.Definitions.hash_length",
"Spec.HMAC_DRBG.a_spec",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Seq.Base.slice",
"Spec.HMAC_DRBG.State",
"Prims.op_Addition",
"FStar.Pervasives.Native.option",
"Spec.HMAC_DRBG.update",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Lib.Sequence.generate_blocks",
"Spec.HMAC_DRBG.generate_loop",
"Prims.op_Division",
"Prims.op_Subtraction",
"FStar.Seq.Base.length",
"Spec.HMAC_DRBG.__proj__State__item__k",
"Spec.HMAC_DRBG.__proj__State__item__v",
"Prims.unit",
"Spec.HMAC_DRBG.hmac_input_bound"
] | [] | false | false | false | false | false | let generate' #a st n additional_input =
| hmac_input_bound a;
if st.reseed_counter > reseed_interval
then None
else
let k, v =
if Seq.length additional_input > 0 then update additional_input st.k st.v else st.k, st.v
in
let max = (n + hash_length a - 1) / hash_length a in
let v, output =
Lib.Sequence.generate_blocks (hash_length a) max max (a_spec a) (generate_loop a k max) v
in
let k, v = update additional_input k v in
Some (Seq.slice output 0 n, State k v (st.reseed_counter + 1)) | false |
DoublyLinkedList.fst | DoublyLinkedList.lemma_dll_links_disjoint | val lemma_dll_links_disjoint (#t: Type) (h0: heap) (d: dll t) (i: nat)
: Lemma (requires ((dll_valid h0 d) /\ (i < length d.nodes)))
(ensures
(let nodes = d.nodes in
let left = (nodes.[ i ] @ h0).blink in
let right = (nodes.[ i ] @ h0).flink in
Mod.loc_disjoint (Mod.loc_buffer left) (Mod.loc_buffer right))) | val lemma_dll_links_disjoint (#t: Type) (h0: heap) (d: dll t) (i: nat)
: Lemma (requires ((dll_valid h0 d) /\ (i < length d.nodes)))
(ensures
(let nodes = d.nodes in
let left = (nodes.[ i ] @ h0).blink in
let right = (nodes.[ i ] @ h0).flink in
Mod.loc_disjoint (Mod.loc_buffer left) (Mod.loc_buffer right))) | let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
))) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 1262,
"start_col": 0,
"start_line": 1225
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h0: DoublyLinkedList.heap -> d: DoublyLinkedList.dll t -> i: Prims.nat
-> FStar.Pervasives.Lemma
(requires
DoublyLinkedList.dll_valid h0 d /\
i < FStar.List.Tot.Base.length (FStar.Ghost.reveal (Mkdll?.nodes d)))
(ensures
(let nodes = Mkdll?.nodes d in
let left = Mknode?.blink ((FStar.Ghost.reveal nodes).[ i ] @ h0) in
let right = Mknode?.flink ((FStar.Ghost.reveal nodes).[ i ] @ h0) in
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer left)
(LowStar.Monotonic.Buffer.loc_buffer right))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"DoublyLinkedList.heap",
"DoublyLinkedList.dll",
"Prims.nat",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.list",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Subtraction",
"FStar.List.Tot.Base.length",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"Prims.unit",
"Prims._assert",
"LowStar.Monotonic.Buffer.loc_includes",
"DoublyLinkedList.nodelist_fp0",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.nodelist_split_aa",
"Prims.Cons",
"FStar.List.Pure.Properties.lemma_splitAt_reindex_right",
"FStar.List.Pure.Properties.lemma_splitAt_reindex_left",
"FStar.List.Tot.Base.hd",
"FStar.List.Tot.Base.last",
"DoublyLinkedList.extract_nodelist_conn",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Pure.Properties.lemma_splitAt_index_hd",
"FStar.List.Pure.Properties.lemma_splitAt",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.snd",
"FStar.List.Tot.Base.splitAt",
"FStar.List.Tot.Properties.lemma_unsnoc_length",
"DoublyLinkedList.nodelist",
"FStar.Ghost.reveal",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.l_and",
"DoublyLinkedList.dll_valid",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Buffer.pointer_or_null",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedList.op_At",
"DoublyLinkedList.op_String_Access",
"DoublyLinkedList.__proj__Mknode__item__blink",
"FStar.Ghost.erased",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_dll_links_disjoint (#t: Type) (h0: heap) (d: dll t) (i: nat)
: Lemma (requires ((dll_valid h0 d) /\ (i < length d.nodes)))
(ensures
(let nodes = d.nodes in
let left = (nodes.[ i ] @ h0).blink in
let right = (nodes.[ i ] @ h0).flink in
Mod.loc_disjoint (Mod.loc_buffer left) (Mod.loc_buffer right))) =
| let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0
then ()
else
(if i = length nl - 1
then (lemma_unsnoc_is_last nl)
else
(lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
lemma_splitAt_reindex_right i nl 1;
nodelist_split_aa l1 (x :: l2);
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left));
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right));
()))) | false |
Hacl.Spec.Bignum.Definitions.fst | Hacl.Spec.Bignum.Definitions.limb_t | val limb_t : Type0 | let limb_t = t:inttype{t = U32 \/ t = U64} | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 18,
"start_col": 0,
"start_line": 18
} | module Hacl.Spec.Bignum.Definitions
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val blocks0: x:size_nat -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks0 x m = if x = 0 then 1 else (x - 1) / m + 1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Definitions.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Equality",
"Lib.IntTypes.U32",
"Lib.IntTypes.U64"
] | [] | false | false | false | true | true | let limb_t =
| t: inttype{t = U32 \/ t = U64} | false |
|
DoublyLinkedList.fst | DoublyLinkedList.dll_remove_head | val dll_remove_head (#t: Type) (d: dll t)
: StackInline (dll t)
(requires (fun h0 -> (dll_valid h0 d) /\ (length d.nodes > 0)))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead @ h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\ dll_valid h1 y /\ unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) | val dll_remove_head (#t: Type) (d: dll t)
: StackInline (dll t)
(requires (fun h0 -> (dll_valid h0 d) /\ (length d.nodes > 0)))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead @ h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\ dll_valid h1 y /\ unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) | let dll_remove_head (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead@h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2 then (
empty_list
) else (
!<|= e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
// assert (p1.phead == e);
// assert (p1.ptail == e);
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y
) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 1752,
"start_col": 0,
"start_line": 1724
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options
unfold
let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n
#set-options "--z3rlimit 20" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: DoublyLinkedList.dll t -> FStar.HyperStack.ST.StackInline (DoublyLinkedList.dll t) | FStar.HyperStack.ST.StackInline | [] | [] | [
"DoublyLinkedList.dll",
"DoublyLinkedList.empty_list",
"Prims.bool",
"DoublyLinkedList.piece",
"Prims.unit",
"DoublyLinkedList.aux_unchanged_payload",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"Prims.l_and",
"DoublyLinkedList.dll_valid",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.dll_fp0",
"DoublyLinkedList.fragment_fp0",
"Prims.eq2",
"Prims.list",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"Prims.Nil",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"FStar.List.Tot.Base.append",
"DoublyLinkedList.tot_defragmentable_fragment_to_dll",
"DoublyLinkedList.piece_remains_valid_b",
"DoublyLinkedList.fragment",
"DoublyLinkedList.Frag1",
"DoublyLinkedList.tot_dll_to_fragment_split",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"DoublyLinkedList.op_Bang_Less_Bar_Equals",
"LowStar.Monotonic.Buffer.is_null",
"LowStar.Buffer.trivial_preorder",
"LowStar.Buffer.pointer_or_null",
"DoublyLinkedList.__proj__Mknode__item__flink",
"LowStar.BufferOps.op_Bang_Star",
"DoublyLinkedList.__proj__Mkdll__item__lhead",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.List.Tot.Base.length",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"DoublyLinkedList.op_At",
"DoublyLinkedList._aux_fp_split_by_node",
"DoublyLinkedList.unchanged_node_vals",
"FStar.List.Tot.Base.tl"
] | [] | false | true | false | false | false | let dll_remove_head (#t: Type) (d: dll t)
: StackInline (dll t)
(requires (fun h0 -> (dll_valid h0 d) /\ (length d.nodes > 0)))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead @ h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\ dll_valid h1 y /\ unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
| let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2
then (empty_list)
else
(!<|=e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y) | false |
DoublyLinkedList.fst | DoublyLinkedList.dll_append | val dll_append (#t: Type) (d1 d2: dll t)
: StackInline (dll t)
(requires
(fun h0 ->
(dll_valid h0 d1) /\ (dll_valid h0 d2) /\ ((dll_fp0 d1) `Mod.loc_disjoint` (dll_fp0 d2))
))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_union (Mod.loc_buffer d1.ltail) (Mod.loc_buffer d2.lhead)) h0 h1 /\
(dll_fp0 y) `loc_equiv` ((dll_fp0 d1) `B.loc_union` (dll_fp0 d2)) /\ dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\ reveal y.nodes == d1.nodes `append` d2.nodes)) | val dll_append (#t: Type) (d1 d2: dll t)
: StackInline (dll t)
(requires
(fun h0 ->
(dll_valid h0 d1) /\ (dll_valid h0 d2) /\ ((dll_fp0 d1) `Mod.loc_disjoint` (dll_fp0 d2))
))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_union (Mod.loc_buffer d1.ltail) (Mod.loc_buffer d2.lhead)) h0 h1 /\
(dll_fp0 y) `loc_equiv` ((dll_fp0 d1) `B.loc_union` (dll_fp0 d2)) /\ dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\ reveal y.nodes == d1.nodes `append` d2.nodes)) | let dll_append (#t:Type) (d1 d2:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d1) /\
(dll_valid h0 d2) /\
(dll_fp0 d1 `Mod.loc_disjoint` dll_fp0 d2)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d1.ltail)
(Mod.loc_buffer d2.lhead)) h0 h1 /\
dll_fp0 y `loc_equiv` (dll_fp0 d1 `B.loc_union` dll_fp0 d2) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == d1.nodes `append` d2.nodes)) =
let h0 = ST.get () in
if is_null d1.lhead then (
let y = d2 in
let h1 = ST.get () in
aux_unchanged_payload_nomod h0 h1 y.nodes;
y
) else (
if is_null d2.lhead then (
let y = d1 in
let h1 = ST.get () in
aux_unchanged_payload_nomod h0 h1 y.nodes;
append_l_nil y.nodes;
y
) else (
let n1 = d1.ltail in
let n2 = d2.lhead in
n1 =|> n2;
let h0' = ST.get () in
n1 <|= n2;
let h1 = ST.get () in
//
let p1 = tot_dll_to_piece h0 d1 in
let p2 = tot_dll_to_piece h0 d2 in
let f' = Frag2 p1 p2 in
piece_remains_valid_f h0 h0' p1;
piece_remains_valid h0 h0' (Mod.loc_buffer n1) p2;
piece_remains_valid h0' h1 (Mod.loc_buffer n2) p1;
piece_remains_valid_b h0' h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last d1.nodes;
aux_unchanged_payload h0 h0' n1 d1.nodes;
aux_unchanged_payload h0 h0' n1 d2.nodes;
aux_unchanged_payload h0' h1 n2 d1.nodes;
aux_unchanged_payload h0' h1 n2 d2.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d1.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d2.nodes;
aux_unchanged_payload_append h0 h1 d1.nodes d2.nodes;
y
)
) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedList.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 1963,
"start_col": 0,
"start_line": 1910
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedList
open FStar
open FStar.HyperStack.ST
open FStar.Ghost
open LowStar.ModifiesPat
open FStar.List.Tot
open FStar.List.Pure
open LowStar.BufferOps
module Mod = LowStar.Modifies
module ST = FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
/// Convenience renaming
unfold let heap = HS.mem
unfold let contains #a #rrel #rel h b = B.live #a #rrel #rel h b
/// Convenience patterns
let lemma_non_null (#t:Type) (a:pointer_or_null t) :
Lemma
(requires (a =!= null))
(ensures (len a = 1ul))
[SMTPat (len a)] =
null_unique a
/// Convenience operators
unfold let (.[]) (s:list 'a) (n:nat{n < length s}) = index s n
unfold let (~.) (#t:Type) (a:t) : Tot (erased (list t)) = [a]
unfold let (^+) (#t:Type) (a:t) (b:erased (list t)) : Tot (erased (list t)) = Cons a b
unfold let (+^) (#t:Type) (a:erased (list t)) (b:t) : Tot (erased (list t)) = append a [b]
unfold let (^@^) (#t:Type) (a:erased (list t)) (b:erased (list t)) : Tot (erased (list t)) = append a b
unfold let (@) (a:pointer 't) (h0:heap) = B.get h0 a 0
unfold let (^@) (a:pointer_or_null 't{a =!= null}) (h0:heap) = B.get h0 a 0
/// All the data structures
#set-options "--__no_positivity"
unopteq
(** Node of a doubly linked list *)
type node (t:Type0) = {
(* forward link *)
flink: pointer_or_null (node t);
(* backward link *)
blink: pointer_or_null (node t);
(* payload *)
p: t;
}
#reset-options
private
type nodelist t = list (pointer (node t))
unopteq
(** Doubly linked list head *)
type dll (t:Type0) ={
lhead: pointer_or_null (node t);
ltail: pointer_or_null (node t);
nodes: erased (nodelist t);
}
type nonempty_dll t = (h:dll t{h.lhead =!= null /\ h.ltail =!= null})
unopteq private
(** An "almost valid" dll *)
type piece t = {
phead: pointer (node t);
ptail: pointer (node t);
pnodes: erased (nodelist t);
}
unopteq private
(** An intermediate for when linked lists are being formed or destroyed *)
type fragment t =
| Frag0 : fragment t
| Frag1 : piece t -> fragment t
| Frag2 : piece t -> piece t -> fragment t
| Frag3 : piece t -> piece t -> piece t -> fragment t
/// Some useful empty initializers
(** Initialize an element of a doubly linked list *)
val empty_node: #t:Type -> payload:t -> node t
let empty_node #t payload =
{ flink = null ; blink = null ; p = payload }
(** Initialize a doubly linked list head *)
val empty_list: #t:Type -> dll t
let empty_list #t =
{ lhead = null ; ltail = null ; nodes = [] }
/// Convenience wrappers for writing properties on fragments
let fragment_for_each0 (#t:Type) (pr:piece t -> GTot Type0) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr p1
| Frag2 p1 p2 -> pr p1 /\ pr p2
| Frag3 p1 p2 p3 -> pr p1 /\ pr p2 /\ pr p3
let fragment_for_each1 (#t:Type) (#u:Type) (pr:u -> piece t -> GTot Type0) (v:u) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> pr v p1
| Frag2 p1 p2 -> pr v p1 /\ pr v p2
| Frag3 p1 p2 p3 -> pr v p1 /\ pr v p2 /\ pr v p3
let fragment_length (#t:Type) (f:fragment t) : GTot int =
match f with
| Frag0 -> 0
| Frag1 _ -> 1
| Frag2 _ _ -> 2
| Frag3 _ _ _ -> 3
/// Ghostly connections
let dll_ghostly_connections (#t:Type) (d:dll t) : GTot Type0 =
let nodes = d.nodes in
match length nodes with
| 0 -> d.lhead == null /\ d.ltail == null
| _ -> d.lhead =!= null /\ d.ltail =!= null /\
d.lhead == hd nodes /\
d.ltail == last nodes
let piece_ghostly_connections (#t:Type) (p:piece t) : GTot Type0 =
let nodes = p.pnodes in
match length nodes with
| 0 -> False
| _ -> p.phead == hd nodes /\
p.ptail == last nodes
let rec fragment_ghostly_connections (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_ghostly_connections f
/// Containment properties
///
/// WARNING: [@@] and [^@] require containment to reasonably talk about
/// what they do.
let rec nodelist_contained0 (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns -> h0 `contains` n /\ nodelist_contained0 h0 ns
let rec nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained0 h0 nl
let dll_contained (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
h0 `contains` d.lhead /\
h0 `contains` d.ltail /\
nodelist_contained h0 d.nodes
let piece_contained (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
h0 `contains` p.phead /\
h0 `contains` p.ptail /\
nodelist_contained h0 p.pnodes
let rec fragment_contained (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_contained h0 f
/// Footprints
let node_fp_f (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.flink
let node_fp_b (#t:Type) (n:node t) : GTot Mod.loc =
Mod.loc_buffer n.blink
let rec nodelist_fp0 (#t:Type) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 ns)
let rec nodelist_fp_f (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).flink) (nodelist_fp_f h0 ns)
let rec nodelist_fp_b (#t:Type) (h0:heap) (n:nodelist t) : GTot Mod.loc =
match n with
| [] -> Mod.loc_none
| n :: ns -> Mod.loc_union (Mod.loc_buffer (n@h0).blink) (nodelist_fp_b h0 ns)
let dll_fp0 (#t:Type) (d:dll t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer d.lhead) (Mod.loc_buffer d.ltail))
(nodelist_fp0 d.nodes)
let dll_fp_f (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).flink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).flink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_f h0 d.nodes)
let dll_fp_b (#t:Type) (h0:heap) (d:dll t) : GTot Mod.loc =
let a = if g_is_null d.lhead then Mod.loc_none else Mod.loc_buffer (d.lhead^@h0).blink in
let b = if g_is_null d.ltail then Mod.loc_none else Mod.loc_buffer (d.ltail^@h0).blink in
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union a b)
(nodelist_fp_b h0 d.nodes)
let piece_fp0 (#t:Type) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer p.phead) (Mod.loc_buffer p.ptail))
(nodelist_fp0 p.pnodes)
let piece_fp_f (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).flink) (Mod.loc_buffer (p.ptail@h0).flink))
(nodelist_fp_f h0 p.pnodes)
let piece_fp_b (#t:Type) (h0:heap) (p:piece t) : GTot Mod.loc =
Mod.loc_union // ghostly connections should give us this union for
// free, but still useful to have
(Mod.loc_union (Mod.loc_buffer (p.phead@h0).blink) (Mod.loc_buffer (p.ptail@h0).blink))
(nodelist_fp_b h0 p.pnodes)
let rec fragment_fp0 (#t:Type) (f:fragment t) : GTot Mod.loc =
match f with
| Frag0 -> Mod.loc_none
| Frag1 p1 -> piece_fp0 p1
| Frag2 p1 p2 -> Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> Mod.loc_union (piece_fp0 p1) (Mod.loc_union (piece_fp0 p2) (piece_fp0 p3))
/// Helper patterns for footprints
let loc_includes_union_l_nodelist_fp0 (#t: Type) (s1 s2:loc) (nl:nodelist t) :
Lemma
(requires (loc_includes s1 (nodelist_fp0 nl) \/ loc_includes s2 (nodelist_fp0 nl)))
(ensures (loc_includes (loc_union s1 s2) (nodelist_fp0 nl)))
[SMTPat (loc_includes (loc_union s1 s2) (nodelist_fp0 nl))] =
loc_includes_union_l s1 s2 (nodelist_fp0 nl)
let loc_includes_union_l_dll_fp0 (#t: Type) (s1 s2:loc) (d:dll t) :
Lemma
(requires (loc_includes s1 (dll_fp0 d) \/ loc_includes s2 (dll_fp0 d)))
(ensures (loc_includes (loc_union s1 s2) (dll_fp0 d)))
[SMTPat (loc_includes (loc_union s1 s2) (dll_fp0 d))] =
loc_includes_union_l s1 s2 (dll_fp0 d)
let loc_includes_union_l_piece_fp0 (#t: Type) (s1 s2:loc) (p:piece t) :
Lemma
(requires (loc_includes s1 (piece_fp0 p) \/ loc_includes s2 (piece_fp0 p)))
(ensures (loc_includes (loc_union s1 s2) (piece_fp0 p)))
[SMTPat (loc_includes (loc_union s1 s2) (piece_fp0 p))] =
loc_includes_union_l s1 s2 (piece_fp0 p)
let loc_includes_union_l_fragment_fp0 (#t: Type) (s1 s2:loc) (f:fragment t) :
Lemma
(requires (loc_includes s1 (fragment_fp0 f) \/ loc_includes s2 (fragment_fp0 f)))
(ensures (loc_includes (loc_union s1 s2) (fragment_fp0 f)))
[SMTPat (loc_includes (loc_union s1 s2) (fragment_fp0 f))] =
loc_includes_union_l s1 s2 (fragment_fp0 f)
/// Equivalence for locations
let loc_equiv (a b:Mod.loc) = Mod.loc_includes a b /\ Mod.loc_includes b a
let loc_equiv_trans (a b c:Mod.loc) :
Lemma
(requires (loc_equiv a b /\ loc_equiv b c))
(ensures (loc_equiv a c))
[SMTPat (loc_equiv a b);
SMTPat (loc_equiv b c);
SMTPat (loc_equiv a c)] =
Mod.loc_includes_trans a b c;
Mod.loc_includes_trans c b a
let loc_equiv_union_union_loc (a b c:Mod.loc) :
Lemma
(requires (loc_equiv b c))
(ensures (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c)))
[SMTPat (loc_equiv
(Mod.loc_union a b)
(Mod.loc_union a c))] =
let incl = Mod.loc_includes in
let u = Mod.loc_union in
// assert (b `incl` c);
Mod.loc_includes_union_l a b c;
// assert ((a `u` b) `incl` c);
Mod.loc_includes_union_l a b a;
// assert ((a `u` b) `incl` a);
// assert ((a `u` b) `incl` (a `u` c));
Mod.loc_includes_union_l a c b;
Mod.loc_includes_union_l a c a
/// Anti aliasing properties
let node_aa (#t:Type) (n:node t) : GTot Type0 =
Mod.loc_disjoint (node_fp_f n) (node_fp_b n)
let rec nodelist_aa_r (#t:Type) (nl:nodelist t) : GTot Type0 =
match nl with
| [] -> True
| n :: ns ->
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_r ns
let rec nodelist_aa_l (#t:Type) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns) /\
nodelist_aa_l ns
let nodelist_aa (#t:Type) (nl:nodelist t) : GTot Type0 =
nodelist_aa_l nl /\ nodelist_aa_r nl
let dll_aa (#t:Type) (d:dll t) : GTot Type0 =
nodelist_aa d.nodes
let piece_aa (#t:Type) (p:piece t) : GTot Type0 =
nodelist_aa p.pnodes
let rec fragment_aa0 (#t:Type) (f:fragment t) : GTot Type0 =
fragment_for_each0 piece_aa f
let rec fragment_aa_lr (#t:Type) (f:fragment t) : GTot Type0 =
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)
| Frag3 p1 p2 p3 -> ((Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)) /\
(Mod.loc_disjoint (piece_fp0 p2) (piece_fp0 p3)) /\
(Mod.loc_disjoint (piece_fp0 p3) (piece_fp0 p1)))
let fragment_aa (#t:Type) (f:fragment t) : GTot Type0 =
fragment_aa0 f /\ fragment_aa_lr f
/// Connectivity properties
let ( |>> ) (#t:Type) (a:node t) (b:pointer (node t)) : GTot Type0 =
a.flink == b
let ( <<| ) (#t:Type) (a:pointer (node t)) (b: node t) : GTot Type0 =
b.blink == a
let rec nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 (decreases (length nl)) =
match nl with
| [] -> True
| n1 :: rest -> match rest with
| [] -> True
| n2 :: ns ->
n1@h0 |>> n2 /\
n1 <<| n2@h0 /\
nodelist_conn h0 rest
let dll_conn (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
nodelist_conn h0 d.nodes /\
(d.lhead =!= null ==> (d.lhead@h0).blink == null) /\
(d.ltail =!= null ==> (d.ltail@h0).flink == null)
let piece_conn (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
nodelist_conn h0 p.pnodes
let rec fragment_conn (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_for_each1 piece_conn h0 f
/// Validity properties
///
/// These are just a combination of
/// + Ghostly connections
/// + Containment properties
/// + Anti aliasing properties
/// + Connectivity properties
let nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) : GTot Type0 =
nodelist_contained h0 nl /\
nodelist_aa nl /\
nodelist_conn h0 nl
let dll_valid (#t:Type) (h0:heap) (d:dll t) : GTot Type0 =
dll_ghostly_connections d /\
dll_contained h0 d /\
dll_aa d /\
dll_conn h0 d
let piece_valid (#t:Type) (h0:heap) (p:piece t) : GTot Type0 =
piece_ghostly_connections p /\
piece_contained h0 p /\
piece_aa p /\
piece_conn h0 p
let fragment_valid (#t:Type) (h0:heap) (f:fragment t) : GTot Type0 =
fragment_ghostly_connections f /\
fragment_contained h0 f /\
fragment_aa f /\
fragment_conn h0 f
/// Talk about payloads of nodes remaining constant
let unchanged_node_val h0 h1 n =
(h0 `contains` n ==>
((n@h0).p == (n@h1).p /\ h1 `contains` n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:nodelist 'a) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Useful operations on nodes
let ( =|> ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
b@h0 == b@h1 /\
(a@h1) |>> b)) =
a *= { !*a with flink = b }
let ( <|= ) (#t:Type) (a:pointer (node t)) (b:pointer (node t)) : StackInline unit
(requires (fun h0 ->
h0 `contains` a /\ h0 `contains` b /\
Mod.loc_disjoint (Mod.loc_buffer a) (Mod.loc_buffer b)))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer b) h0 h1 /\
a@h0 == a@h1 /\
unchanged_node_val h0 h1 b /\
(b@h0).flink == (b@h1).flink /\
a <<| (b@h1))) =
b *= { !*b with blink = a }
let ( !=|> ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).blink == (a@h1).blink /\
(a@h1).flink == null)) =
a *= { !*a with flink = null }
let ( !<|= ) (#t:Type) (a:pointer (node t)) : StackInline unit
(requires (fun h0 -> h0 `contains` a))
(ensures (fun h0 _ h1 ->
Mod.modifies (Mod.loc_buffer a) h0 h1 /\
unchanged_node_val h0 h1 a /\
(a@h0).flink == (a@h1).flink /\
(a@h1).blink == null)) =
a *= { !*a with blink = null }
/// Extraction lemmas: these allow one to use one of the properties
/// above, which are defined inductively, to get the property at one
/// of the latter elements of the list.
let rec extract_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_contained h0 nl))
(ensures (h0 `contains` nl.[i])) =
match i with
| 0 -> ()
| _ -> extract_nodelist_contained h0 (tl nl) (i - 1)
let rec extract_nodelist_fp0 (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(ensures (Mod.loc_includes
(nodelist_fp0 nl)
(Mod.loc_buffer nl.[i]))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_fp0 (tl nl) (i - 1)
let rec extract_nodelist_aa_r (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_r nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 right))) =
match i with
| 0 -> ()
| _ -> extract_nodelist_aa_r (tl nl) (i - 1)
let rec extract_nodelist_aa_l (#t:Type) (nl:nodelist t) (i:nat{i < length nl}) :
Lemma
(requires (nodelist_aa_l nl))
(ensures (
let left, n, right = split3 nl i in
Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 left)))
(decreases (length nl)) =
if i = length nl - 1 then () else (
let a, b = unsnoc nl in lemma_unsnoc_length nl;
let left, n, right = split3 nl i in
lemma_unsnoc_split3 nl i;
// assert (append (left) (n :: (fst (unsnoc right))) == a);
extract_nodelist_aa_l a i;
lemma_split3_unsnoc nl i
)
let rec extract_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) (i:nat{i < length nl - 1}) :
Lemma
(requires (nodelist_conn h0 nl))
(ensures (
(nl.[i]@h0 |>> nl.[i+1]) /\
(nl.[i] <<| nl.[i+1]@h0)))
(decreases (length nl)) =
match i with
| 0 -> ()
| _ -> extract_nodelist_conn h0 (tl nl) (i - 1)
/// Validity is maintained upon breaking the lists, via (hd :: tl)
let rec nodelist_remains_aa_l (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa_l nl /\ length nl > 0))
(ensures (nodelist_aa_l (tl nl)))
(decreases (length nl))
[SMTPat (nodelist_aa_l (tl nl))] =
match nl with
| [n] -> ()
| _ ->
let ns, n = unsnoc nl in lemma_unsnoc_length nl;
let ns', n' = unsnoc (tl nl) in
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (n' == n);
// assert (ns' == tl ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns'));
nodelist_remains_aa_l ns
(* Rest of the validity predicates are held trivially due to their
direction of definition *)
/// Properties maintained upon breaking the list, via unsnoc
let rec fst_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (nodelist_fp0 (fst (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> fst_unsnoc_nodelist_fp0 ns
let rec snd_unsnoc_nodelist_fp0 (#t:Type) (nl:nodelist t) :
Lemma
(requires (length nl > 0))
(ensures (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl)))))
[SMTPat (Mod.loc_includes (nodelist_fp0 nl) (Mod.loc_buffer (snd (unsnoc nl))))] =
match nl with
| [_] -> ()
| n :: ns -> snd_unsnoc_nodelist_fp0 ns
let rec fst_unsnoc_nodelist_contained (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl /\ length nl > 0))
(ensures (nodelist_contained h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_contained h0 (tl nl)
let rec fst_unsnoc_nodelist_aa (#t:Type) (nl:nodelist t) :
Lemma
(requires (nodelist_aa nl /\ length nl > 0))
(ensures (nodelist_aa (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ ->
fst_unsnoc_nodelist_aa (tl nl);
// assert (nodelist_aa_l (fst (unsnoc nl)));
let n :: ns = fst (unsnoc nl) in
Mod.loc_disjoint_includes
(Mod.loc_buffer n) (nodelist_fp0 (tl nl))
(Mod.loc_buffer n) (nodelist_fp0 ns);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 ns));
// assert (nodelist_aa_r (fst (unsnoc nl)));
()
let rec fst_unsnoc_nodelist_conn (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl /\ length nl > 0))
(ensures (nodelist_conn h0 (fst (unsnoc nl)))) =
match nl with
| [_] -> ()
| _ -> fst_unsnoc_nodelist_conn h0 (tl nl)
let fst_unsnoc_nodelist_valid (#t:Type) (h0:heap) (nl:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl /\ length nl > 0))
(ensures (nodelist_valid h0 (fst (unsnoc nl)))) =
fst_unsnoc_nodelist_contained h0 nl;
fst_unsnoc_nodelist_aa nl;
fst_unsnoc_nodelist_conn h0 nl
/// Footprints are included, even upon breaking nodelist even further
let rec nodelist_includes_r_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let _, a = splitAt i nl in
let _, b = splitAt j nl in
Mod.loc_includes (nodelist_fp0 a) (nodelist_fp0 b)))
(decreases (j - i)) =
if i = j then () else (
let temp, a = splitAt i nl in lemma_splitAt nl temp a i;
let temp, b = splitAt j nl in lemma_splitAt nl temp b j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (tl a == b);
()
) else (
nodelist_includes_r_fp0 nl i (j - 1);
nodelist_includes_r_fp0 nl (j - 1) j;
let temp, c = splitAt (j - 1) nl in lemma_splitAt nl temp c (j - 1);
Mod.loc_includes_trans (nodelist_fp0 a) (nodelist_fp0 c) (nodelist_fp0 b)
)
)
let rec nodelist_includes_l_fp0 (#t:Type) (nl:nodelist t) (i j:nat) :
Lemma
(requires (i <= j /\ j < length nl))
(ensures (
let a, _ = splitAt i nl in
let b, _ = splitAt j nl in
Mod.loc_includes (nodelist_fp0 b) (nodelist_fp0 a)))
(decreases (j - i)) =
if i = j then () else (
let a, a' = splitAt i nl in lemma_splitAt nl a a' i;
let b, b' = splitAt j nl in lemma_splitAt nl b b' j;
if i = j - 1 then (
List.Pure.Properties.splitAt_assoc i 1 nl;
// assert (b == append a [hd a']);
lemma_unsnoc_append a [hd a'];
// assert (snd (unsnoc b) == hd a');
// assert (fst (unsnoc b) == a);
fst_unsnoc_nodelist_fp0 b
) else (
nodelist_includes_l_fp0 nl i (j - 1);
nodelist_includes_l_fp0 nl (j - 1) j;
let c, c' = splitAt (j - 1) nl in lemma_splitAt nl c c' (j - 1);
Mod.loc_includes_trans (nodelist_fp0 b) (nodelist_fp0 c) (nodelist_fp0 a)
)
)
/// Total conversions between fragments, pieces, and dlls
let tot_dll_to_piece (#t:Type) (h0:heap) (d:nonempty_dll t{dll_valid h0 d}) :
Tot (p:piece t{piece_valid h0 p}) =
{ phead = d.lhead ; ptail = d.ltail ; pnodes = d.nodes }
let tot_dll_to_fragment (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d /\ d.lhead =!= null}) :
Tot (f:fragment t{fragment_valid h0 f}) =
Frag1 (tot_dll_to_piece h0 d)
let tot_piece_to_dll (#t:Type) (h0:heap) (p:piece t{
piece_valid h0 p /\
(p.phead@h0).blink == null /\
(p.ptail@h0).flink == null}) :
Tot (d:dll t{dll_valid h0 d}) =
{ lhead = p.phead ; ltail = p.ptail ; nodes = p.pnodes }
(* The conversions piece<->fragment are trivial *)
/// Properties maintained when appending nodelists
let rec nodelist_append_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2))
(ensures (nodelist_contained h0 (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_append_contained h0 nl1' nl2
let rec nodelist_append_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures (
loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2)))) =
match nl1 with
| [] -> ()
| n :: nl1' ->
nodelist_append_fp0 nl1' nl2;
// assert (loc_equiv
// (nodelist_fp0 (append nl1' nl2))
// (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)));
// assert (loc_equiv
// (nodelist_fp0 nl1)
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 nl1')) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2))));
// assert (loc_equiv
// (Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
loc_equiv_trans
(Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
(Mod.loc_union (Mod.loc_buffer n) (Mod.loc_union (nodelist_fp0 nl1') (nodelist_fp0 nl2)))
(Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2)));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2))
// (Mod.loc_union (Mod.loc_buffer n) (nodelist_fp0 (append nl1' nl2))));
()
#set-options "--z3rlimit 20"
let rec nodelist_append_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l nl1 /\ nodelist_aa_l nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_l (append nl1 nl2)))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
nodelist_append_fp0 nl1 nl2';
// assert (nodelist_aa_l nl2');
assert (Mod.loc_includes (nodelist_fp0 nl2) (nodelist_fp0 nl2')); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
lemma_unsnoc_is_last nl2;
assert (Mod.loc_includes (nodelist_fp0 nl2) (Mod.loc_buffer n)); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl1));
// assert (loc_equiv (nodelist_fp0 (append nl1 nl2')) (Mod.loc_union (nodelist_fp0 nl1) (nodelist_fp0 nl2')));
nodelist_append_aa_l nl1 nl2';
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (append nl1 nl2')));
lemma_unsnoc_append nl1 nl2;
// assert (append nl1 nl2' == fst (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 (fst (unsnoc (append nl1 nl2)))));
()
#reset-options
let rec nodelist_append_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r nl1 /\ nodelist_aa_r nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa_r (append nl1 nl2))) =
match nl1 with
| [] -> ()
| _ ->
nodelist_append_fp0 (tl nl1) nl2;
nodelist_append_aa_r (tl nl1) nl2
let nodelist_append_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2)))
(ensures (nodelist_aa (append nl1 nl2))) =
nodelist_append_aa_l nl1 nl2; nodelist_append_aa_r nl1 nl2
let rec nodelist_append_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_conn h0 (append nl1 nl2))) =
match nl1 with
| [_] -> ()
| _ -> nodelist_append_conn h0 (tl nl1) nl2
let nodelist_append_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
length nl1 > 0 /\ length nl2 > 0 /\ // For "= 0", it is trivially held
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0))
(ensures (nodelist_valid h0 (append nl1 nl2))) =
nodelist_append_contained h0 nl1 nl2;
nodelist_append_aa nl1 nl2;
nodelist_append_conn h0 nl1 nl2
/// Useful property for for piece merging
let loc_includes_union_r_inv (a b c:Mod.loc) :
Lemma
(requires (Mod.loc_includes a (Mod.loc_union b c)))
(ensures (Mod.loc_includes a b /\ Mod.loc_includes a c)) =
Mod.loc_includes_union_l b c b;
Mod.loc_includes_trans a (Mod.loc_union b c) b;
Mod.loc_includes_union_l b c c;
Mod.loc_includes_trans a (Mod.loc_union b c) c
/// Piece merging
#set-options "--z3rlimit 10"
val piece_merge (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Pure (piece t)
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (fun p -> (piece_valid h0 p) /\
(reveal p.pnodes == p1.pnodes `append` p2.pnodes)))
let piece_merge #t h0 p1 p2 =
let p = { phead = p1.phead ; ptail = p2.ptail ; pnodes = p1.pnodes ^@^ p2.pnodes } in
lemma_append_last p1.pnodes p2.pnodes;
nodelist_append_valid h0 p1.pnodes p2.pnodes;
p
#reset-options
let piece_merge_fp0 (#t:Type) (h0:heap)
(p1:piece t{piece_valid h0 p1})
(p2:piece t{piece_valid h0 p2}) :
Lemma
(requires (let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\
(a <<| b@h0) /\
Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2)))
(ensures (loc_equiv
(piece_fp0 (piece_merge h0 p1 p2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)))) =
let p = piece_merge h0 p1 p2 in
let n1, n2, n = reveal p1.pnodes, reveal p2.pnodes, reveal p.pnodes in
nodelist_append_fp0 n1 n2;
// assert (loc_equiv (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
// assert (hd n1 == p1.phead);
// assert (Mod.loc_includes (nodelist_fp0 n1) (Mod.loc_buffer p1.phead));
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.phead));
// assert (last n2 == p2.ptail);
extract_nodelist_fp0 n2 (length n2 - 1);
lemma_unsnoc_is_last n2;
// assert (Mod.loc_includes (nodelist_fp0 n2) (Mod.loc_buffer p2.ptail));
extract_nodelist_fp0 n (length n - 1);
lemma_unsnoc_is_last n;
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_buffer p.ptail));
loc_includes_union_r_inv (nodelist_fp0 n) (nodelist_fp0 n1) (nodelist_fp0 n2);
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n1));
// assert (Mod.loc_includes (nodelist_fp0 n) (nodelist_fp0 n2));
//
// assert (loc_equiv (nodelist_fp0 n) (piece_fp0 p));
extract_nodelist_fp0 n1 (length n1 - 1);
lemma_unsnoc_is_last n1;
// assert (loc_equiv (nodelist_fp0 n1) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 n2) (piece_fp0 p2));
//
// assert (Mod.loc_includes (nodelist_fp0 n) (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)));
Mod.loc_includes_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
Mod.loc_includes_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (Mod.loc_includes (piece_fp0 p) (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
//
// assert (Mod.loc_includes (Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2)) (nodelist_fp0 n));
loc_equiv_trans (nodelist_fp0 n) (piece_fp0 p)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2));
loc_equiv_trans (nodelist_fp0 n)
(Mod.loc_union (nodelist_fp0 n1) (nodelist_fp0 n2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
loc_equiv_trans (piece_fp0 p) (nodelist_fp0 n)
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2))
/// Fragment merging to a dll
let rec fragment_defragmentable (#t:Type) (h0:heap) (f:fragment t{fragment_valid h0 f}) :
GTot Type0 =
let aux (p1 p2:(p:piece t{piece_valid h0 p})) =
let a, b = last p1.pnodes, hd p2.pnodes in
(a@h0 |>> b) /\(a <<| b@h0) in
match f with
| Frag0 -> True
| Frag1 p1 -> True
| Frag2 p1 p2 -> aux p1 p2
| Frag3 p1 p2 p3 -> aux p1 p2 /\ aux p2 p3
let single_piece_fragment_valid (#t:Type) (h0:heap) (p:piece t) :
Lemma
(requires (piece_valid h0 p))
(ensures (fragment_valid h0 (Frag1 p))) = ()
#set-options "--z3rlimit 40 --initial_ifuel 2"
let tot_defragmentable_fragment_to_dll (#t:Type) (h0:heap) (f:fragment t{
fragment_valid h0 f /\
fragment_defragmentable h0 f /\
(fragment_length f > 0 ==>
(let a, b = match f with
| Frag1 p1 -> p1, p1
| Frag2 p1 p2 -> p1, p2
| Frag3 p1 _ p3 -> p1, p3 in
((a.phead@h0).blink == null) /\
((b.ptail@h0).flink == null)))
}) :
Tot (d:dll t{dll_valid h0 d /\ dll_fp0 d `loc_equiv` fragment_fp0 f /\
(reveal d.nodes == (
match f with
| Frag0 -> []
| Frag1 p1 -> reveal p1.pnodes
| Frag2 p1 p2 -> reveal p1.pnodes `append` reveal p2.pnodes
| Frag3 p1 p2 p3 ->
reveal p1.pnodes `append` reveal p2.pnodes `append` reveal p3.pnodes))
}) =
match f with
| Frag0 -> empty_list
| Frag1 p1 -> tot_piece_to_dll h0 p1
| Frag2 p1 p2 ->
piece_merge_fp0 h0 p1 p2;
tot_piece_to_dll h0 (piece_merge h0 p1 p2)
| Frag3 p1 p2 p3 ->
piece_merge_fp0 h0 p1 p2;
let p' = piece_merge h0 p1 p2 in
piece_merge_fp0 h0 p' p3;
tot_piece_to_dll h0 (piece_merge h0 p' p3)
#reset-options
/// Properties of nodelists maintained upon splitting nodelists
let rec nodelist_split_contained (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_contained h0 (append nl1 nl2)))
(ensures (nodelist_contained h0 nl1 /\ nodelist_contained h0 nl2)) =
match nl1 with
| [] -> ()
| _ :: nl1' -> nodelist_split_contained h0 nl1' nl2
let rec nodelist_split_fp0 (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
match nl1 with
| [] | [_] -> ()
| _ ->
match nl2 with
| [] -> ()
| _ ->
// assert (length nl1 > 1);
// assert (length nl2 > 0);
nodelist_split_fp0 (tl nl1) nl2;
append_length nl1 nl2;
nodelist_includes_r_fp0 (tl (append nl1 nl2)) 0 (length nl1 - 1);
// assert (snd (splitAt 0 (tl (append nl1 nl2))) == tl (append nl1 nl2));
// assert (snd (splitAt (length nl1 - 1) (tl (append nl1 nl2))) == snd (splitAt (length nl1) (append nl1 nl2)));
lemma_append_splitAt nl1 nl2;
// assert (snd (splitAt (length nl1) (append nl1 nl2)) == nl2);
// assert (Mod.loc_includes (nodelist_fp0 (tl (append nl1 nl2))) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl (append nl1 nl2))));
// assert (Mod.loc_disjoint (Mod.loc_buffer (hd nl1)) (nodelist_fp0 nl2));
// assert (Mod.loc_disjoint (nodelist_fp0 (tl nl1)) (nodelist_fp0 nl2));
Mod.loc_disjoint_union_r (nodelist_fp0 nl2) (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1));
// assert (Mod.loc_disjoint (Mod.loc_union (Mod.loc_buffer (hd nl1)) (nodelist_fp0 (tl nl1))) (nodelist_fp0 nl2));
()
#set-options "--z3rlimit 30"
let rec nodelist_split_fp0_equiv (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(ensures
((loc_equiv
(nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(nodelist_fp0 nl1)
(nodelist_fp0 nl2))))) =
match nl1 with
| [] -> ()
| n :: ns ->
nodelist_split_fp0_equiv ns nl2;
assert (loc_equiv (nodelist_fp0 (append nl1 nl2))
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))); // OBSERVE
assert (loc_equiv
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_union
(nodelist_fp0 ns)
(nodelist_fp0 nl2)))
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(nodelist_fp0 ns))
(nodelist_fp0 nl2))) // OBSERVE
let rec nodelist_split_aa_l (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_l (append nl1 nl2)))
(ensures (nodelist_aa_l nl1 /\ nodelist_aa_l nl2))
(decreases (length nl2)) =
match nl2 with
| [] -> append_l_nil nl1
| _ ->
let nl2', n = unsnoc nl2 in lemma_unsnoc_length nl2;
lemma_unsnoc_append nl1 nl2;
// assert (nodelist_aa_l (append nl1 nl2));
// assert (nodelist_aa_l (append nl1 nl2'));
nodelist_split_aa_l nl1 nl2';
// assert (nodelist_aa_l nl2');
// assert (n == snd (unsnoc (append nl1 nl2)));
// assert (n == snd (unsnoc nl2));
nodelist_append_fp0 nl1 nl2';
// assert (Mod.loc_includes (nodelist_fp0 (append nl1 nl2')) (nodelist_fp0 nl2'));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (nodelist_fp0 nl2'));
// assert (nodelist_aa_l nl2);
()
#reset-options
let rec nodelist_split_aa_r (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa_r (append nl1 nl2)))
(ensures (nodelist_aa_r nl1 /\ nodelist_aa_r nl2)) =
match nl1 with
| [] -> ()
| _ ->
nodelist_split_aa_r (tl nl1) nl2;
nodelist_append_fp0 (tl nl1) nl2
let nodelist_split_aa (#t:Type) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_aa (append nl1 nl2)))
(ensures (nodelist_aa nl1 /\ nodelist_aa nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2))) =
nodelist_split_fp0 nl1 nl2;
nodelist_split_aa_l nl1 nl2;
nodelist_split_aa_r nl1 nl2
let rec nodelist_split_conn (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (
(nodelist_conn h0 (append nl1 nl2)) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_conn h0 nl1 /\ nodelist_conn h0 nl2 /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
match nl1 with
| [_] -> ()
| _ -> nodelist_split_conn h0 (tl nl1) nl2
let nodelist_split_valid (#t:Type) (h0:heap) (nl1 nl2:nodelist t) :
Lemma
(requires (nodelist_valid h0 (append nl1 nl2) /\
length nl1 > 0 /\ length nl2 > 0)) // For "= 0", it is trivially held
(ensures (nodelist_valid h0 nl1 /\ nodelist_valid h0 nl2 /\
Mod.loc_disjoint (nodelist_fp0 nl1) (nodelist_fp0 nl2) /\
(last nl1)@h0 |>> (hd nl2) /\
(last nl1) <<| (hd nl2)@h0)) =
nodelist_split_contained h0 nl1 nl2;
nodelist_split_aa nl1 nl2;
nodelist_split_conn h0 nl1 nl2
/// Useful lemma to convert from dll_fp0 or piece_fp0 to nodelist_fp0
/// and vice-versa
let dll_fp0_is_nodelist_fp0 (#t:Type) (d:dll t) : Lemma
(requires (dll_ghostly_connections d))
(ensures
(loc_equiv (dll_fp0 d) (nodelist_fp0 d.nodes))) =
if length d.nodes > 0 then
lemma_unsnoc_is_last d.nodes
else
()
let piece_fp0_is_nodelist_fp0 (#t:Type) (p:piece t) : Lemma
(requires (piece_ghostly_connections p))
(ensures
(loc_equiv (piece_fp0 p) (nodelist_fp0 p.pnodes))) =
lemma_unsnoc_is_last (reveal p.pnodes)
/// Tot dll to fragment, with splitting
#set-options "--z3rlimit 60 --initial_fuel 8 --initial_ifuel 1"
let tot_dll_to_fragment_split (#t:Type) (h0:heap) (d:dll t{dll_valid h0 d})
(n1 n2:pointer (node t)) :
Pure (fragment t)
(requires (
n1 `memP` d.nodes /\
n2 `memP` d.nodes /\
n1@h0 |>> n2 /\ n1 <<| n2@h0))
(ensures (fun f ->
fragment_valid h0 f /\
fragment_length f = 2 /\
loc_equiv (dll_fp0 d) (fragment_fp0 f) /\
(let Frag2 p1 p2 = f in
reveal d.nodes == reveal p1.pnodes `append` reveal p2.pnodes))) =
let split_nodes = elift2_p split_using d.nodes (hide n2) in
lemma_split_using d.nodes n2;
let l1 = elift1 fst split_nodes in
let l2 = elift1 snd split_nodes in
let p1 = { phead = d.lhead ; ptail = n1 ; pnodes = l1 } in
let p2 = { phead = n2 ; ptail = d.ltail ; pnodes = l2 } in
let f = Frag2 p1 p2 in
dll_fp0_is_nodelist_fp0 d;
// assert (loc_equiv (dll_fp0 d) (nodelist_fp0 (reveal d.nodes)));
nodelist_split_fp0_equiv l1 l2;
nodelist_split_valid h0 l1 l2;
lemma_unsnoc_is_last l1;
lemma_unsnoc_is_last l2;
lemma_unsnoc_is_last (reveal d.nodes);
// assert (piece_ghostly_connections p1);
// assert ( n2 == hd (reveal l2) );
lemma_append_last l1 l2;
// assert ( last (reveal l2) == last (append (reveal l1) (reveal l2)) );
// assert ( d.ltail == last (reveal l2) );
// assert (piece_ghostly_connections p2);
// assert (fragment_ghostly_connections f);
// assert (nodelist_contained h0 (reveal p1.pnodes));
// assert (nodelist_contained h0 (reveal p2.pnodes));
extract_nodelist_contained h0 l1 (length l1 - 1);
// assert (h0 `contains` p1.ptail);
// assert (fragment_contained h0 f);
// assert (nodelist_aa (reveal p1.pnodes));
// assert (nodelist_aa (reveal p2.pnodes));
piece_fp0_is_nodelist_fp0 p1;
piece_fp0_is_nodelist_fp0 p2;
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2))));
// assert (loc_equiv (nodelist_fp0 (reveal l1)) (piece_fp0 p1));
// assert (loc_equiv (nodelist_fp0 (reveal l2)) (piece_fp0 p2));
// assert (loc_equiv
// (Mod.loc_union (nodelist_fp0 (reveal l1)) (nodelist_fp0 (reveal l2)))
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
loc_equiv_trans
(dll_fp0 d)
(Mod.loc_union (nodelist_fp0 l1) (nodelist_fp0 l2))
(Mod.loc_union (piece_fp0 p1) (piece_fp0 p2));
// assert (loc_equiv (dll_fp0 d)
// (Mod.loc_union (piece_fp0 p1) (piece_fp0 p2)));
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p2));
// assert (fragment_aa f);
// assert (nodelist_conn h0 (reveal p1.pnodes));
// assert (nodelist_conn h0 (reveal p2.pnodes));
// assert (fragment_conn h0 f);
f
#reset-options
/// Creating a dll from a single node. Pure and ST forms of this.
let tot_node_to_dll (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (dll t)
(requires (
(h0 `contains` n) /\
(((n@h0).flink == null)) /\
((n@h0).blink == null)))
(ensures (fun d -> dll_valid h0 d)) =
{ lhead = n ; ltail = n ; nodes = ~. n }
let singleton_dll (#t:Type) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(h0 `contains` n)))
(ensures (fun h0 d h1 ->
Mod.modifies (Mod.loc_buffer n) h0 h1 /\
dll_valid h1 d /\
unchanged_node_vals h0 h1 d.nodes /\
reveal d.nodes == [n])) =
!=|> n;
!<|= n;
tot_node_to_dll (ST.get ()) n
/// Creating a piece from a single node.
let tot_node_to_piece (#t:Type) (h0:heap) (n:pointer (node t)) :
Pure (piece t)
(requires (
(h0 `contains` n)))
(ensures (fun p -> piece_valid h0 p)) =
{ phead = n ; ptail = n ; pnodes = ~. n }
/// Getting the "tail" of a piece
let tot_piece_tail (#t:Type) (h0:heap) (p:piece t) (n:pointer (node t)) :
Pure (piece t)
(requires (
(piece_valid h0 p) /\
(n == (((p.phead)@h0).flink)) /\
(length p.pnodes > 1)))
(ensures (fun q ->
(piece_valid h0 q) /\
(reveal q.pnodes) == tl p.pnodes)) =
{ phead = n ; ptail = p.ptail ; pnodes = elift1_p (tot_to_gtot tl) p.pnodes }
/// If a dll is valid, then both the forward and backward links of
/// each of the nodes are contained in the heap, and disjoint from
/// each other
let lemma_dll_links_contained (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
(h0 `contains` (nodes.[i]@h0).flink) /\
(h0 `contains` (nodes.[i]@h0).blink))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else extract_nodelist_contained h0 nl (i - 1));
(if i = length nl - 1 then () else extract_nodelist_contained h0 nl (i + 1));
lemma_unsnoc_is_last nl
#set-options "--z3rlimit 10 --initial_ifuel 2"
let lemma_dll_links_disjoint (#t:Type) (h0:heap) (d:dll t) (i:nat) :
Lemma
(requires (
(dll_valid h0 d) /\
(i < length d.nodes)))
(ensures (
let nodes = d.nodes in
let left = (nodes.[i]@h0).blink in
let right = (nodes.[i]@h0).flink in
Mod.loc_disjoint
(Mod.loc_buffer left)
(Mod.loc_buffer right))) =
let nl = reveal d.nodes in
match nl with
| [_] -> ()
| _ ->
lemma_unsnoc_length nl;
let node_split = splitAt i nl in
lemma_splitAt nl (fst node_split) (snd node_split) i;
lemma_splitAt_index_hd i nl;
let l1, x :: l2 = node_split in
(if i = 0 then () else extract_nodelist_conn h0 nl (i-1));
(if i = length nl - 1 then () else extract_nodelist_conn h0 nl i);
(if i = 0 then () else (
if i = length nl - 1 then (lemma_unsnoc_is_last nl) else (
lemma_unsnoc_is_last l1;
let left = last l1 in
let right = hd l2 in
lemma_splitAt_reindex_left i nl (length l1 - 1);
// assert (left == (nl.[i]@h0).blink);
lemma_splitAt_reindex_right i nl 1;
// assert (right == (nl.[i]@h0).flink);
nodelist_split_aa l1 (x :: l2);
// assert (Mod.loc_disjoint (nodelist_fp0 l1) (nodelist_fp0 l2));
assert (Mod.loc_includes (nodelist_fp0 l1) (Mod.loc_buffer left)); // OBSERVE
assert (Mod.loc_includes (nodelist_fp0 l2) (Mod.loc_buffer right)); // OBSERVE
()
)))
#reset-options
/// When something unrelated to a XYZ is changed, the XYZ itself shall
/// remain valid
let rec nodelist_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (nl:nodelist t) :
Lemma
(requires (
(nodelist_valid h0 nl) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (nodelist_fp0 nl))))
(ensures (nodelist_valid h1 nl)) =
match nl with
| [] -> ()
| _ -> nodelist_remains_valid h0 h1 loc (tl nl)
let piece_remains_valid (#t:Type) (h0 h1:heap) (loc:Mod.loc) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies loc h0 h1) /\
(Mod.loc_disjoint loc (piece_fp0 p))))
(ensures (piece_valid h1 p)) =
nodelist_remains_valid h0 h1 loc p.pnodes
/// When outward facing pointers of ends of pieces are modified, they
/// still remain valid
#set-options "--z3rlimit 20"
let piece_remains_valid_b (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.phead) h0 h1) /\
(h1 `contains` p.phead) /\
(p.phead@h0).flink == (p.phead@h1).flink))
(ensures (piece_valid h1 p) /\ (p.ptail@h0).flink == (p.ptail@h1).flink) =
let nodes = p.pnodes in
if length nodes > 1 then (
nodelist_includes_r_fp0 nodes 1 (length nodes - 1);
lemma_unsnoc_is_last nodes;
// assert (p.ptail == nodes.[length nodes - 1]);
// assert (p.ptail@h0 == p.ptail@h1);
// assert (h1 `contains` p.ptail);
// assert (Mod.loc_disjoint (Mod.loc_buffer p.phead) (nodelist_fp0 (tl nodes)));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.phead) (tl nodes)
) else ()
let piece_remains_valid_f (#t:Type) (h0 h1:heap) (p:piece t) :
Lemma
(requires (
(piece_valid h0 p) /\
(Mod.modifies (Mod.loc_buffer p.ptail) h0 h1) /\
(h1 `contains` p.ptail) /\
(p.ptail@h0).blink == (p.ptail@h1).blink))
(ensures (piece_valid h1 p) /\ (p.phead@h0).blink == (p.phead@h1).blink) =
let nodes = reveal p.pnodes in
if length nodes > 1 then (
fst_unsnoc_nodelist_valid h0 nodes;
// assert (nodelist_valid h0 (fst (unsnoc nodes)));
lemma_unsnoc_is_last nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer p.ptail) (nodelist_fp0 (fst (unsnoc nodes))));
nodelist_remains_valid h0 h1 (Mod.loc_buffer p.ptail) (fst (unsnoc nodes));
// assert (nodelist_contained h1 (fst (unsnoc nodes)));
// assert (h1 `contains` (snd (unsnoc nodes)));
nodelist_append_contained h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_contained h1 (reveal p.pnodes));
// assert (piece_contained h1 p);
extract_nodelist_conn h0 nodes (length nodes - 2);
// let nl1 = fst (unsnoc nodes) in
lemma_unsnoc_is_last (fst (unsnoc nodes));
// assert (last nl1 == nl1.[length nl1 - 1]);
// assert (last nl1 == nl1.[length nodes - 2]);
lemma_unsnoc_index nodes (length nodes - 2);
// assert (last nl1 == nodes.[length nodes - 2]);
// assert ((last (fst (unsnoc nodes)))@h0 |>> (hd [snd (unsnoc nodes)]));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
// assert (Mod.modifies (Mod.loc_buffer p.ptail) h0 h1);
extract_nodelist_contained h0 nodes (length nodes - 2);
// assert (h0 `contains` last (fst (unsnoc nodes)));
// assert (Mod.loc_disjoint (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer p.ptail));
assert (Mod.loc_includes (nodelist_fp0 (fst (unsnoc nodes))) (Mod.loc_buffer (last (fst (unsnoc nodes))))); // OBSERVE
// assert (Mod.loc_disjoint (Mod.loc_buffer (last (fst (unsnoc nodes)))) (Mod.loc_buffer p.ptail));
lemma_snoc_length (unsnoc nodes);
// assert ((last (fst (unsnoc nodes)))@h0 == (last (fst (unsnoc nodes)))@h1);
// assert ((last (fst (unsnoc nodes)))@h1 |>> (hd [snd (unsnoc nodes)]));
// assert ((last (fst (unsnoc nodes))) <<| (hd [snd (unsnoc nodes)])@h1);
nodelist_append_conn h1 (fst (unsnoc nodes)) [snd (unsnoc nodes)];
// assert (nodelist_conn h1 (reveal p.pnodes));
// assert (piece_conn h1 p);
// assert ((p.phead@h0).blink == (p.phead@h1).blink);
()
) else ()
#reset-options
/// Testing is a node is within a dll or not
let node_not_in_dll (#t:Type) (h0:heap) (n:pointer (node t)) (d:dll t) =
let m1 = Mod.loc_buffer n in
let m2 = dll_fp0 d in
Mod.loc_disjoint m1 m2
/// An empty dll has no nodes
let _auto_empty_dll (#t:Type) (h0:heap) (d:dll t) :
Lemma
(requires (dll_valid h0 d /\ (d.lhead == null \/ d.ltail == null)))
(ensures (reveal d.nodes == []))
[SMTPat (dll_valid h0 d);
SMTPat (reveal d.nodes)] = ()
/// Be able to easily reason about unchanged payloads
let rec aux_unchanged_payload #t h0 h1 n0 (nl:nodelist t) :
Lemma
(requires (Mod.modifies (Mod.loc_buffer n0) h0 h1 /\
(n0@h0).p == (n0@h1).p /\
(nodelist_aa_r nl) /\
(n0 `memP` nl \/ Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl))
))
(ensures (unchanged_node_vals h0 h1 nl))
(decreases (length nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload h0 h1 n0 nl';
assert (n0 `memP` nl ==> (n == n0 \/ n0 `memP` nl'));
let goal () = unchanged_node_val h0 h1 n in
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n0 `memP` nl}) ->
FStar.Classical.or_elim #_ #_ #goal
(fun (_:unit{n == n0}) -> ())
(fun (_:unit{n0 `memP` nl'}) ->
let i = nl' `index_of` n0 in
extract_nodelist_fp0 nl' i))
(fun (_:unit{Mod.loc_disjoint (Mod.loc_buffer n0) (nodelist_fp0 nl)}) -> ())
let rec aux_unchanged_payload_nomod #t h0 h1 (nl:nodelist t) :
Lemma
(requires (Mod.modifies Mod.loc_none h0 h1))
(ensures (unchanged_node_vals h0 h1 nl)) =
match nl with
| [] -> ()
| n :: nl' ->
aux_unchanged_payload_nomod h0 h1 nl'
let rec aux_unchanged_payload_transitive #t h0 h1 h2 (nl:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl /\
unchanged_node_vals h1 h2 nl))
(ensures (unchanged_node_vals h0 h2 nl)) =
match nl with
| [] -> ()
| _ :: nl' -> aux_unchanged_payload_transitive h0 h1 h2 nl'
let rec aux_unchanged_payload_append #t h0 h1 (nl1 nl2:nodelist t) :
Lemma
(requires (unchanged_node_vals h0 h1 nl1 /\
unchanged_node_vals h0 h1 nl2))
(ensures (unchanged_node_vals h0 h1 (nl1 `append` nl2))) =
match nl1 with
| [] -> ()
| n :: nl' -> aux_unchanged_payload_append h0 h1 nl' nl2
/// Now for the actual ST operations that will be exposed :)
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_head (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.lhead)) h0 h1 /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == n :: reveal d.nodes)) =
if is_null d.lhead then (
singleton_dll n
) else (
let h = d.lhead in
//
let h0 = ST.get () in
!<|= n;
n =|> h;
let h0' = ST.get () in
n <|= h;
let h1 = ST.get () in
//
aux_unchanged_payload h0 h0' n d.nodes;
aux_unchanged_payload h0' h1 h d.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d.nodes;
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p p1 in
// assert (fragment_valid h1 [p]);
// assert (fragment_ghostly_connections f);
// assert (length f = 1);
// assert (h1 `contains` (hd f).phead);
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0' (hd f));
piece_remains_valid_b h0' h1 p1;
// assert (h1 `contains` (hd f).ptail);
// assert (nodelist_contained h1 (reveal (hd f).pnodes));
// assert (piece_contained h1 (hd f));
// assert (fragment_contained h1 f);
// assert (fragment_aa f);
// assert (nodelist_conn h1 (reveal (f.[0]).pnodes));
// assert (fragment_conn h1 f);
// assert (fragment_valid h1 f);
// assert (fragment_valid h1 f');
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// assert (is_null ((last f').ptail@h0).flink);
// assert (is_null ((last f').ptail@h0').flink);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
y
)
#reset-options
#set-options "--z3rlimit 500 --max_fuel 2 --max_ifuel 1"
let dll_insert_at_tail (#t:Type) (d:dll t) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == snoc (reveal d.nodes, n))) =
if is_null d.lhead then (
singleton_dll n
) else (
let t = d.ltail in
//
let h0 = ST.get () in
!=|> n;
t <|= n;
let h0' = ST.get () in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
// assert (Mod.loc_disjoint (Mod.loc_buffer (t@h0).blink) (Mod.loc_buffer n));
t =|> n;
let h1 = ST.get () in
//
let Frag1 p1 = tot_dll_to_fragment h0 d in
let p = tot_node_to_piece h0 n in
let f' = Frag2 p1 p in
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
piece_remains_valid_f h0' h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last y.nodes;
lemma_snoc_unsnoc (reveal d.nodes, n);
lemma_unsnoc_index y.nodes (length (y.nodes) - 2);
lemma_unsnoc_length y.nodes;
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h1 t y.nodes;
aux_unchanged_payload_transitive h0 h0' h1 y.nodes;
y
)
#reset-options
let _l_insert_after (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, x1 :: l2 = lemma_split_using l x0; split_using l x0 in
assert (x0 == x1);
l1 `append` (x0 :: (x :: l2))
#set-options "--z3rlimit 1000 --initial_fuel 2 --initial_ifuel 1"
let dll_insert_after (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail))
(Mod.loc_union
(Mod.loc_buffer e)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_after e d.nodes n)) =
let h0 = ST.get () in
// assert (length d.nodes > 0);
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
if is_null e2 then (
let y = dll_insert_at_tail d n in
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
) else (
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_unsnoc_is_last d.nodes;
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e + 1);
if not (is_null e1) then (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e - 1)
) else ();
e <|= n;
// let h' = ST.get () in assert (h' `contains` e2); assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e2));
n =|> e2;
let h0' = ST.get () in
// assert (is_not_null e1 ==> e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (is_not_null e1 ==> Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (Mod.loc_buffer e1));
// assert (is_not_null e1 ==> Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (Mod.loc_buffer e1));
Mod.modifies_buffer_elim e1 (Mod.loc_buffer n) h0 h0';
e =|> n;
let h0'' = ST.get () in
// assert (h0 `contains` e2);
// assert (h0' `contains` e2);
// assert (e2 == (reveal d.nodes).[reveal d.nodes `index_of` e + 1]);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e);
lemma_split3_r_hd d.nodes (d.nodes `index_of` e);
lemma_split3_append d.nodes (d.nodes `index_of` e);
lemma_split3_index d.nodes (d.nodes `index_of` e);
lemma_split3_length d.nodes (d.nodes `index_of` e);
// assert (Mod.loc_includes (nodelist_fp0 (reveal d.nodes)) (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)));
// assert (Mod.loc_includes (nodelist_fp0 (let _,_,z = split3 (reveal d.nodes) (reveal d.nodes `index_of` e) in z)) (Mod.loc_buffer e2));
// assert (Mod.loc_disjoint (Mod.loc_buffer e2) (Mod.loc_buffer e));
// assert (Mod.modifies (Mod.loc_buffer e) h0' h0'');
Mod.modifies_buffer_elim e2 (Mod.loc_buffer e) h0' h0'';
// assert (h0'' `contains` e2);
n <|= e2;
let h1 = ST.get () in
//
// assert (e `memP` reveal d.nodes);
// assert (e2 `memP` reveal d.nodes);
// assert (e@h0 |>> e2 /\ e <<| e2@h0);
let f = tot_dll_to_fragment_split h0 d e e2 in
// assert (length f = 2);
let Frag2 p1 p3 = f in
// assert ([p1 ; p3] == f);
let p2 = tot_node_to_piece h0 n in
let f' = Frag3 p1 p2 p3 in
// assert (Mod.modifies (Mod.loc_buffer n) h0 h0');
// assert (piece_valid h0 p1);
// assert (loc_equiv (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (dll_fp0 d));
// assert (Mod.loc_includes (dll_fp0 d) (fragment_fp0 f));
// assert (Mod.loc_includes (fragment_fp0 f) (piece_fp0 p1));
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p1);
// assert (Mod.loc_includes (dll_fp0 d) (piece_fp0 p1));
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p1));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p1;
// assert (piece_valid h0 p3);
Mod.loc_includes_trans (dll_fp0 d) (fragment_fp0 f) (piece_fp0 p3);
// assert (Mod.loc_disjoint (Mod.loc_buffer n) (piece_fp0 p3));
piece_remains_valid h0 h0' (Mod.loc_buffer n) p3;
piece_remains_valid_f h0' h0'' p1;
// assert (Mod.loc_disjoint (piece_fp0 p1) (piece_fp0 p3));
piece_remains_valid h0' h0'' (piece_fp0 p1) p3;
piece_remains_valid h0'' h1 (piece_fp0 p3) p1;
piece_remains_valid_b h0'' h1 p3;
// assert ([p2 ; p3] == append [p2] [p3]);
// assert (f' == append [p1] [p2 ; p3]);
//
// assert (fragment_valid h1 f');
assert (fragment_defragmentable h1 (Frag2 p2 p3)); // OBSERVE
// assert (fragment_defragmentable h1 f');
// assert (length f' > 0);
// assert (is_null ((hd f').phead@h1).blink);
// lemma_unsnoc_is_last f';
// assert (last f' == p3);
// assert (is_null ((last f').ptail@h1).flink);
let y = tot_defragmentable_fragment_to_dll h1 f' in
assume (n `memP` y.nodes);
assume (e `memP` y.nodes);
assume (e2 `memP` y.nodes);
aux_unchanged_payload h0 h0' n y.nodes;
aux_unchanged_payload h0' h0'' e y.nodes;
aux_unchanged_payload h0'' h1 e2 y.nodes;
aux_unchanged_payload_transitive h0 h0' h0'' y.nodes;
aux_unchanged_payload_transitive h0 h0'' h1 y.nodes;
assume (reveal y.nodes == _l_insert_after e (reveal d.nodes) n);
y
)
#reset-options
let _l_insert_before (x0:'a) (l:list 'a{x0 `memP` l}) (x:'a) : GTot (list 'a) =
let l1, l2 = split_using l x0 in
l1 `append` (x :: l2)
#set-options "--z3rlimit 50"
let dll_insert_before (#t:Type) (d:dll t) (e:pointer (node t)) (n:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes) /\
(h0 `contains` n) /\
(node_not_in_dll h0 n d)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_buffer d.lhead)
(Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer n)
(Mod.loc_buffer d.ltail)) // this is needed due to using "after"
// TODO: Figure out a way to remove it
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer e)))) h0 h1 /\
(dll_fp0 y `loc_equiv` B.loc_union (dll_fp0 d) (Mod.loc_buffer n)) /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\
reveal y.nodes == _l_insert_before e d.nodes n)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
let y = dll_insert_at_head d n in
assume (reveal y.nodes == _l_insert_before e d.nodes n);
y
) else (
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
let y = dll_insert_after d e1 n in
assume (reveal y.nodes == _l_insert_before e (reveal d.nodes) n);
y
)
#reset-options
unfold
let _aux_fp_split_by_node (d0 d1:dll 'a) (n:pointer (node 'a)) =
dll_fp0 d0 `loc_equiv` B.loc_union (dll_fp0 d1) (Mod.loc_buffer n) /\
dll_fp0 d1 `B.loc_disjoint` Mod.loc_buffer n
#set-options "--z3rlimit 20"
let dll_remove_head (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.lhead@h0).flink) h0 h1 /\
_aux_fp_split_by_node d y d.lhead /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == tl d.nodes)) =
let h0 = ST.get () in
let e = d.lhead in
let e2 = (!*e).flink in
if is_null e2 then (
empty_list
) else (
!<|= e2;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e e2 in
let Frag2 p1 p2 = f in
// assert (p1.phead == e);
// assert (p1.ptail == e);
let f' = Frag1 p2 in
piece_remains_valid_b h0 h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e2 d.nodes;
y
)
#reset-options
let rec _lemma_only_head_can_point_left_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).blink == null /\ nodelist_conn h0 l))
(ensures (e == hd l)) =
match l with
| [_] -> ()
| _ ->
FStar.Classical.or_elim #(e == hd l) #(e =!= hd l) #(fun () -> e == hd l)
(fun _ -> ())
(fun _ ->
_lemma_only_head_can_point_left_to_null h0 e (tl l);
extract_nodelist_conn h0 l 0)
let rec _lemma_only_tail_can_point_right_to_null (#t:Type) (h0:heap) (e:pointer (node t)) (l:nodelist t) :
Lemma
(requires (e `memP` l /\ (e@h0).flink == null /\ nodelist_conn h0 l))
(ensures (e == last l)) =
match l with
| [_] -> ()
| _ -> _lemma_only_tail_can_point_right_to_null h0 e (tl l)
let rec _lemma_all_nodes_are_unique (#t:Type) (h0:heap) (l:nodelist t) (i j:nat) :
Lemma
(requires (
(nodelist_conn h0 l) /\
(i < length l) /\
(j < length l) /\
(((hd l)@h0).blink == null) /\
(index l i == index l j)))
(ensures (i = j)) =
match i, j with
| 0, 0 -> ()
| 0, _ -> extract_nodelist_conn h0 l (j - 1)
| _, 0 -> extract_nodelist_conn h0 l (i - 1)
| _ ->
extract_nodelist_conn h0 l (i - 1);
extract_nodelist_conn h0 l (j - 1);
_lemma_all_nodes_are_unique h0 l (i - 1) (j - 1)
#set-options "--z3rlimit 50"
let dll_remove_tail (#t:Type) (d:dll t) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(length d.nodes > 0)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_buffer (d.ltail@h0).blink) h0 h1 /\
_aux_fp_split_by_node d y d.ltail /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == fst (unsnoc (reveal d.nodes)))) =
let h0 = ST.get () in
let e = d.ltail in
let e1 = (!*e).blink in
lemma_dll_links_contained h0 d (length d.nodes - 1);
lemma_unsnoc_is_last d.nodes;
if is_null e1 then (
_lemma_only_head_can_point_left_to_null h0 e d.nodes;
empty_list
) else (
extract_nodelist_contained h0 d.nodes (length (d.nodes) - 2);
extract_nodelist_conn h0 d.nodes (length (d.nodes) - 2);
// assert (e == (reveal d.nodes).[length (reveal d.nodes) - 1]);
// assert (e1 == (reveal d.nodes).[length (reveal d.nodes) - 2]);
!=|> e1;
let h1 = ST.get () in
let f = tot_dll_to_fragment_split h0 d e1 e in
let Frag2 p1 p2 = f in
lemma_snoc_length (reveal p1.pnodes, e);
// assert (reveal p1.pnodes == fst (unsnoc (reveal d.nodes)));
let f' = Frag1 p1 in
piece_remains_valid_f h0 h1 p1;
let y = tot_defragmentable_fragment_to_dll h1 f' in
aux_unchanged_payload h0 h1 e1 (d.nodes);
// assert (reveal y.nodes == reveal p1.pnodes);
y
)
#reset-options
let _l_remove_mid (l:list 'a{length l > 0}) (x:'a {x `memP` l}) : GTot (list 'a) =
let l1, x0 :: l2 = lemma_split_using l x; split_using l x in
assert (x == x0);
l1 `append` l2
#set-options "--z3rlimit 400 --initial_fuel 2 --initial_ifuel 2"
let dll_remove_node (#t:Type) (d:dll t) (e:pointer (node t)) :
StackInline (dll t)
(requires (fun h0 ->
(dll_valid h0 d) /\
(e `memP` d.nodes)))
(ensures (fun h0 y h1 ->
Mod.modifies (Mod.loc_union
(Mod.loc_union
(Mod.loc_buffer (d.lhead@h0).flink)
(Mod.loc_buffer (d.ltail@h0).blink))
(Mod.loc_union
(Mod.loc_buffer (e@h0).blink)
(Mod.loc_buffer (e@h0).flink))) h0 h1 /\
_aux_fp_split_by_node d y e /\
dll_valid h1 y /\
unchanged_node_vals h0 h1 d.nodes /\
reveal y.nodes == _l_remove_mid d.nodes e)) =
let h0 = ST.get () in
extract_nodelist_contained h0 d.nodes (d.nodes `index_of` e);
let e1 = (!*e).blink in
let e2 = (!*e).flink in
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
if is_null e1 then (
_lemma_only_head_can_point_left_to_null h0 e d.nodes;
dll_remove_head d
) else if is_null e2 then (
_lemma_only_tail_can_point_right_to_null h0 e d.nodes;
let y = dll_remove_tail d in
let h1 = ST.get () in
// assume (unchanged_node_vals h0 h1 (reveal d.nodes));
assume (reveal y.nodes == _l_remove_mid d.nodes e);
y
) else (
admit ();
lemma_dll_links_contained h0 d (d.nodes `index_of` e);
extract_nodelist_conn h0 d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_aa_r d.nodes (d.nodes `index_of` e - 1);
extract_nodelist_fp0 d.nodes (d.nodes `index_of` e);
lemma_dll_links_disjoint h0 d (d.nodes `index_of` e);
e1 =|> e2;
let h0' = ST.get () in
e1 <|= e2;
let h1 = ST.get () in
// assert (e1 == (reveal d.nodes).[reveal d.nodes `index_of` e - 1]);
// assert (e1 `memP` reveal d.nodes);
// assert (e1@h0 |>> e);
let f = tot_dll_to_fragment_split h0 d e1 e in
let Frag2 p1 p2 = f in
let p2' = tot_piece_tail h0 p2 e2 in
let f' = Frag2 p1 p2' in
piece_remains_valid_f h0 h0' p1;
piece_remains_valid h0' h1 (Mod.loc_buffer e2) p1;
piece_remains_valid h0 h0' (Mod.loc_buffer e1) p2';
piece_remains_valid_b h0' h1 p2';
let y = tot_defragmentable_fragment_to_dll h1 f' in
// assert (dll_valid h1 y);
assume (_aux_fp_split_by_node d y e);
assume (unchanged_node_vals h0 h1 d.nodes);
assume (reveal y.nodes == _l_remove_mid d.nodes e);
y
)
#reset-options
#set-options "--z3rlimit 10 --max_fuel 2 --max_ifuel 1" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.ModifiesPat.fst.checked",
"LowStar.Modifies.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.Pure.Properties.fst.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "DoublyLinkedList.fst"
} | [
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "LowStar.Modifies",
"short_module": "Mod"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.ModifiesPat",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 2,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d1: DoublyLinkedList.dll t -> d2: DoublyLinkedList.dll t
-> FStar.HyperStack.ST.StackInline (DoublyLinkedList.dll t) | FStar.HyperStack.ST.StackInline | [] | [] | [
"DoublyLinkedList.dll",
"Prims.unit",
"DoublyLinkedList.aux_unchanged_payload_nomod",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.bool",
"FStar.List.Tot.Properties.append_l_nil",
"LowStar.Buffer.pointer",
"DoublyLinkedList.node",
"DoublyLinkedList.aux_unchanged_payload_append",
"DoublyLinkedList.aux_unchanged_payload_transitive",
"DoublyLinkedList.aux_unchanged_payload",
"FStar.List.Tot.Properties.lemma_unsnoc_is_last",
"Prims.l_and",
"DoublyLinkedList.dll_valid",
"DoublyLinkedList.loc_equiv",
"DoublyLinkedList.dll_fp0",
"DoublyLinkedList.fragment_fp0",
"Prims.eq2",
"Prims.list",
"Prims.Nil",
"DoublyLinkedList.piece",
"DoublyLinkedList.__proj__Mkpiece__item__pnodes",
"FStar.List.Tot.Base.append",
"DoublyLinkedList.tot_defragmentable_fragment_to_dll",
"DoublyLinkedList.piece_remains_valid_b",
"DoublyLinkedList.piece_remains_valid",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.piece_remains_valid_f",
"DoublyLinkedList.fragment",
"DoublyLinkedList.Frag2",
"DoublyLinkedList.piece_valid",
"DoublyLinkedList.tot_dll_to_piece",
"DoublyLinkedList.op_Less_Bar_Equals",
"DoublyLinkedList.op_Equals_Bar_Greater",
"LowStar.Buffer.pointer_or_null",
"DoublyLinkedList.__proj__Mkdll__item__lhead",
"DoublyLinkedList.__proj__Mkdll__item__ltail",
"LowStar.Monotonic.Buffer.is_null",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_union",
"DoublyLinkedList.unchanged_node_vals"
] | [] | false | true | false | false | false | let dll_append (#t: Type) (d1 d2: dll t)
: StackInline (dll t)
(requires
(fun h0 ->
(dll_valid h0 d1) /\ (dll_valid h0 d2) /\ ((dll_fp0 d1) `Mod.loc_disjoint` (dll_fp0 d2))
))
(ensures
(fun h0 y h1 ->
Mod.modifies (Mod.loc_union (Mod.loc_buffer d1.ltail) (Mod.loc_buffer d2.lhead)) h0 h1 /\
(dll_fp0 y) `loc_equiv` ((dll_fp0 d1) `B.loc_union` (dll_fp0 d2)) /\ dll_valid h1 y /\
unchanged_node_vals h0 h1 y.nodes /\ reveal y.nodes == d1.nodes `append` d2.nodes)) =
| let h0 = ST.get () in
if is_null d1.lhead
then
(let y = d2 in
let h1 = ST.get () in
aux_unchanged_payload_nomod h0 h1 y.nodes;
y)
else
(if is_null d2.lhead
then
(let y = d1 in
let h1 = ST.get () in
aux_unchanged_payload_nomod h0 h1 y.nodes;
append_l_nil y.nodes;
y)
else
(let n1 = d1.ltail in
let n2 = d2.lhead in
n1 =|> n2;
let h0' = ST.get () in
n1 <|= n2;
let h1 = ST.get () in
let p1 = tot_dll_to_piece h0 d1 in
let p2 = tot_dll_to_piece h0 d2 in
let f' = Frag2 p1 p2 in
piece_remains_valid_f h0 h0' p1;
piece_remains_valid h0 h0' (Mod.loc_buffer n1) p2;
piece_remains_valid h0' h1 (Mod.loc_buffer n2) p1;
piece_remains_valid_b h0' h1 p2;
let y = tot_defragmentable_fragment_to_dll h1 f' in
lemma_unsnoc_is_last d1.nodes;
aux_unchanged_payload h0 h0' n1 d1.nodes;
aux_unchanged_payload h0 h0' n1 d2.nodes;
aux_unchanged_payload h0' h1 n2 d1.nodes;
aux_unchanged_payload h0' h1 n2 d2.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d1.nodes;
aux_unchanged_payload_transitive h0 h0' h1 d2.nodes;
aux_unchanged_payload_append h0 h1 d1.nodes d2.nodes;
y)) | false |
Hacl.Spec.Bignum.Definitions.fst | Hacl.Spec.Bignum.Definitions.blocks | val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) | val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) | let blocks x m = (x - 1) / m + 1 | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 11,
"start_col": 0,
"start_line": 11
} | module Hacl.Spec.Bignum.Definitions
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Definitions.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.size_pos -> m: Lib.IntTypes.size_pos -> r: Lib.IntTypes.size_pos{x <= m * r} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_pos",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.op_Subtraction",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star"
] | [] | false | false | false | false | false | let blocks x m =
| (x - 1) / m + 1 | false |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.