file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
SelectorsLList3Example.fst
SelectorsLList3Example.data
val data (c: cell) : a
val data (c: cell) : a
let data (c:cell) : a = LL.data c
{ "file_name": "share/steel/examples/steel/llist3/SelectorsLList3Example.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 33, "end_line": 20, "start_col": 0, "start_line": 20 }
module SelectorsLList3Example open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.ArrayRef module L = FStar.List.Tot module LL = Selectors.LList3 module U32 = FStar.UInt32 module MB = LowStar.Monotonic.Buffer // for is_null inline_for_extraction noextract let a = U32.t let cell = LL.cell a /// The type of a list: A reference to a cell let t = LL.t a
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Steel.ArrayRef.fsti.checked", "Selectors.LList3.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "SelectorsLList3Example.fst" }
[ { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer // for is_null", "short_module": "MB" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Selectors.LList3", "short_module": "LL" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ArrayRef", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: SelectorsLList3Example.cell -> SelectorsLList3Example.a
Prims.Tot
[ "total" ]
[]
[ "SelectorsLList3Example.cell", "Selectors.LList3.data", "SelectorsLList3Example.a" ]
[]
false
false
false
true
false
let data (c: cell) : a =
LL.data c
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose8x8_1
val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t
val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t
let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7')
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 73, "start_col": 0, "start_line": 64 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Lib.IntVector.Transpose.vec_t8 t -> Lib.IntVector.Transpose.vec_t8 t
Prims.Tot
[ "total" ]
[]
[ "Lib.IntVector.v_inttype", "Lib.IntVector.Transpose.vec_t8", "Lib.IntVector.vec_t", "FStar.Pervasives.Native.Mktuple8", "Lib.IntVector.vec_interleave_high_n", "Lib.IntVector.vec_interleave_low_n" ]
[]
false
false
false
false
false
let transpose8x8_1 #t (v0, v1, v2, v3, v4, v5, v6, v7) =
let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0', v1', v2', v3', v4', v5', v6', v7')
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_uint
val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len
val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len
let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 12, "end_line": 17, "start_col": 0, "start_line": 15 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos -> x: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Sequence.op_String_Assignment", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.IntTypes.SEC", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_uint #t len x =
let b = create len (uint #t 0) in b.[ 0 ] <- x
false
Steel.ST.Array.fst
Steel.ST.Array.share
val share (#opened: _) (#elt: Type) (#x: Seq.seq elt) (a: array elt) (p p1 p2: P.perm) : STGhost unit opened (pts_to a p x) (fun _ -> pts_to a p1 x `star` pts_to a p2 x) (p == p1 `P.sum_perm` p2) (fun _ -> True)
val share (#opened: _) (#elt: Type) (#x: Seq.seq elt) (a: array elt) (p p1 p2: P.perm) : STGhost unit opened (pts_to a p x) (fun _ -> pts_to a p1 x `star` pts_to a p2 x) (p == p1 `P.sum_perm` p2) (fun _ -> True)
let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x)
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 19, "end_line": 152, "start_col": 0, "start_line": 141 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.Array.array elt -> p: Steel.FractionalPermission.perm -> p1: Steel.FractionalPermission.perm -> p2: Steel.FractionalPermission.perm -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "FStar.Seq.Base.seq", "Steel.ST.Array.array", "Steel.FractionalPermission.perm", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.pts_to", "Steel.ST.Array.raise_t", "Steel.ST.Array.seq_map", "Steel.ST.Array.raise", "Steel.ST.Array.pts_to", "Prims.unit", "Steel.ST.HigherArray.share" ]
[]
false
true
false
false
false
let share #_ #_ #x a p p1 p2 =
rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x)
false
Hacl.Impl.Ed25519.Field51.fst
Hacl.Impl.Ed25519.Field51.point_eval
val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point
val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point
let point_eval h p = let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t)
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Field51.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 28, "start_col": 0, "start_line": 23 }
module Hacl.Impl.Ed25519.Field51 open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open FStar.Mul module LSeq = Lib.Sequence module P = Hacl.Impl.Curve25519.Field51 module S = Spec.Curve25519 let felem = lbuffer uint64 5ul let point = lbuffer uint64 20ul let as_nat (h:mem) (f:felem) : GTot nat = P.as_nat h f let fevalh (h:mem) (f:felem) : GTot S.elem = P.fevalh h f noextract
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Field51.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "P" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.Ed25519.Field51.point -> Prims.GTot Spec.Ed25519.PointOps.ext_point
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Ed25519.Field51.point", "FStar.Pervasives.Native.Mktuple4", "Spec.Curve25519.elem", "Hacl.Impl.Ed25519.Field51.fevalh", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.gsub", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Spec.Ed25519.PointOps.ext_point" ]
[]
false
false
false
false
false
let point_eval h p =
let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t)
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose4x4_uint32
val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t
val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t
let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'')
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 31, "start_col": 0, "start_line": 29 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.IntVector.Transpose.vec_t4 t -> Lib.IntVector.Transpose.vec_t4 t
Prims.Tot
[ "total" ]
[]
[ "Lib.IntVector.v_inttype", "Prims.eq2", "Lib.IntTypes.inttype", "Lib.IntTypes.U32", "Lib.IntVector.Transpose.vec_t4", "Lib.IntVector.vec_t", "FStar.Pervasives.Native.Mktuple4", "Lib.IntVector.Transpose.transpose4x4_0" ]
[]
false
false
false
false
false
let transpose4x4_uint32 #t vs =
let v0'', v2'', v1'', v3'' = transpose4x4_0 #t vs in (v0'', v1'', v2'', v3'')
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_f
val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t
val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t
let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 70, "end_line": 41, "start_col": 0, "start_line": 40 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 (Lib.IntTypes.numbytes t * len) -> i: Prims.nat{i < len} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Prims.op_LessThan", "Lib.ByteSequence.uint_from_bytes_be", "Lib.IntTypes.SEC", "Lib.Sequence.sub", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_from_bytes_be_f #t len b i =
uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t))
false
Hacl.Impl.Ed25519.Field51.fst
Hacl.Impl.Ed25519.Field51.point_inv_t
val point_inv_t (h: mem) (p: point) : GTot Type0
val point_inv_t (h: mem) (p: point) : GTot Type0
let point_inv_t (h:mem) (p:point) : GTot Type0 = mul_inv_t h (gsub p 0ul 5ul) /\ mul_inv_t h (gsub p 5ul 5ul) /\ mul_inv_t h (gsub p 10ul 5ul) /\ mul_inv_t h (gsub p 15ul 5ul)
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Field51.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 47, "start_col": 0, "start_line": 43 }
module Hacl.Impl.Ed25519.Field51 open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open FStar.Mul module LSeq = Lib.Sequence module P = Hacl.Impl.Curve25519.Field51 module S = Spec.Curve25519 let felem = lbuffer uint64 5ul let point = lbuffer uint64 20ul let as_nat (h:mem) (f:felem) : GTot nat = P.as_nat h f let fevalh (h:mem) (f:felem) : GTot S.elem = P.fevalh h f noextract val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point let point_eval h p = let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t) noextract val felem_fits: h:mem -> f:felem -> m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5 -> Type0 let felem_fits h f m = P.felem_fits h f m noextract let as_felem (h:mem) (f:felem) = P.as_felem h f noextract let mul_inv_t (h:mem) (f:felem) : GTot Type0 = P.mul_inv_t h f
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Field51.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "P" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> p: Hacl.Impl.Ed25519.Field51.point -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Ed25519.Field51.point", "Prims.l_and", "Hacl.Impl.Ed25519.Field51.mul_inv_t", "Lib.Buffer.gsub", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
false
true
let point_inv_t (h: mem) (p: point) : GTot Type0 =
mul_inv_t h (gsub p 0ul 5ul) /\ mul_inv_t h (gsub p 5ul 5ul) /\ mul_inv_t h (gsub p 10ul 5ul) /\ mul_inv_t h (gsub p 15ul 5ul)
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.f_lseq4
val f_lseq4 (#t: v_inttype) (vs: lseq (vec_t t 4) 4) (f: (vec_t4 t -> vec_t4 t)) : lseq (vec_t t 4) 4
val f_lseq4 (#t: v_inttype) (vs: lseq (vec_t t 4) 4) (f: (vec_t4 t -> vec_t4 t)) : lseq (vec_t t 4) 4
let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 178, "start_col": 0, "start_line": 175 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 -> f: (_: Lib.IntVector.Transpose.vec_t4 t -> Lib.IntVector.Transpose.vec_t4 t) -> Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4
Prims.Tot
[ "total" ]
[]
[ "Lib.IntVector.v_inttype", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Lib.IntVector.Transpose.vec_t4", "Lib.Sequence.create4", "FStar.Pervasives.Native.Mktuple4", "FStar.Pervasives.Native.tuple4", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let f_lseq4 (#t: v_inttype) (vs: lseq (vec_t t 4) 4) (f: (vec_t4 t -> vec_t4 t)) : lseq (vec_t t 4) 4 =
let v0, v1, v2, v3 = (vs.[ 0 ], vs.[ 1 ], vs.[ 2 ], vs.[ 3 ]) in let r0, r1, r2, r3 = f (v0, v1, v2, v3) in create4 r0 r1 r2 r3
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_
val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len
val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len
let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 51, "start_col": 0, "start_line": 50 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 (Lib.IntTypes.numbytes t * len) -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Lib.Sequence.createi", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_f", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_bytes_be_ #t len b =
createi len (bn_from_bytes_be_f len b)
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transposewxw_f_l
val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w
val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w
let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l]
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 158, "start_col": 0, "start_line": 151 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{Prims.pow2 n == w} -> i: Prims.nat{i < n} -> vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t w) w -> l: Prims.nat{l < w} -> Lib.IntVector.vec_t t w
Prims.Tot
[ "total" ]
[]
[ "Lib.IntVector.width", "Lib.IntVector.v_inttype", "Prims.nat", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThan", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Prims.pow2", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Prims.op_Modulus", "FStar.Mul.op_Star", "Lib.IntVector.vec_interleave_low_n", "Lib.Sequence.op_String_Access", "Prims.op_Addition", "Prims.unit", "Lib.IntVector.Transpose.lemma_l_plus_pow2i_lt", "Prims.bool", "Lib.IntVector.vec_interleave_high_n", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1" ]
[]
false
false
false
false
false
let transposewxw_f_l #w #t n i vs l =
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then (lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[ l ] vs.[ l + pow2 i ]) else vec_interleave_high_n (pow2 i) vs.[ l - pow2 i ] vs.[ l ]
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.lemma_l_plus_pow2i_lt
val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w)
val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w)
let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; }
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 138, "start_col": 0, "start_line": 119 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{Prims.pow2 n == w} -> i: Prims.nat{i < n} -> l: Prims.nat{l < w} -> FStar.Pervasives.Lemma (requires l % (2 * Prims.pow2 i) < Prims.pow2 i) (ensures l + Prims.pow2 i < w)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.eq2", "Prims.pow2", "Prims.b2t", "Prims.op_LessThan", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.op_LessThanOrEqual", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "Prims._assert", "FStar.Math.Lemmas.pow2_double_sum", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.lemma_div_lt_nat" ]
[]
false
false
true
false
false
let lemma_l_plus_pow2i_lt #w n i l =
let pow2i1 = pow2 (i + 1) in calc ( < ) { l + pow2 i; ( == ) { Math.Lemmas.euclidean_division_definition l pow2i1 } (l / pow2i1) * pow2i1 + l % pow2i1 + pow2 i; ( == ) { Math.Lemmas.pow2_plus 1 i } (l / pow2i1) * pow2i1 + l % (2 * pow2 i) + pow2 i; ( < ) { assert (l % (2 * pow2 i) < pow2 i) } (l / pow2i1) * pow2i1 + pow2 i + pow2 i; ( == ) { Math.Lemmas.pow2_double_sum i } (l / pow2i1) * pow2i1 + pow2i1; ( == ) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; ( <= ) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); ( == ) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; }
false
Hacl.Impl.Curve25519.Fields.Core.fsti
Hacl.Impl.Curve25519.Fields.Core.fmul1_t
val fmul1_t : s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0
let fmul1_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:uint64 -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ (disjoint out f1 \/ out == f1) /\ fmul1_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (v f2))
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.Core.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 290, "start_col": 0, "start_line": 278 }
module Hacl.Impl.Curve25519.Fields.Core open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module P = Spec.Curve25519 /// This module defines the core functions for which we will want to swap out /// implementations. They are marked as assume val's since we strictly have more /// than one implementation per index value. #set-options "--z3rlimit 50 --fuel 0 --ifuel 1 --record_options" /// Shared definitions for agility of the field type /// ------------------------------------------------ type field_spec = | M51 | M64 unfold noextract let limb (s:field_spec) = match s with | M51 -> uint64 | M64 -> uint64 unfold noextract let limb_zero (s:field_spec) : limb s= match s with | M51 -> u64 0 | M64 -> u64 0 unfold noextract let nlimb (s:field_spec) : size_t = match s with | M51 -> 5ul | M64 -> 4ul unfold noextract let wide (s:field_spec) = match s with | M51 -> uint128 | M64 -> uint64 unfold noextract let wide_zero (s:field_spec) : wide s= match s with | M51 -> u128 0 | M64 -> u64 0 unfold noextract let nwide (s:field_spec) : size_t = match s with | M51 -> 5ul | M64 -> 8ul inline_for_extraction noextract let felem (s:field_spec) = lbuffer (limb s) (nlimb s) inline_for_extraction noextract let felem2 (s:field_spec) = lbuffer (limb s) (nlimb s +. nlimb s) inline_for_extraction noextract let felem_wide (s:field_spec) = lbuffer (wide s) (nwide s) inline_for_extraction noextract let felem_wide2 (s:field_spec) = lbuffer (wide s) (nwide s +. nwide s) /// Introduce representation for each field + helpers to be able to state pre & posts /// --------------------------------------------------------------------------------- noextract let f51_as_felem (h:mem) (f:felem M51) : GTot Hacl.Spec.Curve25519.Field51.Definition.felem5 = let s = as_seq h f in let s0 = s.[0] in let s1 = s.[1] in let s2 = s.[2] in let s3 = s.[3] in let s4 = s.[4] in (s0, s1, s2, s3, s4) let f51_as_nat h e = Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (f51_as_felem h e) noextract let f51_felem_fits (h:mem) (f:felem M51) (m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5): Type0 = Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 (f51_as_felem h f) m noextract let f51_felem_fits1 = Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 noextract let f51_mul_inv_t (h:mem) (f:felem M51) : GTot Type0 = let f = f51_as_felem h f in Hacl.Spec.Curve25519.Field51.mul_inv_t f noextract let f64_as_nat (h:mem) (e: felem M64) : GTot nat = let s = as_seq h e in let s0 = s.[0] in let s1 = s.[1] in let s2 = s.[2] in let s3 = s.[3] in Hacl.Spec.Curve25519.Field64.Definition.as_nat4 (s0, s1, s2, s3) noextract let as_nat (#s:field_spec) (h:mem) (e:felem s): GTot nat = match s with | M51 -> f51_as_nat h e | M64 -> f64_as_nat h e noextract let feval (#s:field_spec) (h:mem) (e:felem s): GTot P.elem = (as_nat h e) % P.prime /// Start of core combinators /// ------------------------- let fadd_fsub_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:felem s): Type0 = match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True let fadd_post (#s:field_spec) (h:mem) (out:felem s): Type0 = match s with | M51 -> f51_felem_fits h out (2, 4, 2, 2, 2) | M64 -> True inline_for_extraction let fadd_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint f1 f2 \/ f1 == f2) /\ fadd_fsub_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ fadd_post h1 out /\ feval h1 out == P.fadd (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize] val fadd: #s:field_spec -> fadd_t s True let fsub_post (#s:field_spec) (h:mem) (out:felem s): Type0 = match s with | M51 -> f51_felem_fits h out (9, 10, 9, 9, 9) | M64 -> True inline_for_extraction let fsub_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint f1 f2 \/ f1 == f2) /\ fadd_fsub_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ fsub_post h1 out /\ feval h1 out == P.fsub (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize ] val fsub: #s:field_spec -> fsub_t s True let fmul_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:felem s): Type0 = match s with | M51 -> f51_felem_fits h f1 (9, 10, 9, 9, 9) /\ f51_felem_fits h f2 (9, 10, 9, 9, 9) | M64 -> True let fmul_disjoint (#s:field_spec) (out f1 f2:felem s) (tmp:felem_wide2 s): Type0 = match s with | M51 -> True | M64 -> (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp \/ out == tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp let state_inv_t (#s:field_spec) (h:mem) (f:felem s): Type0 = match s with | M51 -> f51_mul_inv_t h f | M64 -> True inline_for_extraction let fmul_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ fmul_disjoint out f1 f2 tmp /\ fmul_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize ] val fmul: #s:field_spec -> fmul_t s True let fmul2_pre (#s:field_spec) (h:mem) (f1:felem2 s) (f2:felem2 s): Type0 = match s with | M51 -> let f10 = gsub f1 0ul 5ul in let f11 = gsub f1 5ul 5ul in let f20 = gsub f2 0ul 5ul in let f21 = gsub f2 5ul 5ul in f51_felem_fits h f10 (9, 10, 9, 9, 9) /\ f51_felem_fits h f11 (9, 10, 9, 9, 9) /\ f51_felem_fits h f20 (9, 10, 9, 9, 9) /\ f51_felem_fits h f21 (9, 10, 9, 9, 9) | M64 -> True let fmul2_fsqr2_post (#s:field_spec) (h:mem) (out:felem2 s): Type0 = match s with | M51 -> let out0 = gsub out 0ul 5ul in let out1 = gsub out 5ul 5ul in f51_mul_inv_t h out0 /\ f51_mul_inv_t h out1 | M64 -> True inline_for_extraction let fmul2_t (s:field_spec) (p: Type0) = out:felem2 s -> f1:felem2 s -> f2:felem2 s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmul2_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fmul2_fsqr2_post h1 out /\ (let out0 = gsub out 0ul (nlimb s) in let out1 = gsub out (nlimb s) (nlimb s) in let f10 = gsub f1 0ul (nlimb s) in let f11 = gsub f1 (nlimb s) (nlimb s) in let f20 = gsub f2 0ul (nlimb s) in let f21 = gsub f2 (nlimb s) (nlimb s) in feval h1 out0 == P.fmul (feval h0 f10) (feval h0 f20) /\ feval h1 out1 == P.fmul (feval h0 f11) (feval h0 f21))) [@ Meta.Attribute.specialize ] val fmul2: #s:field_spec -> fmul2_t s True let fmul1_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:uint64): Type0 = match s with | M51 -> f51_felem_fits h f1 (9, 10, 9, 9, 9) /\ f51_felem_fits1 f2 1 | M64 -> v f2 < pow2 17
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Fields.Core.fsti" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.Fields.Core.felem", "Lib.IntTypes.uint64", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.limb", "Prims.l_or", "Lib.Buffer.disjoint", "Prims.eq2", "Hacl.Impl.Curve25519.Fields.Core.fmul1_pre", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Hacl.Impl.Curve25519.Fields.Core.state_inv_t", "Spec.Curve25519.elem", "Hacl.Impl.Curve25519.Fields.Core.feval", "Spec.Curve25519.fmul", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC" ]
[]
false
false
false
true
true
let fmul1_t (s: field_spec) (p: Type0) =
out: felem s -> f1: felem s -> f2: uint64 -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ (disjoint out f1 \/ out == f1) /\ fmul1_pre h f1 f2 ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (v f2))
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be
val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t))
val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t))
let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 65, "start_col": 0, "start_line": 60 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.op_Subtraction", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.int", "Prims.pos", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_bytes_be #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp
false
Steel.ST.GhostPCMReference.fst
Steel.ST.GhostPCMReference.read
val read (#o:inames) (#a:Type) (#pcm:pcm a) (#v0:a) (r:ref a pcm) : STGhost a o (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v)
val read (#o:inames) (#a:Type) (#pcm:pcm a) (#v0:a) (r:ref a pcm) : STGhost a o (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v)
let read (#o:inames) (#a:Type) (#pcm:pcm a) (#v0:a) (r:ref a pcm) : STGhost a o (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v) = let v = coerce_ghost (fun _ -> G.read r) in downgrade_val v
{ "file_name": "lib/steel/Steel.ST.GhostPCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 19, "end_line": 56, "start_col": 0, "start_line": 45 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostPCMReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions open FStar.PCM open FStar.Universe module UP = FStar.Universe.PCM module G = Steel.GhostPCMReference let ref (a:Type u#0) (p:pcm a) : Type u#0 = G.ref (raise_t u#0 u#1 a) (UP.raise p) /// pts_to is fixed to ref contents in u#0 let pts_to (#a:Type u#0) (#pcm:pcm a) (r:ref a pcm) ([@@@smt_fallback] v:a) = G.pts_to #(raise_t a) #(UP.raise pcm) r (raise_val v) /// Allocates a new reference, initially storing value [x]. let alloc (#o:inames) (#a:Type) (#pcm:pcm a) (x:a) : STGhost (ref a pcm) o emp (fun r -> pts_to r x) (requires pcm.refine x) (ensures fun _ -> True) = coerce_ghost (fun _ -> G.alloc (raise_val x))
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.GhostPCMReference.fsti.checked", "prims.fst.checked", "FStar.Universe.PCM.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostPCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.GhostPCMReference", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Universe.PCM", "short_module": "UP" }, { "abbrev": false, "full_module": "FStar.Universe", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.GhostPCMReference.ref a pcm -> Steel.ST.Effect.Ghost.STGhost a
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.ST.GhostPCMReference.ref", "FStar.Universe.downgrade_val", "FStar.Universe.raise_t", "Steel.ST.Coercions.coerce_ghost", "Steel.GhostPCMReference.pts_to", "FStar.Universe.PCM.raise", "FStar.Universe.raise_val", "Steel.Effect.Common.vprop", "Prims.l_True", "FStar.PCM.compatible", "Prims.unit", "Steel.GhostPCMReference.read", "Steel.ST.GhostPCMReference.pts_to" ]
[]
false
true
false
false
false
let read (#o: inames) (#a: Type) (#pcm: pcm a) (#v0: a) (r: ref a pcm) : STGhost a o (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v) =
let v = coerce_ghost (fun _ -> G.read r) in downgrade_val v
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_uint_lemma
val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x)
val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x)
let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 30, "start_col": 0, "start_line": 22 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos -> x: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Convert.bn_from_uint len x) == Lib.IntTypes.uint_v x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Lib.Sequence.slice", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.bn_eval_zeroes", "Prims.op_Subtraction", "Lib.Sequence.eq_intro", "Lib.Sequence.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.Sequence.index", "Prims.l_Forall", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int" ]
[]
true
false
true
false
false
let bn_from_uint_lemma #t len x =
let b = create len (uint #t 0) in let b = b.[ 0 ] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1)
false
Steel.LockCoupling.fsti
Steel.LockCoupling.list_inv
val list_inv (#a: Type) (p: ref (llist_cell a)) (repr: list a) : Tot vprop (decreases repr)
val list_inv (#a: Type) (p: ref (llist_cell a)) (repr: list a) : Tot vprop (decreases repr)
let rec list_inv (#a:Type) (p:ref (llist_cell a)) (repr:list a) : Tot vprop (decreases repr) = match repr with | [] -> pure (p == null) | hd::tl -> h_exists (fun cell -> pts_to p half cell `star` pure (cell.v == hd) `star` list_inv cell.next tl)
{ "file_name": "lib/steel/Steel.LockCoupling.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 30, "end_line": 70, "start_col": 0, "start_line": 62 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.LockCoupling open Steel.ST.Util open Steel.ST.Reference open Steel.FractionalPermission (* This example sketches how an invariant for lock-coupling list (a list that stores a lock at each cell protecting its tail pointer) might work. It relies on strictly positive version of the exists and pts_to separation logic predicates, although the libraries are not currently annotated with such positivity annotations.= *) (* It is relatively easy to show that h_exists is strictly positive *) val h_exists (#[@@@strictly_positive] a:Type) ([@@@strictly_positive] p:(a -> vprop)) : vprop (* the pts_to predicate is a bit more subtle. It is an instance of a more general form that involves assertions about a PCM, and it is possible to construct PCMs that are not strictly positive. However, the basic pts_to predicate that this refers to, for the fractional permission PCM, is strictly positive. Revising the library to enable decorating pts_to predicates derived from positive PCMs remains to be done. *) val pts_to (#[@@@strictly_positive] a:Type) (r:ref a) (f:perm) (v:a) : vprop val lock ([@@@strictly_positive] p:vprop) : Type0 let half = half_perm full_perm (* The lock at each cell holds half permission to the next pointer *) noeq type llist_cell (a:Type0) : Type = { v : a; next : ref (llist_cell a); lock : lock (h_exists (pts_to next half)) }
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Reference.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Steel.LockCoupling.fsti" }
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.ST.Reference.ref (Steel.LockCoupling.llist_cell a) -> repr: Prims.list a -> Prims.Tot Steel.Effect.Common.vprop
Prims.Tot
[ "total", "" ]
[]
[ "Steel.ST.Reference.ref", "Steel.LockCoupling.llist_cell", "Prims.list", "Steel.ST.Util.pure", "Prims.eq2", "Steel.ST.Reference.null", "Steel.LockCoupling.h_exists", "Steel.Effect.Common.star", "Steel.LockCoupling.pts_to", "Steel.LockCoupling.half", "Steel.LockCoupling.__proj__Mkllist_cell__item__v", "Steel.LockCoupling.list_inv", "Steel.LockCoupling.__proj__Mkllist_cell__item__next", "Steel.Effect.Common.vprop" ]
[ "recursion" ]
false
false
false
true
false
let rec list_inv (#a: Type) (p: ref (llist_cell a)) (repr: list a) : Tot vprop (decreases repr) =
match repr with | [] -> pure (p == null) | hd :: tl -> h_exists (fun cell -> ((pts_to p half cell) `star` (pure (cell.v == hd))) `star` (list_inv cell.next tl))
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.f_lseq8
val f_lseq8 (#t: v_inttype) (vs: lseq (vec_t t 8) 8) (f: (vec_t8 t -> vec_t8 t)) : lseq (vec_t t 8) 8
val f_lseq8 (#t: v_inttype) (vs: lseq (vec_t t 8) 8) (f: (vec_t8 t -> vec_t8 t)) : lseq (vec_t t 8) 8
let f_lseq8 (#t:v_inttype) (vs:lseq (vec_t t 8) 8) (f:vec_t8 t -> vec_t8 t) : lseq (vec_t t 8) 8 = let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in let (r0,r1,r2,r3,r4,r5,r6,r7) = f (v0,v1,v2,v3,v4,v5,v6,v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 195, "start_col": 0, "start_line": 192 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0) let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 -> f: (_: Lib.IntVector.Transpose.vec_t8 t -> Lib.IntVector.Transpose.vec_t8 t) -> Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8
Prims.Tot
[ "total" ]
[]
[ "Lib.IntVector.v_inttype", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Lib.IntVector.Transpose.vec_t8", "Lib.Sequence.create8", "FStar.Pervasives.Native.Mktuple8", "FStar.Pervasives.Native.tuple8", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let f_lseq8 (#t: v_inttype) (vs: lseq (vec_t t 8) 8) (f: (vec_t8 t -> vec_t8 t)) : lseq (vec_t t 8) 8 =
let v0, v1, v2, v3, v4, v5, v6, v7 = (vs.[ 0 ], vs.[ 1 ], vs.[ 2 ], vs.[ 3 ], vs.[ 4 ], vs.[ 5 ], vs.[ 6 ], vs.[ 7 ]) in let r0, r1, r2, r3, r4, r5, r6, r7 = f (v0, v1, v2, v3, v4, v5, v6, v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.reverse
val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len
val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len
let reverse #t #len b = createi len (fun i -> b.[len - i - 1])
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 137, "start_col": 0, "start_line": 137 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.createi", "Hacl.Spec.Bignum.Definitions.limb", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.op_String_Access", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let reverse #t #len b =
createi len (fun i -> b.[ len - i - 1 ])
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_be_f
val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t)
val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t)
let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1]
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 91, "start_col": 0, "start_line": 90 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Prims.nat{i < len} -> _: Prims.unit -> Prims.unit * Lib.Sequence.lseq Lib.IntTypes.uint8 (Lib.IntTypes.numbytes t)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.unit", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Lib.IntTypes.numbytes", "Lib.ByteSequence.uint_to_bytes_be", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let bn_to_bytes_be_f #t len b i () =
(), uint_to_bytes_be b.[ len - i - 1 ]
false
Hacl.Impl.Ed25519.Field51.fst
Hacl.Impl.Ed25519.Field51.inv_ext_point
val inv_ext_point (a: LSeq.lseq uint64 20) : Type0
val inv_ext_point (a: LSeq.lseq uint64 20) : Type0
let inv_ext_point (a:LSeq.lseq uint64 20) : Type0 = Spec.Ed25519.point_inv (refl_ext_point a)
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Field51.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 66, "start_col": 0, "start_line": 65 }
module Hacl.Impl.Ed25519.Field51 open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open FStar.Mul module LSeq = Lib.Sequence module P = Hacl.Impl.Curve25519.Field51 module S = Spec.Curve25519 let felem = lbuffer uint64 5ul let point = lbuffer uint64 20ul let as_nat (h:mem) (f:felem) : GTot nat = P.as_nat h f let fevalh (h:mem) (f:felem) : GTot S.elem = P.fevalh h f noextract val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point let point_eval h p = let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t) noextract val felem_fits: h:mem -> f:felem -> m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5 -> Type0 let felem_fits h f m = P.felem_fits h f m noextract let as_felem (h:mem) (f:felem) = P.as_felem h f noextract let mul_inv_t (h:mem) (f:felem) : GTot Type0 = P.mul_inv_t h f noextract let point_inv_t (h:mem) (p:point) : GTot Type0 = mul_inv_t h (gsub p 0ul 5ul) /\ mul_inv_t h (gsub p 5ul 5ul) /\ mul_inv_t h (gsub p 10ul 5ul) /\ mul_inv_t h (gsub p 15ul 5ul) unfold let lseq_as_felem (a:LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5 = let open Lib.Sequence in (a.[0], a.[1], a.[2], a.[3], a.[4]) unfold let refl_ext_point (a:LSeq.lseq uint64 20) : GTot Spec.Ed25519.ext_point = let open Hacl.Spec.Curve25519.Field51.Definition in let x = feval (lseq_as_felem (LSeq.sub a 0 5)) in let y = feval (lseq_as_felem (LSeq.sub a 5 5)) in let z = feval (lseq_as_felem (LSeq.sub a 10 5)) in let t = feval (lseq_as_felem (LSeq.sub a 15 5)) in (x, y, z, t)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Field51.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "P" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 20 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Spec.Ed25519.PointOps.point_inv", "Hacl.Impl.Ed25519.Field51.refl_ext_point" ]
[]
false
false
false
false
true
let inv_ext_point (a: LSeq.lseq uint64 20) : Type0 =
Spec.Ed25519.point_inv (refl_ext_point a)
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose4x4_lemma_uint64_ij
val transpose4x4_lemma_uint64_ij: vs:lseq (vec_t U64 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U64 vs).[i]).[j] == (vec_v vs.[j]).[i])
val transpose4x4_lemma_uint64_ij: vs:lseq (vec_t U64 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U64 vs).[i]).[j] == (vec_v vs.[j]).[i])
let transpose4x4_lemma_uint64_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint64_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint64_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint64_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint64_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint64_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint64_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint64_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint64_4 vs0.[2] vs0.[3]
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 264, "start_col": 0, "start_line": 245 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0) let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0) inline_for_extraction let f_lseq8 (#t:v_inttype) (vs:lseq (vec_t t 8) 8) (f:vec_t8 t -> vec_t8 t) : lseq (vec_t t 8) 8 = let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in let (r0,r1,r2,r3,r4,r5,r6,r7) = f (v0,v1,v2,v3,v4,v5,v6,v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7 val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012) let transpose8x8_lseq_is_transposewxw #t vs0 = let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in eq_intro res0 (f_lseq8 vs0 transpose8x8_0); let res1 = transposewxw_f n 1 res0 in eq_intro res1 (f_lseq8 res0 transpose8x8_1); let res2 = transposewxw_f n 2 res1 in eq_intro res2 (f_lseq8 res1 transpose8x8_2); eq_intro (transposewxw_lseq 3 vs0) (f_lseq8 vs0 transpose8x8_012) val transpose4x4_lemma_uint32_ij: vs:lseq (vec_t U32 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose4x4_lemma_uint32_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint32_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint32_4 vs0.[2] vs0.[3] val transpose4x4_lemma_uint64_ij: vs:lseq (vec_t U64 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U64 vs).[i]).[j] == (vec_v vs.[j]).[i])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t Lib.IntTypes.U64 4) 4 -> i: Prims.nat{i < 4} -> j: Prims.nat{j < 4} -> FStar.Pervasives.Lemma (ensures (Lib.IntVector.vec_v (Lib.IntVector.Transpose.transpose4x4_lseq vs).[ i ]).[ j ] == (Lib.IntVector.vec_v vs.[ j ]).[ i ])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Lib.IntTypes.U64", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntVector.vec_interleave_high_lemma_uint64_4", "Lib.Sequence.op_String_Access", "Prims.unit", "Lib.IntVector.vec_interleave_low_lemma_uint64_4", "Lib.IntVector.vec_interleave_high_n_lemma_uint64_4_2", "Lib.IntVector.vec_interleave_low_n_lemma_uint64_4_2", "Lib.IntVector.Transpose.transposewxw_f", "Lib.LoopCombinators.eq_repeati0", "Lib.LoopCombinators.unfold_repeati", "Lib.IntVector.Transpose.transposewxw_lseq", "Prims.int", "Lib.IntVector.Transpose.transpose4x4_lseq_is_transposewxw" ]
[]
true
false
true
false
false
let transpose4x4_lemma_uint64_ij vs0 i j =
transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint64_4_2 res0.[ 0 ] res0.[ 2 ]; vec_interleave_high_n_lemma_uint64_4_2 res0.[ 0 ] res0.[ 2 ]; vec_interleave_low_n_lemma_uint64_4_2 res0.[ 1 ] res0.[ 3 ]; vec_interleave_high_n_lemma_uint64_4_2 res0.[ 1 ] res0.[ 3 ]; vec_interleave_low_lemma_uint64_4 vs0.[ 0 ] vs0.[ 1 ]; vec_interleave_high_lemma_uint64_4 vs0.[ 0 ] vs0.[ 1 ]; vec_interleave_low_lemma_uint64_4 vs0.[ 2 ] vs0.[ 3 ]; vec_interleave_high_lemma_uint64_4 vs0.[ 2 ] vs0.[ 3 ]
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.twice_reverse
val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b)
val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b)
let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 145, "start_col": 0, "start_line": 141 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.reverse (Hacl.Spec.Bignum.Convert.reverse b) == b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.eq_intro", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Convert.reverse", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Prims.l_True", "Prims.squash", "Lib.Sequence.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let twice_reverse #t #len b =
let lemma_aux (i: nat{i < len}) : Lemma ((reverse (reverse b)).[ i ] == b.[ i ]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b
false
Steel.ST.Array.fst
Steel.ST.Array.upd
val upd (#t: Type) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t {US.v i < Seq.length s}) (v: t) : STT unit (pts_to a P.full_perm s) (fun res -> pts_to a P.full_perm (Seq.upd s (US.v i) v))
val upd (#t: Type) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t {US.v i < Seq.length s}) (v: t) : STT unit (pts_to a P.full_perm s) (fun res -> pts_to a P.full_perm (Seq.upd s (US.v i) v))
let upd #_ a #s i v = rewrite (pts_to a _ _) (H.pts_to a P.full_perm (seq_map raise s)); H.upd a i (raise v); assert (seq_map raise (Seq.upd s (US.v i) v) `Seq.equal` Seq.upd (seq_map raise s) (US.v i) (raise v)); rewrite (H.pts_to _ _ _) (pts_to _ _ _)
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 185, "start_col": 0, "start_line": 177 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x) let gather #_ #_ a #x1 p1 #x2 p2 = rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _) let index #_ #p a #s i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise s)); let res = H.index a i in rewrite (H.pts_to _ _ _) (pts_to _ _ _); return (lower res)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.Array.array t -> i: FStar.SizeT.t{FStar.SizeT.v i < FStar.Seq.Base.length (FStar.Ghost.reveal s)} -> v: t -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "Steel.ST.Array.array", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.SizeT.t", "Prims.b2t", "Prims.op_LessThan", "FStar.SizeT.v", "FStar.Seq.Base.length", "FStar.Ghost.reveal", "Steel.ST.Util.rewrite", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.HigherArray.pts_to", "Steel.ST.Array.raise_t", "Steel.FractionalPermission.full_perm", "FStar.Seq.Base.upd", "Steel.ST.Array.seq_map", "Steel.ST.Array.raise", "Steel.ST.Array.pts_to", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Steel.ST.HigherArray.upd" ]
[]
false
true
false
false
false
let upd #_ a #s i v =
rewrite (pts_to a _ _) (H.pts_to a P.full_perm (seq_map raise s)); H.upd a i (raise v); assert ((seq_map raise (Seq.upd s (US.v i) v)) `Seq.equal` (Seq.upd (seq_map raise s) (US.v i) (raise v))); rewrite (H.pts_to _ _ _) (pts_to _ _ _)
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_le
val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t))
val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t))
let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 79, "start_col": 0, "start_line": 74 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Lib.ByteSequence.uints_from_bytes_le", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.int", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_bytes_le #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose4x4_lseq_is_transposewxw
val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0)
val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0)
let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0)
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 188, "start_col": 0, "start_line": 183 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Lib.IntVector.Transpose.transposewxw_lseq 2 vs) (Lib.IntVector.Transpose.f_lseq4 vs Lib.IntVector.Transpose.transpose4x4_0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntVector.v_inttype", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Lib.Sequence.eq_intro", "Lib.IntVector.Transpose.transposewxw_lseq", "Lib.IntVector.Transpose.f_lseq4", "Lib.IntVector.Transpose.transpose4x4_0", "Prims.unit", "Lib.LoopCombinators.eq_repeati0", "Lib.IntVector.Transpose.transposewxw_f", "Lib.LoopCombinators.unfold_repeati", "Prims.int" ]
[]
true
false
true
false
false
let transpose4x4_lseq_is_transposewxw #t vs0 =
let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0)
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose4x4_lemma
val transpose4x4_lemma: #t:v_inttype{t = U32 \/ t = U64} -> vs:lseq (vec_t t 4) 4 -> Lemma (forall (i:nat{i < 4}) (j:nat{j < 4}). (vec_v (transpose4x4_lseq vs).[i]).[j] == (vec_v vs.[j]).[i])
val transpose4x4_lemma: #t:v_inttype{t = U32 \/ t = U64} -> vs:lseq (vec_t t 4) 4 -> Lemma (forall (i:nat{i < 4}) (j:nat{j < 4}). (vec_v (transpose4x4_lseq vs).[i]).[j] == (vec_v vs.[j]).[i])
let transpose4x4_lemma #t vs = match t with | U32 -> Classical.forall_intro_2 (transpose4x4_lemma_uint32_ij vs) | U64 -> Classical.forall_intro_2 (transpose4x4_lemma_uint64_ij vs)
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 313, "start_col": 0, "start_line": 310 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0) let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0) inline_for_extraction let f_lseq8 (#t:v_inttype) (vs:lseq (vec_t t 8) 8) (f:vec_t8 t -> vec_t8 t) : lseq (vec_t t 8) 8 = let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in let (r0,r1,r2,r3,r4,r5,r6,r7) = f (v0,v1,v2,v3,v4,v5,v6,v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7 val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012) let transpose8x8_lseq_is_transposewxw #t vs0 = let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in eq_intro res0 (f_lseq8 vs0 transpose8x8_0); let res1 = transposewxw_f n 1 res0 in eq_intro res1 (f_lseq8 res0 transpose8x8_1); let res2 = transposewxw_f n 2 res1 in eq_intro res2 (f_lseq8 res1 transpose8x8_2); eq_intro (transposewxw_lseq 3 vs0) (f_lseq8 vs0 transpose8x8_012) val transpose4x4_lemma_uint32_ij: vs:lseq (vec_t U32 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose4x4_lemma_uint32_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint32_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint32_4 vs0.[2] vs0.[3] val transpose4x4_lemma_uint64_ij: vs:lseq (vec_t U64 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U64 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose4x4_lemma_uint64_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint64_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint64_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint64_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint64_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint64_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint64_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint64_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint64_4 vs0.[2] vs0.[3] val transpose8x8_lemma_uint32_ij: vs:lseq (vec_t U32 8) 8 -> i:nat{i < 8} -> j:nat{j < 8} -> Lemma ((vec_v (transpose8x8_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose8x8_lemma_uint32_ij vs0 i j = transpose8x8_lseq_is_transposewxw vs0; let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in let res1 = transposewxw_f n 1 res0 in let res2 = transposewxw_f n 2 res1 in vec_interleave_low_n_lemma_uint32_8_4 res1.[0] res1.[4]; vec_interleave_low_n_lemma_uint32_8_4 res1.[1] res1.[5]; vec_interleave_low_n_lemma_uint32_8_4 res1.[2] res1.[6]; vec_interleave_low_n_lemma_uint32_8_4 res1.[3] res1.[7]; vec_interleave_high_n_lemma_uint32_8_4 res1.[0] res1.[4]; vec_interleave_high_n_lemma_uint32_8_4 res1.[1] res1.[5]; vec_interleave_high_n_lemma_uint32_8_4 res1.[2] res1.[6]; vec_interleave_high_n_lemma_uint32_8_4 res1.[3] res1.[7]; vec_interleave_low_n_lemma_uint32_8_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint32_8_2 res0.[1] res0.[3]; vec_interleave_low_n_lemma_uint32_8_2 res0.[4] res0.[6]; vec_interleave_low_n_lemma_uint32_8_2 res0.[5] res0.[7]; vec_interleave_high_n_lemma_uint32_8_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint32_8_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint32_8_2 res0.[4] res0.[6]; vec_interleave_high_n_lemma_uint32_8_2 res0.[5] res0.[7]; vec_interleave_low_lemma_uint32_8 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint32_8 vs0.[2] vs0.[3]; vec_interleave_low_lemma_uint32_8 vs0.[4] vs0.[5]; vec_interleave_low_lemma_uint32_8 vs0.[6] vs0.[7]; vec_interleave_high_lemma_uint32_8 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint32_8 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint32_8 vs0.[4] vs0.[5]; vec_interleave_high_lemma_uint32_8 vs0.[6] vs0.[7]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 4) 4 -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < 4}) (j: Prims.nat{j < 4}). (Lib.IntVector.vec_v (Lib.IntVector.Transpose.transpose4x4_lseq vs).[ i ]).[ j ] == (Lib.IntVector.vec_v vs.[ j ]).[ i ])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntVector.v_inttype", "Prims.l_or", "Prims.b2t", "Prims.op_Equality", "Lib.IntTypes.inttype", "Lib.IntTypes.U32", "Lib.IntTypes.U64", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "FStar.Classical.forall_intro_2", "Prims.nat", "Prims.op_LessThan", "Prims.eq2", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.IntVector.vec_v", "Lib.Sequence.op_String_Access", "Lib.IntVector.Transpose.transpose4x4_lseq", "Lib.IntVector.Transpose.transpose4x4_lemma_uint32_ij", "Lib.IntVector.Transpose.transpose4x4_lemma_uint64_ij", "Prims.unit" ]
[]
false
false
true
false
false
let transpose4x4_lemma #t vs =
match t with | U32 -> Classical.forall_intro_2 (transpose4x4_lemma_uint32_ij vs) | U64 -> Classical.forall_intro_2 (transpose4x4_lemma_uint64_ij vs)
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_be
val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len
val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len
let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 117, "start_col": 0, "start_line": 113 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) -> Lib.Sequence.lseq Lib.IntTypes.uint8 len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.sub", "Lib.IntTypes.uint8", "Prims.op_Subtraction", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Multiply", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_", "Prims.int", "Prims.pos", "Prims.pow2" ]
[]
false
false
false
false
false
let bn_to_bytes_be #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len
false
SelectorsLList3Example.fst
SelectorsLList3Example.is_null
val is_null (ptr: t) : (b: bool{b <==> ptr == null_llist ()})
val is_null (ptr: t) : (b: bool{b <==> ptr == null_llist ()})
let is_null (ptr:t) : (b:bool{b <==> ptr == null_llist ()}) = LL.is_null ptr
{ "file_name": "share/steel/examples/steel/llist3/SelectorsLList3Example.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 16, "end_line": 34, "start_col": 0, "start_line": 33 }
module SelectorsLList3Example open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.ArrayRef module L = FStar.List.Tot module LL = Selectors.LList3 module U32 = FStar.UInt32 module MB = LowStar.Monotonic.Buffer // for is_null inline_for_extraction noextract let a = U32.t let cell = LL.cell a /// The type of a list: A reference to a cell let t = LL.t a let next (c:cell) : t = LL.next c let data (c:cell) : a = LL.data c let mk_cell (n: t) (d:a) : Pure cell (requires True) (ensures fun c -> next c == n /\ data c == d) = LL.mk_cell n d /// The null list pointer let null_llist () : t = LL.null_llist
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Steel.ArrayRef.fsti.checked", "Selectors.LList3.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "SelectorsLList3Example.fst" }
[ { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer // for is_null", "short_module": "MB" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Selectors.LList3", "short_module": "LL" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ArrayRef", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ptr: SelectorsLList3Example.t -> b: Prims.bool{b <==> ptr == SelectorsLList3Example.null_llist ()}
Prims.Tot
[ "total" ]
[]
[ "SelectorsLList3Example.t", "Selectors.LList3.is_null", "SelectorsLList3Example.a", "Prims.bool", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "SelectorsLList3Example.null_llist" ]
[]
false
false
false
false
false
let is_null (ptr: t) : (b: bool{b <==> ptr == null_llist ()}) =
LL.is_null ptr
false
Hacl.Spec.K256.Field52.Definitions.Lemmas.fst
Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_a_plus_b_mul_pow256
val lemma_a_plus_b_mul_pow256 (a b:int) : Lemma ((a + b * pow2 256) % S.prime == (a + b * 0x1000003D1) % S.prime)
val lemma_a_plus_b_mul_pow256 (a b:int) : Lemma ((a + b * pow2 256) % S.prime == (a + b * 0x1000003D1) % S.prime)
let lemma_a_plus_b_mul_pow256 a b = calc (==) { (a + b * pow2 256) % S.prime; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 256) S.prime } (a + b * pow2 256 % S.prime) % S.prime; (==) { Math.Lemmas.lemma_mod_mul_distr_r b (pow2 256) S.prime } (a + b * (pow2 256 % S.prime) % S.prime) % S.prime; (==) { lemma_prime () } (a + b * 0x1000003D1 % S.prime) % S.prime; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b * 0x1000003D1) S.prime } (a + b * 0x1000003D1) % S.prime; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 373, "start_col": 0, "start_line": 362 }
module Hacl.Spec.K256.Field52.Definitions.Lemmas open FStar.Mul open Lib.IntTypes open Hacl.Spec.K256.Field52.Definitions module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S = Spec.K256 module ML = Hacl.Spec.K256.MathLemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_as_nat_mod2: x:felem5 -> Lemma (let (x0,x1,x2,x3,x4) = x in as_nat5 x % 2 = v x0 % 2) let lemma_as_nat_mod2 x = let (x0,x1,x2,x3,x4) = x in assert (as_nat5 x = v x0 + v x1 * pow52 + v x2 * pow104 + v x3 * pow156 + v x4 * pow208); assert (as_nat5 x % 2 = (v x0 + v x1 * pow52 + v x2 * pow104 + v x3 * pow156 + v x4 * pow208) % 2); ML.lemma_a_plus_b_pow2_mod2 (v x0 + v x1 * pow52 + v x2 * pow104 + v x3 * pow156) (v x4) 208; ML.lemma_a_plus_b_pow2_mod2 (v x0 + v x1 * pow52 + v x2 * pow104) (v x3) 156; ML.lemma_a_plus_b_pow2_mod2 (v x0 + v x1 * pow52) (v x2) 104; ML.lemma_a_plus_b_pow2_mod2 (v x0) (v x1) 52; assert (as_nat5 x % 2 = v x0 % 2) val lemma_nat_from_bytes_be_mod2: f:LSeq.lseq uint8 32 -> Lemma (BSeq.nat_from_bytes_be f % 2 = v (LSeq.index f 31) % 2) let lemma_nat_from_bytes_be_mod2 f = let x0 = LSeq.index f 31 in BSeq.nat_from_intseq_be_slice_lemma f 31; BSeq.nat_from_intseq_be_lemma0 (LSeq.slice f 31 32); assert (BSeq.nat_from_intseq_be f == v x0 + pow2 8 * BSeq.nat_from_intseq_be (LSeq.slice f 0 31)); ML.lemma_a_plus_b_pow2_mod2 (v x0) (BSeq.nat_from_intseq_be (LSeq.slice f 0 31)) 8 val unfold_nat_from_uint64_four: b:LSeq.lseq uint64 4 -> Lemma (BSeq.nat_from_intseq_be b == v (LSeq.index b 3) + v (LSeq.index b 2) * pow2 64 + v (LSeq.index b 1) * pow2 128 + v (LSeq.index b 0) * pow2 192) let unfold_nat_from_uint64_four b = let b0 = v (LSeq.index b 0) in let b1 = v (LSeq.index b 1) in let b2 = v (LSeq.index b 2) in let b3 = v (LSeq.index b 3) in let res = BSeq.nat_from_intseq_be b in BSeq.nat_from_intseq_be_slice_lemma b 3; BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 3 4); assert (res == b3 + pow2 64 * (BSeq.nat_from_intseq_be (Seq.slice b 0 3))); BSeq.nat_from_intseq_be_slice_lemma #U64 #SEC #3 (Seq.slice b 0 3) 2; BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 2 3); assert (BSeq.nat_from_intseq_be (Seq.slice b 0 3) == b2 + pow2 64 * (BSeq.nat_from_intseq_be (Seq.slice b 0 2))); BSeq.nat_from_intseq_be_slice_lemma #U64 #SEC #2 (Seq.slice b 0 2) 1; BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 1 2); assert (BSeq.nat_from_intseq_be (Seq.slice b 0 2) == b1 + pow2 64 * (BSeq.nat_from_intseq_be (Seq.slice b 0 1))); BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 0 1); assert (res == b3 + pow2 64 * (b2 + pow2 64 * (b1 + pow2 64 * b0))); ML.lemma_as_nat64_horner b3 b2 b1 b0 val lemma_prime : unit -> Lemma (pow2 256 % S.prime = 0x1000003D1) let lemma_prime () = () val lemma_pow2_256_minus_prime : unit -> Lemma (pow2 256 - S.prime = 0x1000003D1) let lemma_pow2_256_minus_prime () = () val lemma_pow2_260_mod_prime: unit -> Lemma (pow2 260 % S.prime = 0x1000003D10) let lemma_pow2_260_mod_prime () = calc (==) { pow2 260 % S.prime; (==) { Math.Lemmas.pow2_plus 256 4 } pow2 256 * pow2 4 % S.prime; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow2 256) (pow2 4) S.prime } (pow2 256 % S.prime) * pow2 4 % S.prime; (==) { lemma_prime () } 0x1000003D1 * pow2 4 % S.prime; (==) { assert_norm (0x1000003D1 * pow2 4 = 0x1000003D10) } 0x1000003D10 % S.prime; (==) { Math.Lemmas.small_mod 0x1000003D10 S.prime } 0x1000003D10; } val lemma_as_nat_bound_f4_lt_powa: f:felem5 -> a:nat -> Lemma (requires (let (f0,f1,f2,f3,f4) = f in felem_fits5 f (1,1,1,1,1) /\ v f4 < pow2 a)) (ensures as_nat5 f <= pow2 (208 + a) - 1) let lemma_as_nat_bound_f4_lt_powa f a = let (f0,f1,f2,f3,f4) = f in calc (<=) { //as_nat5 f == v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208; (<=) { } pow2 52 - 1 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208; (<=) { Math.Lemmas.lemma_mult_le_right pow52 (v f1) (pow2 52 - 1); Math.Lemmas.distributivity_sub_left (pow2 52) 1 pow52 } pow2 52 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 - 1; (<=) { Math.Lemmas.lemma_mult_le_right pow104 (v f2) (pow2 52 - 1); Math.Lemmas.distributivity_sub_left (pow2 52) 1 pow104; Math.Lemmas.pow2_plus 52 52 } pow2 52 * pow104 + v f3 * pow156 + v f4 * pow208 - 1; (<=) { Math.Lemmas.lemma_mult_le_right pow156 (v f3) (pow2 52 - 1); Math.Lemmas.distributivity_sub_left (pow2 52) 1 pow156; Math.Lemmas.pow2_plus 52 104 } pow2 52 * pow156 + v f4 * pow208 - 1; (<=) { Math.Lemmas.lemma_mult_le_right pow208 (v f4) (pow2 a - 1); Math.Lemmas.distributivity_sub_left (pow2 a) 1 pow208; Math.Lemmas.pow2_plus 52 156; Math.Lemmas.pow2_plus a 208 } pow2 (208 + a) - 1; } val lemma_as_nat_bound: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures as_nat5 f < pow2 256) let lemma_as_nat_bound f = lemma_as_nat_bound_f4_lt_powa f 48 val lemma_as_nat_bound_f4_lt_pow12: f:felem5 -> Lemma (requires (let (f0,f1,f2,f3,f4) = f in felem_fits5 f (1,1,1,1,1) /\ v f4 < pow2 12)) (ensures as_nat5 f <= pow2 220 - 1) let lemma_as_nat_bound_f4_lt_pow12 f = lemma_as_nat_bound_f4_lt_powa f 12 val lemma_as_nat_decompose: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let (f0,f1,f2,f3,f4) = f in v f4 = as_nat5 f / pow208 /\ v f3 = as_nat5 f % pow208 / pow156 /\ v f2 = as_nat5 f % pow156 / pow104 /\ v f1 = as_nat5 f % pow104 / pow52 /\ v f0 = as_nat5 f % pow52)) let lemma_as_nat_decompose f = let (f0,f1,f2,f3,f4) = f in lemma_as_nat_bound f; Math.Lemmas.euclidean_division_definition (as_nat5 f) pow208; assert (v f4 = as_nat5 f / pow208); Math.Lemmas.euclidean_division_definition (as_nat5 f % pow208) pow156; assert (v f3 = as_nat5 f % pow208 / pow156); Math.Lemmas.pow2_modulo_modulo_lemma_1 (as_nat5 f) 156 208; assert (as_nat5 f % pow208 % pow156 == as_nat5 f % pow156); Math.Lemmas.euclidean_division_definition (as_nat5 f % pow156) pow104; assert (v f2 = as_nat5 f % pow156 / pow104); Math.Lemmas.pow2_modulo_modulo_lemma_1 (as_nat5 f) 104 156; assert (as_nat5 f % pow156 % pow104 == as_nat5 f % pow104); Math.Lemmas.euclidean_division_definition (as_nat5 f % pow104) pow52; assert (v f1 = as_nat5 f % pow104 / pow52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (as_nat5 f) 52 104; assert (as_nat5 f % pow104 % pow52 == as_nat5 f % pow52); assert (v f0 = as_nat5 f % pow52) #push-options "--ifuel 1" val as_nat_inj (f1 f2: felem5) : Lemma (requires felem_fits5 f1 (1,1,1,1,1) /\ felem_fits5 f2 (1,1,1,1,1) /\ as_nat5 f1 == as_nat5 f2) (ensures (let (a0,a1,a2,a3,a4) = f1 in let (b0,b1,b2,b3,b4) = f2 in a0 == b0 /\ a1 == b1 /\ a2 == b2 /\ a3 == b3 /\ a4 == b4)) let as_nat_inj f1 f2 = lemma_as_nat_decompose f1; lemma_as_nat_decompose f2 #pop-options val lemma_normalize_x_le_1: t4:uint64 -> Lemma (requires felem_fits_last1 t4 2) (ensures v t4 / pow2 48 <= 1) let lemma_normalize_x_le_1 t4 = calc (==) { (2 * (pow2 48 - 1)) / pow2 48; (==) { Math.Lemmas.distributivity_add_right 2 (pow2 48) 1 } (2 * pow2 48 - 2) / pow2 48; (==) { Math.Lemmas.division_addition_lemma (-2) (pow2 48) 2 } (-2) / pow2 48 + 2; (==) { assert_norm ((-2) / pow2 48 = -1) } 1; }; assert (v t4 <= 2 * (pow2 48 - 1)); Math.Lemmas.lemma_div_le (v t4) (2 * pow2 48 - 2) (pow2 48); assert (v t4 / pow2 48 <= 1) val lemma_div_pow48: t4:uint64 -> Lemma (requires felem_fits_last1 t4 2) (ensures v t4 / pow2 48 == (if v t4 < pow2 48 then 0 else 1)) let lemma_div_pow48 t4 = if v t4 < pow2 48 then Math.Lemmas.small_div (v t4) (pow2 48) else begin lemma_normalize_x_le_1 t4; assert (v t4 / pow2 48 <= 1); Math.Lemmas.lemma_div_le (pow2 48) (v t4) (pow2 48); assert (1 <= v t4 / pow2 48) end val lemma_mask52: a:uint64 -> Lemma (let r = a &. mask52 in v r = v a % pow2 52 /\ felem_fits1 r 1) let lemma_mask52 a = let r = a &. mask52 in assert_norm (v mask52 = pow2 52 - 1); mod_mask_lemma a 52ul; assert (v (mod_mask #U64 #SEC 52ul) == v mask52); assert (v r = v a % pow2 52); assert (felem_fits1 r 1) val lemma_mask48: a:uint64 -> Lemma (let r = a &. mask48 in v r = v a % pow2 48 /\ felem_fits_last1 r 1) let lemma_mask48 a = let r = a &. mask48 in assert_norm (v mask48 = pow2 48 - 1); mod_mask_lemma a 48ul; assert (v (mod_mask #U64 #SEC 48ul) == v mask48); assert (v r = v a % pow2 48); assert (felem_fits_last1 r 1) val lemma_add_rsh52: m1:scale64 -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 4096) (ensures (let c = a +. (b >>. 52ul) in felem_fits1 c (m1 + 1) /\ v c = v a + v b / pow2 52)) let lemma_add_rsh52 m1 m2 a b = let c = a +. (b >>. 52ul) in calc (<) { v a + v b / pow2 52; (<) { Math.Lemmas.lemma_div_lt (v b) 64 52 } m1 * max52 + pow2 12; (<=) { Math.Lemmas.pow2_lt_compat 52 12 } m1 * max52 + max52; (==) { Math.Lemmas.distributivity_add_left m1 1 max52 } (m1 + 1) * max52; }; Math.Lemmas.lemma_mult_le_right max52 (m1 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a + v b / pow2 52) (pow2 64); assert (v c = v a + v b / pow2 52); assert (felem_fits1 c (m1 + 1)) val lemma_add_rsh52_last: m1:scale64_last -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits_last1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 65536) (ensures (let c = a +. (b >>. 52ul) in felem_fits_last1 c (m1 + 1) /\ v c = v a + v b / pow2 52)) let lemma_add_rsh52_last m1 m2 a b = let c = a +. (b >>. 52ul) in calc (<) { v a + v b / pow2 52; (<) { Math.Lemmas.lemma_div_lt (v b) 64 52 } m1 * max48 + pow2 12; (<=) { Math.Lemmas.pow2_lt_compat 48 12 } m1 * max48 + max48; (==) { Math.Lemmas.distributivity_add_left m1 1 max48 } (m1 + 1) * max48; }; Math.Lemmas.lemma_mult_le_right max48 (m1 + 1) 65536; assert_norm (65536 * max48 < pow2 64); Math.Lemmas.small_mod (v a + v b / pow2 52) (pow2 64); assert (v c = v a + v b / pow2 52); assert (felem_fits_last1 c (m1 + 1)) val lemma_carry52: m1:scale64 -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 4096) (ensures (let c = a +. (b >>. 52ul) in let d = b &. mask52 in felem_fits1 d 1 /\ felem_fits1 c (m1 + 1) /\ v d = v b % pow2 52 /\ v c = v a + v b / pow2 52)) let lemma_carry52 m1 m2 a b = lemma_mask52 b; lemma_add_rsh52 m1 m2 a b val lemma_carry_last52: m1:scale64_last -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits_last1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 65536) (ensures (let c = a +. (b >>. 52ul) in let d = b &. mask52 in felem_fits1 d 1 /\ felem_fits_last1 c (m1 + 1) /\ v d = v b % pow2 52 /\ v c = v a + v b / pow2 52)) let lemma_carry_last52 m1 m2 a b = lemma_mask52 b; lemma_add_rsh52_last m1 m2 a b val lemma_small_sub_mod: a:nat -> n:pos -> Lemma (requires n <= a /\ a < 2 * n) (ensures a % n = a - n) let lemma_small_sub_mod a n = calc (==) { a % n; (==) { Math.Lemmas.sub_div_mod_1 a n } (a - n) % n; (==) { Math.Lemmas.small_mod (a - n) n } a - n; } val carry_last_small_mod_lemma: t4:uint64 -> t3':uint64 -> Lemma (requires felem_fits_last1 t4 1 /\ v (t4 +. (t3' >>. 52ul)) == v t4 + v t3' / pow2 52) (ensures (let r = t4 +. (t3' >>. 52ul) in felem_fits_last1 r 2 /\ v r < v t4 + pow2 12 /\ (v r >= pow2 48 ==> v r % pow2 48 < pow2 12))) let carry_last_small_mod_lemma t4 t3' = let r = t4 +. (t3' >>. 52ul) in assert (v r = v t4 + v t3' / pow2 52); Math.Lemmas.lemma_div_lt (v t3') 64 52; assert (v r < v t4 + pow2 12); Math.Lemmas.pow2_lt_compat 48 12; assert (felem_fits_last1 r 2); if v r >= pow2 48 then begin lemma_small_sub_mod (v r) (pow2 48); assert (v r % pow2 48 = v r - pow2 48); assert (v r % pow2 48 < pow2 12) end val lemma_a_plus_b_mul_pow256 (a b:int) : Lemma ((a + b * pow2 256) % S.prime == (a + b * 0x1000003D1) % S.prime)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (ensures (a + b * Prims.pow2 256) % Spec.K256.PointOps.prime == (a + b * 0x1000003D1) % Spec.K256.PointOps.prime)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Spec.K256.PointOps.prime", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_prime" ]
[]
false
false
true
false
false
let lemma_a_plus_b_mul_pow256 a b =
calc ( == ) { (a + b * pow2 256) % S.prime; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 256) S.prime } (a + b * pow2 256 % S.prime) % S.prime; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r b (pow2 256) S.prime } (a + b * (pow2 256 % S.prime) % S.prime) % S.prime; ( == ) { lemma_prime () } (a + b * 0x1000003D1 % S.prime) % S.prime; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r a (b * 0x1000003D1) S.prime } (a + b * 0x1000003D1) % S.prime; }
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_le
val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len
val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len
let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 130, "start_col": 0, "start_line": 126 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) -> Lib.Sequence.lseq Lib.IntTypes.uint8 len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.op_Multiply", "Lib.ByteSequence.uints_to_bytes_le", "Prims.int", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.uint8" ]
[]
false
false
false
false
false
let bn_to_bytes_le #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_be_
val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len)
val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len)
let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 104, "start_col": 0, "start_line": 100 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> Lib.Sequence.lseq Lib.IntTypes.uint8 (Lib.IntTypes.numbytes t * len)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "Lib.Sequence.lseq", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Multiply", "Lib.Sequence.generate_blocks", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_f", "Prims.nat", "Prims.eqtype", "Prims.unit" ]
[]
false
false
false
false
false
let bn_to_bytes_be_ #t len b =
let a_spec (i: nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose4x4_lemma_uint32_ij
val transpose4x4_lemma_uint32_ij: vs:lseq (vec_t U32 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i])
val transpose4x4_lemma_uint32_ij: vs:lseq (vec_t U32 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i])
let transpose4x4_lemma_uint32_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint32_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint32_4 vs0.[2] vs0.[3]
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 239, "start_col": 0, "start_line": 220 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0) let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0) inline_for_extraction let f_lseq8 (#t:v_inttype) (vs:lseq (vec_t t 8) 8) (f:vec_t8 t -> vec_t8 t) : lseq (vec_t t 8) 8 = let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in let (r0,r1,r2,r3,r4,r5,r6,r7) = f (v0,v1,v2,v3,v4,v5,v6,v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7 val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012) let transpose8x8_lseq_is_transposewxw #t vs0 = let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in eq_intro res0 (f_lseq8 vs0 transpose8x8_0); let res1 = transposewxw_f n 1 res0 in eq_intro res1 (f_lseq8 res0 transpose8x8_1); let res2 = transposewxw_f n 2 res1 in eq_intro res2 (f_lseq8 res1 transpose8x8_2); eq_intro (transposewxw_lseq 3 vs0) (f_lseq8 vs0 transpose8x8_012) val transpose4x4_lemma_uint32_ij: vs:lseq (vec_t U32 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t Lib.IntTypes.U32 4) 4 -> i: Prims.nat{i < 4} -> j: Prims.nat{j < 4} -> FStar.Pervasives.Lemma (ensures (Lib.IntVector.vec_v (Lib.IntVector.Transpose.transpose4x4_lseq vs).[ i ]).[ j ] == (Lib.IntVector.vec_v vs.[ j ]).[ i ])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Lib.IntTypes.U32", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntVector.vec_interleave_high_lemma_uint32_4", "Lib.Sequence.op_String_Access", "Prims.unit", "Lib.IntVector.vec_interleave_low_lemma_uint32_4", "Lib.IntVector.vec_interleave_high_n_lemma_uint32_4_2", "Lib.IntVector.vec_interleave_low_n_lemma_uint32_4_2", "Lib.IntVector.Transpose.transposewxw_f", "Lib.LoopCombinators.eq_repeati0", "Lib.LoopCombinators.unfold_repeati", "Lib.IntVector.Transpose.transposewxw_lseq", "Prims.int", "Lib.IntVector.Transpose.transpose4x4_lseq_is_transposewxw" ]
[]
true
false
true
false
false
let transpose4x4_lemma_uint32_ij vs0 i j =
transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint32_4_2 res0.[ 0 ] res0.[ 2 ]; vec_interleave_high_n_lemma_uint32_4_2 res0.[ 0 ] res0.[ 2 ]; vec_interleave_low_n_lemma_uint32_4_2 res0.[ 1 ] res0.[ 3 ]; vec_interleave_high_n_lemma_uint32_4_2 res0.[ 1 ] res0.[ 3 ]; vec_interleave_low_lemma_uint32_4 vs0.[ 0 ] vs0.[ 1 ]; vec_interleave_high_lemma_uint32_4 vs0.[ 0 ] vs0.[ 1 ]; vec_interleave_low_lemma_uint32_4 vs0.[ 2 ] vs0.[ 3 ]; vec_interleave_high_lemma_uint32_4 vs0.[ 2 ] vs0.[ 3 ]
false
Steel.ST.Array.fst
Steel.ST.Array.gather
val gather (#opened: _) (#elt: Type) (a: array elt) (#x1: Seq.seq elt) (p1: P.perm) (#x2: Seq.seq elt) (p2: P.perm) : STGhost unit opened (pts_to a p1 x1 `star` pts_to a p2 x2) (fun _ -> pts_to a (p1 `P.sum_perm` p2) x1) (True) (fun _ -> x1 == x2)
val gather (#opened: _) (#elt: Type) (a: array elt) (#x1: Seq.seq elt) (p1: P.perm) (#x2: Seq.seq elt) (p2: P.perm) : STGhost unit opened (pts_to a p1 x1 `star` pts_to a p2 x2) (fun _ -> pts_to a (p1 `P.sum_perm` p2) x1) (True) (fun _ -> x1 == x2)
let gather #_ #_ a #x1 p1 #x2 p2 = rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _)
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 165, "start_col": 0, "start_line": 154 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.Array.array elt -> p1: Steel.FractionalPermission.perm -> p2: Steel.FractionalPermission.perm -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "Steel.ST.Array.array", "FStar.Seq.Base.seq", "Steel.FractionalPermission.perm", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.pts_to", "Steel.ST.Array.raise_t", "Steel.FractionalPermission.sum_perm", "Steel.ST.Array.seq_map", "Steel.ST.Array.raise", "Steel.ST.Array.pts_to", "Prims.unit", "Steel.ST.HigherArray.gather" ]
[]
false
true
false
false
false
let gather #_ #_ a #x1 p1 #x2 p2 =
rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _)
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma_
val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b)
val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b)
let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 89, "end_line": 211, "start_col": 0, "start_line": 205 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 (Lib.IntTypes.numbytes t * len) -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Convert.bn_from_bytes_be_ len b) == Lib.ByteSequence.nat_from_bytes_be b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims._assert", "Prims.eq2", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "Prims.pow2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.uints_from_bytes_be", "Lib.IntTypes.bits", "Lib.ByteSequence.nat_from_intseq_be", "Lib.ByteSequence.nat_from_bytes_be", "Prims.unit", "Lib.ByteSequence.uints_from_bytes_be_nat_lemma", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_", "Hacl.Spec.Bignum.Convert.twice_reverse", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_is_uints_from_bytes_be_reverse", "Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_be_lemma" ]
[]
true
false
true
false
false
let bn_from_bytes_be_lemma_ #t len b =
bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b)
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose8x8_lemma
val transpose8x8_lemma: #t:v_inttype{t = U32} -> vs:lseq (vec_t t 8) 8 -> Lemma (forall (i:nat{i < 8}) (j:nat{j < 8}). (vec_v (transpose8x8_lseq vs).[i]).[j] == (vec_v vs.[j]).[i])
val transpose8x8_lemma: #t:v_inttype{t = U32} -> vs:lseq (vec_t t 8) 8 -> Lemma (forall (i:nat{i < 8}) (j:nat{j < 8}). (vec_v (transpose8x8_lseq vs).[i]).[j] == (vec_v vs.[j]).[i])
let transpose8x8_lemma #t vs = match t with | U32 -> Classical.forall_intro_2 (transpose8x8_lemma_uint32_ij vs)
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 318, "start_col": 0, "start_line": 316 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0) let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0) inline_for_extraction let f_lseq8 (#t:v_inttype) (vs:lseq (vec_t t 8) 8) (f:vec_t8 t -> vec_t8 t) : lseq (vec_t t 8) 8 = let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in let (r0,r1,r2,r3,r4,r5,r6,r7) = f (v0,v1,v2,v3,v4,v5,v6,v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7 val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012) let transpose8x8_lseq_is_transposewxw #t vs0 = let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in eq_intro res0 (f_lseq8 vs0 transpose8x8_0); let res1 = transposewxw_f n 1 res0 in eq_intro res1 (f_lseq8 res0 transpose8x8_1); let res2 = transposewxw_f n 2 res1 in eq_intro res2 (f_lseq8 res1 transpose8x8_2); eq_intro (transposewxw_lseq 3 vs0) (f_lseq8 vs0 transpose8x8_012) val transpose4x4_lemma_uint32_ij: vs:lseq (vec_t U32 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose4x4_lemma_uint32_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint32_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint32_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint32_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint32_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint32_4 vs0.[2] vs0.[3] val transpose4x4_lemma_uint64_ij: vs:lseq (vec_t U64 4) 4 -> i:nat{i < 4} -> j:nat{j < 4} -> Lemma ((vec_v (transpose4x4_lseq #U64 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose4x4_lemma_uint64_ij vs0 i j = transpose4x4_lseq_is_transposewxw vs0; let n = 2 in let r = transposewxw_lseq 2 vs0 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; let res0 = transposewxw_f 2 0 vs0 in let res1 = transposewxw_f 2 1 res0 in vec_interleave_low_n_lemma_uint64_4_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint64_4_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint64_4_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint64_4_2 res0.[1] res0.[3]; vec_interleave_low_lemma_uint64_4 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint64_4 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint64_4 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint64_4 vs0.[2] vs0.[3] val transpose8x8_lemma_uint32_ij: vs:lseq (vec_t U32 8) 8 -> i:nat{i < 8} -> j:nat{j < 8} -> Lemma ((vec_v (transpose8x8_lseq #U32 vs).[i]).[j] == (vec_v vs.[j]).[i]) let transpose8x8_lemma_uint32_ij vs0 i j = transpose8x8_lseq_is_transposewxw vs0; let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in let res1 = transposewxw_f n 1 res0 in let res2 = transposewxw_f n 2 res1 in vec_interleave_low_n_lemma_uint32_8_4 res1.[0] res1.[4]; vec_interleave_low_n_lemma_uint32_8_4 res1.[1] res1.[5]; vec_interleave_low_n_lemma_uint32_8_4 res1.[2] res1.[6]; vec_interleave_low_n_lemma_uint32_8_4 res1.[3] res1.[7]; vec_interleave_high_n_lemma_uint32_8_4 res1.[0] res1.[4]; vec_interleave_high_n_lemma_uint32_8_4 res1.[1] res1.[5]; vec_interleave_high_n_lemma_uint32_8_4 res1.[2] res1.[6]; vec_interleave_high_n_lemma_uint32_8_4 res1.[3] res1.[7]; vec_interleave_low_n_lemma_uint32_8_2 res0.[0] res0.[2]; vec_interleave_low_n_lemma_uint32_8_2 res0.[1] res0.[3]; vec_interleave_low_n_lemma_uint32_8_2 res0.[4] res0.[6]; vec_interleave_low_n_lemma_uint32_8_2 res0.[5] res0.[7]; vec_interleave_high_n_lemma_uint32_8_2 res0.[0] res0.[2]; vec_interleave_high_n_lemma_uint32_8_2 res0.[1] res0.[3]; vec_interleave_high_n_lemma_uint32_8_2 res0.[4] res0.[6]; vec_interleave_high_n_lemma_uint32_8_2 res0.[5] res0.[7]; vec_interleave_low_lemma_uint32_8 vs0.[0] vs0.[1]; vec_interleave_low_lemma_uint32_8 vs0.[2] vs0.[3]; vec_interleave_low_lemma_uint32_8 vs0.[4] vs0.[5]; vec_interleave_low_lemma_uint32_8 vs0.[6] vs0.[7]; vec_interleave_high_lemma_uint32_8 vs0.[0] vs0.[1]; vec_interleave_high_lemma_uint32_8 vs0.[2] vs0.[3]; vec_interleave_high_lemma_uint32_8 vs0.[4] vs0.[5]; vec_interleave_high_lemma_uint32_8 vs0.[6] vs0.[7] let transpose4x4_lemma #t vs = match t with | U32 -> Classical.forall_intro_2 (transpose4x4_lemma_uint32_ij vs) | U64 -> Classical.forall_intro_2 (transpose4x4_lemma_uint64_ij vs)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < 8}) (j: Prims.nat{j < 8}). (Lib.IntVector.vec_v (Lib.IntVector.Transpose.transpose8x8_lseq vs).[ i ]).[ j ] == (Lib.IntVector.vec_v vs.[ j ]).[ i ])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntVector.v_inttype", "Prims.b2t", "Prims.op_Equality", "Lib.IntTypes.inttype", "Lib.IntTypes.U32", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "FStar.Classical.forall_intro_2", "Prims.nat", "Prims.op_LessThan", "Prims.eq2", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.IntVector.vec_v", "Lib.Sequence.op_String_Access", "Lib.IntVector.Transpose.transpose8x8_lseq", "Lib.IntVector.Transpose.transpose8x8_lemma_uint32_ij", "Prims.unit" ]
[]
false
false
true
false
false
let transpose8x8_lemma #t vs =
match t with | U32 -> Classical.forall_intro_2 (transpose8x8_lemma_uint32_ij vs)
false
SelectorsLList3Example.fst
SelectorsLList3Example.mk_cell
val mk_cell (n: t) (d: a) : Pure cell (requires True) (ensures fun c -> next c == n /\ data c == d)
val mk_cell (n: t) (d: a) : Pure cell (requires True) (ensures fun c -> next c == n /\ data c == d)
let mk_cell (n: t) (d:a) : Pure cell (requires True) (ensures fun c -> next c == n /\ data c == d) = LL.mk_cell n d
{ "file_name": "share/steel/examples/steel/llist3/SelectorsLList3Example.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 16, "end_line": 27, "start_col": 0, "start_line": 21 }
module SelectorsLList3Example open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.ArrayRef module L = FStar.List.Tot module LL = Selectors.LList3 module U32 = FStar.UInt32 module MB = LowStar.Monotonic.Buffer // for is_null inline_for_extraction noextract let a = U32.t let cell = LL.cell a /// The type of a list: A reference to a cell let t = LL.t a let next (c:cell) : t = LL.next c
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Steel.ArrayRef.fsti.checked", "Selectors.LList3.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "SelectorsLList3Example.fst" }
[ { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer // for is_null", "short_module": "MB" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Selectors.LList3", "short_module": "LL" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ArrayRef", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: SelectorsLList3Example.t -> d: SelectorsLList3Example.a -> Prims.Pure SelectorsLList3Example.cell
Prims.Pure
[]
[]
[ "SelectorsLList3Example.t", "SelectorsLList3Example.a", "Selectors.LList3.mk_cell", "SelectorsLList3Example.cell", "Prims.l_True", "Prims.l_and", "Prims.eq2", "SelectorsLList3Example.next", "SelectorsLList3Example.data" ]
[]
false
false
false
false
false
let mk_cell (n: t) (d: a) : Pure cell (requires True) (ensures fun c -> next c == n /\ data c == d) =
LL.mk_cell n d
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.lemma_nat_from_bytes_be_zeroes
val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0)
val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0)
let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 223, "start_col": 0, "start_line": 218 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat). i < len ==> b.[ i ] == Lib.IntTypes.u8 0) (ensures Lib.ByteSequence.nat_from_intseq_be b == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_nat", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.op_Equality", "Prims.int", "Prims.bool", "Hacl.Spec.Bignum.Convert.lemma_nat_from_bytes_be_zeroes", "Prims.op_Subtraction", "Lib.Sequence.slice", "Prims.unit", "Lib.ByteSequence.nat_from_intseq_be_lemma0", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.nat_from_intseq_be_slice_lemma" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_nat_from_bytes_be_zeroes len b =
if len = 0 then () else (nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len - 1) (slice b 1 len))
false
Hacl.Impl.Ed25519.Field51.fst
Hacl.Impl.Ed25519.Field51.refl_ext_point
val refl_ext_point (a: LSeq.lseq uint64 20) : GTot Spec.Ed25519.ext_point
val refl_ext_point (a: LSeq.lseq uint64 20) : GTot Spec.Ed25519.ext_point
let refl_ext_point (a:LSeq.lseq uint64 20) : GTot Spec.Ed25519.ext_point = let open Hacl.Spec.Curve25519.Field51.Definition in let x = feval (lseq_as_felem (LSeq.sub a 0 5)) in let y = feval (lseq_as_felem (LSeq.sub a 5 5)) in let z = feval (lseq_as_felem (LSeq.sub a 10 5)) in let t = feval (lseq_as_felem (LSeq.sub a 15 5)) in (x, y, z, t)
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Field51.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 62, "start_col": 0, "start_line": 56 }
module Hacl.Impl.Ed25519.Field51 open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open FStar.Mul module LSeq = Lib.Sequence module P = Hacl.Impl.Curve25519.Field51 module S = Spec.Curve25519 let felem = lbuffer uint64 5ul let point = lbuffer uint64 20ul let as_nat (h:mem) (f:felem) : GTot nat = P.as_nat h f let fevalh (h:mem) (f:felem) : GTot S.elem = P.fevalh h f noextract val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point let point_eval h p = let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t) noextract val felem_fits: h:mem -> f:felem -> m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5 -> Type0 let felem_fits h f m = P.felem_fits h f m noextract let as_felem (h:mem) (f:felem) = P.as_felem h f noextract let mul_inv_t (h:mem) (f:felem) : GTot Type0 = P.mul_inv_t h f noextract let point_inv_t (h:mem) (p:point) : GTot Type0 = mul_inv_t h (gsub p 0ul 5ul) /\ mul_inv_t h (gsub p 5ul 5ul) /\ mul_inv_t h (gsub p 10ul 5ul) /\ mul_inv_t h (gsub p 15ul 5ul) unfold let lseq_as_felem (a:LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5 = let open Lib.Sequence in (a.[0], a.[1], a.[2], a.[3], a.[4])
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Field51.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "P" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 20 -> Prims.GTot Spec.Ed25519.PointOps.ext_point
Prims.GTot
[ "sometrivial" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple4", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Hacl.Impl.Ed25519.Field51.lseq_as_felem", "Lib.Sequence.sub", "Spec.Ed25519.PointOps.ext_point" ]
[]
false
false
false
false
false
let refl_ext_point (a: LSeq.lseq uint64 20) : GTot Spec.Ed25519.ext_point =
let open Hacl.Spec.Curve25519.Field51.Definition in let x = feval (lseq_as_felem (LSeq.sub a 0 5)) in let y = feval (lseq_as_felem (LSeq.sub a 5 5)) in let z = feval (lseq_as_felem (LSeq.sub a 10 5)) in let t = feval (lseq_as_felem (LSeq.sub a 15 5)) in (x, y, z, t)
false
Steel.ST.Array.fst
Steel.ST.Array.index
val index (#t: Type) (#p: P.perm) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t) : ST t (pts_to a p s) (fun _ -> pts_to a p s) (US.v i < length a \/ US.v i < Seq.length s) (fun res -> Seq.length s == length a /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i))
val index (#t: Type) (#p: P.perm) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t) : ST t (pts_to a p s) (fun _ -> pts_to a p s) (US.v i < length a \/ US.v i < Seq.length s) (fun res -> Seq.length s == length a /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i))
let index #_ #p a #s i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise s)); let res = H.index a i in rewrite (H.pts_to _ _ _) (pts_to _ _ _); return (lower res)
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 20, "end_line": 175, "start_col": 0, "start_line": 167 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x) let gather #_ #_ a #x1 p1 #x2 p2 = rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.Array.array t -> i: FStar.SizeT.t -> Steel.ST.Effect.ST t
Steel.ST.Effect.ST
[]
[]
[ "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.SizeT.t", "Steel.ST.Util.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.Array.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Steel.ST.Array.lower", "Prims.unit", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.pts_to", "Steel.ST.Array.raise_t", "Steel.ST.Array.seq_map", "Steel.ST.Array.raise", "Steel.ST.HigherArray.index" ]
[]
false
true
false
false
false
let index #_ #p a #s i =
rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise s)); let res = H.index a i in rewrite (H.pts_to _ _ _) (pts_to _ _ _); return (lower res)
false
Hacl.Impl.Curve25519.Fields.Core.fsti
Hacl.Impl.Curve25519.Fields.Core.fsqr2_t
val fsqr2_t : s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0
let fsqr2_t (s:field_spec) (p: Type0) = out:felem2 s -> f:felem2 s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f /\ live h tmp /\ (disjoint out f \/ out == f) /\ (disjoint out tmp) /\ disjoint tmp f /\ fsqr2_pre h f) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fmul2_fsqr2_post h1 out /\ (let out1 = gsub out 0ul (nlimb s) in let out2 = gsub out (nlimb s) (nlimb s) in let f1 = gsub f 0ul (nlimb s) in let f2 = gsub f (nlimb s) (nlimb s) in feval h1 out1 == P.fmul (feval h0 f1) (feval h0 f1) /\ feval h1 out2 == P.fmul (feval h0 f2) (feval h0 f2)))
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.Core.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 357, "start_col": 0, "start_line": 338 }
module Hacl.Impl.Curve25519.Fields.Core open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module P = Spec.Curve25519 /// This module defines the core functions for which we will want to swap out /// implementations. They are marked as assume val's since we strictly have more /// than one implementation per index value. #set-options "--z3rlimit 50 --fuel 0 --ifuel 1 --record_options" /// Shared definitions for agility of the field type /// ------------------------------------------------ type field_spec = | M51 | M64 unfold noextract let limb (s:field_spec) = match s with | M51 -> uint64 | M64 -> uint64 unfold noextract let limb_zero (s:field_spec) : limb s= match s with | M51 -> u64 0 | M64 -> u64 0 unfold noextract let nlimb (s:field_spec) : size_t = match s with | M51 -> 5ul | M64 -> 4ul unfold noextract let wide (s:field_spec) = match s with | M51 -> uint128 | M64 -> uint64 unfold noextract let wide_zero (s:field_spec) : wide s= match s with | M51 -> u128 0 | M64 -> u64 0 unfold noextract let nwide (s:field_spec) : size_t = match s with | M51 -> 5ul | M64 -> 8ul inline_for_extraction noextract let felem (s:field_spec) = lbuffer (limb s) (nlimb s) inline_for_extraction noextract let felem2 (s:field_spec) = lbuffer (limb s) (nlimb s +. nlimb s) inline_for_extraction noextract let felem_wide (s:field_spec) = lbuffer (wide s) (nwide s) inline_for_extraction noextract let felem_wide2 (s:field_spec) = lbuffer (wide s) (nwide s +. nwide s) /// Introduce representation for each field + helpers to be able to state pre & posts /// --------------------------------------------------------------------------------- noextract let f51_as_felem (h:mem) (f:felem M51) : GTot Hacl.Spec.Curve25519.Field51.Definition.felem5 = let s = as_seq h f in let s0 = s.[0] in let s1 = s.[1] in let s2 = s.[2] in let s3 = s.[3] in let s4 = s.[4] in (s0, s1, s2, s3, s4) let f51_as_nat h e = Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (f51_as_felem h e) noextract let f51_felem_fits (h:mem) (f:felem M51) (m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5): Type0 = Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 (f51_as_felem h f) m noextract let f51_felem_fits1 = Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 noextract let f51_mul_inv_t (h:mem) (f:felem M51) : GTot Type0 = let f = f51_as_felem h f in Hacl.Spec.Curve25519.Field51.mul_inv_t f noextract let f64_as_nat (h:mem) (e: felem M64) : GTot nat = let s = as_seq h e in let s0 = s.[0] in let s1 = s.[1] in let s2 = s.[2] in let s3 = s.[3] in Hacl.Spec.Curve25519.Field64.Definition.as_nat4 (s0, s1, s2, s3) noextract let as_nat (#s:field_spec) (h:mem) (e:felem s): GTot nat = match s with | M51 -> f51_as_nat h e | M64 -> f64_as_nat h e noextract let feval (#s:field_spec) (h:mem) (e:felem s): GTot P.elem = (as_nat h e) % P.prime /// Start of core combinators /// ------------------------- let fadd_fsub_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:felem s): Type0 = match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True let fadd_post (#s:field_spec) (h:mem) (out:felem s): Type0 = match s with | M51 -> f51_felem_fits h out (2, 4, 2, 2, 2) | M64 -> True inline_for_extraction let fadd_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint f1 f2 \/ f1 == f2) /\ fadd_fsub_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ fadd_post h1 out /\ feval h1 out == P.fadd (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize] val fadd: #s:field_spec -> fadd_t s True let fsub_post (#s:field_spec) (h:mem) (out:felem s): Type0 = match s with | M51 -> f51_felem_fits h out (9, 10, 9, 9, 9) | M64 -> True inline_for_extraction let fsub_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint f1 f2 \/ f1 == f2) /\ fadd_fsub_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ fsub_post h1 out /\ feval h1 out == P.fsub (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize ] val fsub: #s:field_spec -> fsub_t s True let fmul_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:felem s): Type0 = match s with | M51 -> f51_felem_fits h f1 (9, 10, 9, 9, 9) /\ f51_felem_fits h f2 (9, 10, 9, 9, 9) | M64 -> True let fmul_disjoint (#s:field_spec) (out f1 f2:felem s) (tmp:felem_wide2 s): Type0 = match s with | M51 -> True | M64 -> (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp \/ out == tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp let state_inv_t (#s:field_spec) (h:mem) (f:felem s): Type0 = match s with | M51 -> f51_mul_inv_t h f | M64 -> True inline_for_extraction let fmul_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ fmul_disjoint out f1 f2 tmp /\ fmul_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize ] val fmul: #s:field_spec -> fmul_t s True let fmul2_pre (#s:field_spec) (h:mem) (f1:felem2 s) (f2:felem2 s): Type0 = match s with | M51 -> let f10 = gsub f1 0ul 5ul in let f11 = gsub f1 5ul 5ul in let f20 = gsub f2 0ul 5ul in let f21 = gsub f2 5ul 5ul in f51_felem_fits h f10 (9, 10, 9, 9, 9) /\ f51_felem_fits h f11 (9, 10, 9, 9, 9) /\ f51_felem_fits h f20 (9, 10, 9, 9, 9) /\ f51_felem_fits h f21 (9, 10, 9, 9, 9) | M64 -> True let fmul2_fsqr2_post (#s:field_spec) (h:mem) (out:felem2 s): Type0 = match s with | M51 -> let out0 = gsub out 0ul 5ul in let out1 = gsub out 5ul 5ul in f51_mul_inv_t h out0 /\ f51_mul_inv_t h out1 | M64 -> True inline_for_extraction let fmul2_t (s:field_spec) (p: Type0) = out:felem2 s -> f1:felem2 s -> f2:felem2 s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmul2_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fmul2_fsqr2_post h1 out /\ (let out0 = gsub out 0ul (nlimb s) in let out1 = gsub out (nlimb s) (nlimb s) in let f10 = gsub f1 0ul (nlimb s) in let f11 = gsub f1 (nlimb s) (nlimb s) in let f20 = gsub f2 0ul (nlimb s) in let f21 = gsub f2 (nlimb s) (nlimb s) in feval h1 out0 == P.fmul (feval h0 f10) (feval h0 f20) /\ feval h1 out1 == P.fmul (feval h0 f11) (feval h0 f21))) [@ Meta.Attribute.specialize ] val fmul2: #s:field_spec -> fmul2_t s True let fmul1_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:uint64): Type0 = match s with | M51 -> f51_felem_fits h f1 (9, 10, 9, 9, 9) /\ f51_felem_fits1 f2 1 | M64 -> v f2 < pow2 17 inline_for_extraction let fmul1_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:uint64 -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ (disjoint out f1 \/ out == f1) /\ fmul1_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (v f2)) // feval h1 out == (feval h0 f1 * v f2) % P.prime) [@ Meta.Attribute.specialize ] val fmul1: #s:field_spec -> fmul1_t s True let fsqr_pre (#s:field_spec) (h:mem) (f:felem s): Type0 = match s with | M51 -> f51_felem_fits h f (9, 10, 9, 9, 9) | M64 -> True let fsqr_disjoint (#s:field_spec) (out f1:felem s) (tmp:felem_wide s): Type0 = match s with | M51 -> True | M64 -> (disjoint out f1 \/ out == f1) /\ (disjoint out tmp \/ out == tmp) /\ disjoint tmp f1 inline_for_extraction let fsqr_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h tmp /\ fsqr_disjoint out f1 tmp /\ fsqr_pre h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1)) [@ Meta.Attribute.specialize ] val fsqr: #s:field_spec -> fsqr_t s True let fsqr2_pre (#s:field_spec) (h:mem) (f:felem2 s): Type0 = match s with | M51 -> let f1 = gsub f 0ul 5ul in let f2 = gsub f 5ul 5ul in f51_felem_fits h f1 (9, 10, 9, 9, 9) /\ f51_felem_fits h f2 (9, 10, 9, 9, 9) | M64 -> True
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Fields.Core.fsti" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.Fields.Core.felem2", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.limb", "Hacl.Impl.Curve25519.Fields.Core.wide", "Prims.l_or", "Lib.Buffer.disjoint", "Prims.eq2", "Hacl.Impl.Curve25519.Fields.Core.fsqr2_pre", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "Hacl.Impl.Curve25519.Fields.Core.fmul2_fsqr2_post", "Spec.Curve25519.elem", "Hacl.Impl.Curve25519.Fields.Core.feval", "Spec.Curve25519.fmul", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.gsub", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Curve25519.Fields.Core.nlimb", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
true
let fsqr2_t (s: field_spec) (p: Type0) =
out: felem2 s -> f: felem2 s -> tmp: felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f /\ live h tmp /\ (disjoint out f \/ out == f) /\ (disjoint out tmp) /\ disjoint tmp f /\ fsqr2_pre h f) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fmul2_fsqr2_post h1 out /\ (let out1 = gsub out 0ul (nlimb s) in let out2 = gsub out (nlimb s) (nlimb s) in let f1 = gsub f 0ul (nlimb s) in let f2 = gsub f (nlimb s) (nlimb s) in feval h1 out1 == P.fmul (feval h0 f1) (feval h0 f1) /\ feval h1 out2 == P.fmul (feval h0 f2) (feval h0 f2)))
false
Hacl.Impl.Curve25519.Fields.Core.fsti
Hacl.Impl.Curve25519.Fields.Core.fmul2_t
val fmul2_t : s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0
let fmul2_t (s:field_spec) (p: Type0) = out:felem2 s -> f1:felem2 s -> f2:felem2 s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmul2_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fmul2_fsqr2_post h1 out /\ (let out0 = gsub out 0ul (nlimb s) in let out1 = gsub out (nlimb s) (nlimb s) in let f10 = gsub f1 0ul (nlimb s) in let f11 = gsub f1 (nlimb s) (nlimb s) in let f20 = gsub f2 0ul (nlimb s) in let f21 = gsub f2 (nlimb s) (nlimb s) in feval h1 out0 == P.fmul (feval h0 f10) (feval h0 f20) /\ feval h1 out1 == P.fmul (feval h0 f11) (feval h0 f21)))
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.Core.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 267, "start_col": 0, "start_line": 242 }
module Hacl.Impl.Curve25519.Fields.Core open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module P = Spec.Curve25519 /// This module defines the core functions for which we will want to swap out /// implementations. They are marked as assume val's since we strictly have more /// than one implementation per index value. #set-options "--z3rlimit 50 --fuel 0 --ifuel 1 --record_options" /// Shared definitions for agility of the field type /// ------------------------------------------------ type field_spec = | M51 | M64 unfold noextract let limb (s:field_spec) = match s with | M51 -> uint64 | M64 -> uint64 unfold noextract let limb_zero (s:field_spec) : limb s= match s with | M51 -> u64 0 | M64 -> u64 0 unfold noextract let nlimb (s:field_spec) : size_t = match s with | M51 -> 5ul | M64 -> 4ul unfold noextract let wide (s:field_spec) = match s with | M51 -> uint128 | M64 -> uint64 unfold noextract let wide_zero (s:field_spec) : wide s= match s with | M51 -> u128 0 | M64 -> u64 0 unfold noextract let nwide (s:field_spec) : size_t = match s with | M51 -> 5ul | M64 -> 8ul inline_for_extraction noextract let felem (s:field_spec) = lbuffer (limb s) (nlimb s) inline_for_extraction noextract let felem2 (s:field_spec) = lbuffer (limb s) (nlimb s +. nlimb s) inline_for_extraction noextract let felem_wide (s:field_spec) = lbuffer (wide s) (nwide s) inline_for_extraction noextract let felem_wide2 (s:field_spec) = lbuffer (wide s) (nwide s +. nwide s) /// Introduce representation for each field + helpers to be able to state pre & posts /// --------------------------------------------------------------------------------- noextract let f51_as_felem (h:mem) (f:felem M51) : GTot Hacl.Spec.Curve25519.Field51.Definition.felem5 = let s = as_seq h f in let s0 = s.[0] in let s1 = s.[1] in let s2 = s.[2] in let s3 = s.[3] in let s4 = s.[4] in (s0, s1, s2, s3, s4) let f51_as_nat h e = Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (f51_as_felem h e) noextract let f51_felem_fits (h:mem) (f:felem M51) (m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5): Type0 = Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 (f51_as_felem h f) m noextract let f51_felem_fits1 = Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 noextract let f51_mul_inv_t (h:mem) (f:felem M51) : GTot Type0 = let f = f51_as_felem h f in Hacl.Spec.Curve25519.Field51.mul_inv_t f noextract let f64_as_nat (h:mem) (e: felem M64) : GTot nat = let s = as_seq h e in let s0 = s.[0] in let s1 = s.[1] in let s2 = s.[2] in let s3 = s.[3] in Hacl.Spec.Curve25519.Field64.Definition.as_nat4 (s0, s1, s2, s3) noextract let as_nat (#s:field_spec) (h:mem) (e:felem s): GTot nat = match s with | M51 -> f51_as_nat h e | M64 -> f64_as_nat h e noextract let feval (#s:field_spec) (h:mem) (e:felem s): GTot P.elem = (as_nat h e) % P.prime /// Start of core combinators /// ------------------------- let fadd_fsub_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:felem s): Type0 = match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True let fadd_post (#s:field_spec) (h:mem) (out:felem s): Type0 = match s with | M51 -> f51_felem_fits h out (2, 4, 2, 2, 2) | M64 -> True inline_for_extraction let fadd_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint f1 f2 \/ f1 == f2) /\ fadd_fsub_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ fadd_post h1 out /\ feval h1 out == P.fadd (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize] val fadd: #s:field_spec -> fadd_t s True let fsub_post (#s:field_spec) (h:mem) (out:felem s): Type0 = match s with | M51 -> f51_felem_fits h out (9, 10, 9, 9, 9) | M64 -> True inline_for_extraction let fsub_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint f1 f2 \/ f1 == f2) /\ fadd_fsub_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ fsub_post h1 out /\ feval h1 out == P.fsub (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize ] val fsub: #s:field_spec -> fsub_t s True let fmul_pre (#s:field_spec) (h:mem) (f1:felem s) (f2:felem s): Type0 = match s with | M51 -> f51_felem_fits h f1 (9, 10, 9, 9, 9) /\ f51_felem_fits h f2 (9, 10, 9, 9, 9) | M64 -> True let fmul_disjoint (#s:field_spec) (out f1 f2:felem s) (tmp:felem_wide2 s): Type0 = match s with | M51 -> True | M64 -> (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp \/ out == tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp let state_inv_t (#s:field_spec) (h:mem) (f:felem s): Type0 = match s with | M51 -> f51_mul_inv_t h f | M64 -> True inline_for_extraction let fmul_t (s:field_spec) (p: Type0) = out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ fmul_disjoint out f1 f2 tmp /\ fmul_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ state_inv_t h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.specialize ] val fmul: #s:field_spec -> fmul_t s True let fmul2_pre (#s:field_spec) (h:mem) (f1:felem2 s) (f2:felem2 s): Type0 = match s with | M51 -> let f10 = gsub f1 0ul 5ul in let f11 = gsub f1 5ul 5ul in let f20 = gsub f2 0ul 5ul in let f21 = gsub f2 5ul 5ul in f51_felem_fits h f10 (9, 10, 9, 9, 9) /\ f51_felem_fits h f11 (9, 10, 9, 9, 9) /\ f51_felem_fits h f20 (9, 10, 9, 9, 9) /\ f51_felem_fits h f21 (9, 10, 9, 9, 9) | M64 -> True let fmul2_fsqr2_post (#s:field_spec) (h:mem) (out:felem2 s): Type0 = match s with | M51 -> let out0 = gsub out 0ul 5ul in let out1 = gsub out 5ul 5ul in f51_mul_inv_t h out0 /\ f51_mul_inv_t h out1 | M64 -> True
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Fields.Core.fsti" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.Fields.Core.felem2", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.limb", "Hacl.Impl.Curve25519.Fields.Core.wide", "Prims.l_or", "Lib.Buffer.disjoint", "Prims.eq2", "Hacl.Impl.Curve25519.Fields.Core.fmul2_pre", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "Hacl.Impl.Curve25519.Fields.Core.fmul2_fsqr2_post", "Spec.Curve25519.elem", "Hacl.Impl.Curve25519.Fields.Core.feval", "Spec.Curve25519.fmul", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.gsub", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Curve25519.Fields.Core.nlimb", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
true
let fmul2_t (s: field_spec) (p: Type0) =
out: felem2 s -> f1: felem2 s -> f2: felem2 s -> tmp: felem_wide2 s -> Stack unit (requires fun h -> p /\ live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmul2_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fmul2_fsqr2_post h1 out /\ (let out0 = gsub out 0ul (nlimb s) in let out1 = gsub out (nlimb s) (nlimb s) in let f10 = gsub f1 0ul (nlimb s) in let f11 = gsub f1 (nlimb s) (nlimb s) in let f20 = gsub f2 0ul (nlimb s) in let f21 = gsub f2 (nlimb s) (nlimb s) in feval h1 out0 == P.fmul (feval h0 f10) (feval h0 f20) /\ feval h1 out1 == P.fmul (feval h0 f11) (feval h0 f21)))
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.nat_from_bytes_be_eq_lemma
val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b))
val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b))
let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 238, "start_col": 0, "start_line": 230 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len0: Lib.IntTypes.size_nat -> len: Lib.IntTypes.size_nat{len0 <= len} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len0 -> FStar.Pervasives.Lemma (ensures (let tmp = Lib.Sequence.create len (Lib.IntTypes.u8 0) in Lib.ByteSequence.nat_from_intseq_be b == Lib.ByteSequence.nat_from_intseq_be (Lib.Sequence.update_sub tmp (len - len0) len0 b)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.lemma_nat_from_bytes_be_zeroes", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.ByteSequence.nat_from_intseq_be", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Lib.Sequence.slice", "Lib.ByteSequence.nat_from_intseq_be_slice_lemma", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.IntTypes.range_t", "Lib.IntTypes.v", "Lib.Sequence.op_String_Access", "Lib.IntTypes.u8", "Lib.Sequence.seq", "Prims.l_and", "FStar.Seq.Base.length", "FStar.Seq.Base.seq", "Lib.Sequence.index", "Lib.IntTypes.int_t", "Lib.Sequence.sub", "Lib.Sequence.update_sub", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.Sequence.create" ]
[]
false
false
true
false
false
let nat_from_bytes_be_eq_lemma len0 len b =
let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i: nat). i < len - len0 ==> r.[ i ] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0))
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma
val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b)
val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b)
let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 106, "end_line": 385, "start_col": 0, "start_line": 371 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v b == Lib.ByteSequence.nat_from_intseq_le b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Equality", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_eval0", "Prims.bool", "Prims._assert", "Prims.eq2", "Lib.ByteSequence.nat_from_intseq_le", "Lib.IntTypes.SEC", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.unit", "Lib.ByteSequence.nat_from_intseq_le_lemma0", "Lib.Sequence.slice", "Lib.ByteSequence.nat_from_intseq_le_slice_lemma", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims.nat", "Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index" ]
[ "recursion" ]
false
false
true
false
false
let rec bn_v_is_nat_from_intseq_le_lemma #t len b =
if len = 0 then bn_eval0 b else let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[ len - 1 ]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[ len - 1 ])
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.reverse_slice1
val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1)))
val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1)))
let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1)))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 155, "start_col": 0, "start_line": 150 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Lib.Sequence.slice (Hacl.Spec.Bignum.Convert.reverse b) 1 len == Hacl.Spec.Bignum.Convert.reverse (Lib.Sequence.slice b 0 (len - 1)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.eq_intro", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Convert.reverse", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Prims.l_True", "Prims.squash", "Lib.Sequence.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let reverse_slice1 #t #len b =
let lemma_aux (i: nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[ i ] == (reverse (slice b 0 (len - 1))).[ i ]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1)))
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma
val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b)
val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b)
let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 255, "start_col": 0, "start_line": 247 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b) == Lib.ByteSequence.nat_from_bytes_be b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.nat_from_bytes_be_eq_lemma", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma_", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Prims.l_and", "Lib.Sequence.sub", "Prims.op_Subtraction", "Prims.l_Forall", "Prims.l_or", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.int", "Prims.pos", "Prims.pow2", "Prims.op_Multiply" ]
[]
true
false
true
false
false
let bn_from_bytes_be_lemma #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_is_uints_from_bytes_be_reverse
val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b))
val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b))
let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 70, "end_line": 171, "start_col": 0, "start_line": 164 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 (Lib.IntTypes.numbytes t * len) -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.bn_from_bytes_be_ len b == Hacl.Spec.Bignum.Convert.reverse (Lib.ByteSequence.uints_from_bytes_be b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Lib.Sequence.eq_intro", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_", "Hacl.Spec.Bignum.Convert.reverse", "Lib.ByteSequence.uints_from_bytes_be", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.op_LessThan", "Prims.eq2", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Prims.l_True", "Prims.squash", "Lib.Sequence.index", "Prims.Nil", "FStar.Pervasives.pattern", "Lib.ByteSequence.index_uints_from_bytes_be", "Prims.op_Subtraction" ]
[]
false
false
true
false
false
let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b =
let lemma_aux (i: nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[ i ] == (reverse #t #len (uints_from_bytes_be b)).[ i ]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b))
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_be_lemma
val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b))
val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b))
let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 196, "start_col": 0, "start_line": 177 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v b == Lib.ByteSequence.nat_from_intseq_be (Hacl.Spec.Bignum.Convert.reverse b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Equality", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_eval0", "Prims.bool", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.ByteSequence.nat_from_intseq_be", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Convert.reverse", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Lib.Sequence.op_String_Access", "Prims.op_Subtraction", "Lib.ByteSequence.nat_from_intseq_be_lemma0", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Hacl.Spec.Bignum.Convert.reverse_slice1", "Lib.ByteSequence.nat_from_intseq_be_slice_lemma", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_be_lemma", "Lib.Sequence.lseq", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Lib.Sequence.index" ]
[ "recursion" ]
false
false
true
false
false
let rec bn_v_is_nat_from_intseq_be_lemma #t len b =
if len = 0 then bn_eval0 b else let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[ len - 1 ]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[ len - 1 ]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[ 0 ] == b.[ len - 1 ]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[ len - 1 ]); assert (bn_v b == nat_from_intseq_be (reverse b)); ()
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.lemma_nat_from_bytes_le_zeroes
val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0)
val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0)
let rec lemma_nat_from_bytes_le_zeroes len b = if len = 0 then () else begin nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len-1) (slice b 1 len) end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 397, "start_col": 0, "start_line": 392 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b) let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat). i < len ==> b.[ i ] == Lib.IntTypes.u8 0) (ensures Lib.ByteSequence.nat_from_intseq_le b == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_nat", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.op_Equality", "Prims.int", "Prims.bool", "Hacl.Spec.Bignum.Convert.lemma_nat_from_bytes_le_zeroes", "Prims.op_Subtraction", "Lib.Sequence.slice", "Prims.unit", "Lib.ByteSequence.nat_from_intseq_le_lemma0", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.nat_from_intseq_le_slice_lemma" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_nat_from_bytes_le_zeroes len b =
if len = 0 then () else (nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len - 1) (slice b 1 len))
false
Hacl.Impl.Ed25519.Field51.fst
Hacl.Impl.Ed25519.Field51.lseq_as_felem
val lseq_as_felem (a: LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5
val lseq_as_felem (a: LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5
let lseq_as_felem (a:LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5 = let open Lib.Sequence in (a.[0], a.[1], a.[2], a.[3], a.[4])
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Field51.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 53, "start_col": 0, "start_line": 51 }
module Hacl.Impl.Ed25519.Field51 open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open FStar.Mul module LSeq = Lib.Sequence module P = Hacl.Impl.Curve25519.Field51 module S = Spec.Curve25519 let felem = lbuffer uint64 5ul let point = lbuffer uint64 20ul let as_nat (h:mem) (f:felem) : GTot nat = P.as_nat h f let fevalh (h:mem) (f:felem) : GTot S.elem = P.fevalh h f noextract val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point let point_eval h p = let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t) noextract val felem_fits: h:mem -> f:felem -> m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5 -> Type0 let felem_fits h f m = P.felem_fits h f m noextract let as_felem (h:mem) (f:felem) = P.as_felem h f noextract let mul_inv_t (h:mem) (f:felem) : GTot Type0 = P.mul_inv_t h f noextract let point_inv_t (h:mem) (p:point) : GTot Type0 = mul_inv_t h (gsub p 0ul 5ul) /\ mul_inv_t h (gsub p 5ul 5ul) /\ mul_inv_t h (gsub p 10ul 5ul) /\ mul_inv_t h (gsub p 15ul 5ul)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Field51.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "P" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> Hacl.Spec.Curve25519.Field51.Definition.felem5
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple5", "Lib.Sequence.op_String_Access", "Hacl.Spec.Curve25519.Field51.Definition.felem5" ]
[]
false
false
false
false
false
let lseq_as_felem (a: LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5 =
let open Lib.Sequence in (a.[ 0 ], a.[ 1 ], a.[ 2 ], a.[ 3 ], a.[ 4 ])
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.index_bn_to_bytes_be_
val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8))
val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8))
let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 111, "end_line": 273, "start_col": 0, "start_line": 267 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Prims.nat{i < Lib.IntTypes.numbytes t * len} -> FStar.Pervasives.Lemma (ensures (let numb = Lib.IntTypes.numbytes t in (Hacl.Spec.Bignum.Convert.bn_to_bytes_be_ len b).[ i ] == Lib.IntTypes.uint (Lib.IntTypes.v b.[ len - i / numb - 1 ] / Prims.pow2 (8 * (numb - 1 - i % numb)) % Prims.pow2 8)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.l_or", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2", "Prims.op_Subtraction", "Lib.IntTypes.uint_t", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.ByteSequence.uint_to_bytes_be", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint", "Prims.unit", "Lib.ByteSequence.index_uint_to_bytes_be", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_", "Lib.Sequence.index_generate_blocks", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_f", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
true
false
true
false
false
let index_bn_to_bytes_be_ #t len b i =
let numb = numbytes t in let bi = b.[ len - i / numb - 1 ] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[ i ] == (uint_to_bytes_be bi).[ i % numb ]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[ i % numb ] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8))
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.nat_from_bytes_le_eq_lemma
val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b))
val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b))
let nat_from_bytes_le_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp 0 len0 b in assert (slice r 0 len0 == b); assert (forall (i:nat). i < len - len0 ==> r.[len0 + i] == u8 0); nat_from_intseq_le_slice_lemma #U8 #SEC #len r len0; assert (nat_from_intseq_le r == nat_from_intseq_le (slice r 0 len0) + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); lemma_nat_from_bytes_le_zeroes (len - len0) (Seq.slice r len0 len)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 412, "start_col": 0, "start_line": 404 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b) let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0) let rec lemma_nat_from_bytes_le_zeroes len b = if len = 0 then () else begin nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len0: Lib.IntTypes.size_nat -> len: Lib.IntTypes.size_nat{len0 <= len} -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len0 -> FStar.Pervasives.Lemma (ensures (let tmp = Lib.Sequence.create len (Lib.IntTypes.u8 0) in Lib.ByteSequence.nat_from_intseq_le b == Lib.ByteSequence.nat_from_intseq_le (Lib.Sequence.update_sub tmp 0 len0 b)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.lemma_nat_from_bytes_le_zeroes", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.ByteSequence.nat_from_intseq_le", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Lib.Sequence.slice", "Lib.ByteSequence.nat_from_intseq_le_slice_lemma", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.IntTypes.range_t", "Lib.IntTypes.v", "Lib.Sequence.op_String_Access", "Lib.IntTypes.u8", "Lib.Sequence.seq", "Prims.l_and", "FStar.Seq.Base.length", "FStar.Seq.Base.seq", "Lib.Sequence.index", "Lib.IntTypes.int_t", "Lib.Sequence.sub", "Lib.Sequence.update_sub", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.Sequence.create" ]
[]
false
false
true
false
false
let nat_from_bytes_le_eq_lemma len0 len b =
let tmp = create len (u8 0) in let r = update_sub tmp 0 len0 b in assert (slice r 0 len0 == b); assert (forall (i: nat). i < len - len0 ==> r.[ len0 + i ] == u8 0); nat_from_intseq_le_slice_lemma #U8 #SEC #len r len0; assert (nat_from_intseq_le r == nat_from_intseq_le (slice r 0 len0) + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); lemma_nat_from_bytes_le_zeroes (len - len0) (Seq.slice r len0 len)
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma
val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == nat_from_bytes_le b)
val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == nat_from_bytes_le b)
let bn_from_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in let res = uints_from_bytes_le #t #SEC #bnLen tmp in uints_from_bytes_le_nat_lemma #t #SEC #bnLen tmp; bn_v_is_nat_from_intseq_le_lemma bnLen res; nat_from_bytes_le_eq_lemma len tmpLen b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 429, "start_col": 0, "start_line": 421 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b) let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0) let rec lemma_nat_from_bytes_le_zeroes len b = if len = 0 then () else begin nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b)) let nat_from_bytes_le_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp 0 len0 b in assert (slice r 0 len0 == b); assert (forall (i:nat). i < len - len0 ==> r.[len0 + i] == u8 0); nat_from_intseq_le_slice_lemma #U8 #SEC #len r len0; assert (nat_from_intseq_le r == nat_from_intseq_le (slice r 0 len0) + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); lemma_nat_from_bytes_le_zeroes (len - len0) (Seq.slice r len0 len) val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == nat_from_bytes_le b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Convert.bn_from_bytes_le len b) == Lib.ByteSequence.nat_from_bytes_le b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.nat_from_bytes_le_eq_lemma", "Prims.unit", "Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma", "Lib.ByteSequence.uints_from_bytes_le_nat_lemma", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.ByteSequence.uints_from_bytes_le", "Lib.IntTypes.U8", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.int", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply" ]
[]
true
false
true
false
false
let bn_from_bytes_le_lemma #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in let res = uints_from_bytes_le #t #SEC #bnLen tmp in uints_from_bytes_le_nat_lemma #t #SEC #bnLen tmp; bn_v_is_nat_from_intseq_le_lemma bnLen res; nat_from_bytes_le_eq_lemma len tmpLen b
false
Hacl.Spec.K256.Field52.Definitions.Lemmas.fst
Hacl.Spec.K256.Field52.Definitions.Lemmas.as_nat_mod_prime
val as_nat_mod_prime (t0 t1 t2 t3 t4:int) : Lemma ((t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 * pow208) % S.prime = (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 % pow2 48) * pow208 + t4 / pow2 48 * 0x1000003D1) % S.prime)
val as_nat_mod_prime (t0 t1 t2 t3 t4:int) : Lemma ((t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 * pow208) % S.prime = (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 % pow2 48) * pow208 + t4 / pow2 48 * 0x1000003D1) % S.prime)
let as_nat_mod_prime t0 t1 t2 t3 t4 = calc (==) { (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 * pow208) % S.prime; (==) { Math.Lemmas.euclidean_division_definition t4 (pow2 48) } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 / pow2 48 * pow2 48 + t4 % pow2 48) * pow208) % S.prime; (==) { Math.Lemmas.distributivity_add_left (t4 / pow2 48 * pow2 48) (t4 % pow2 48) pow208 } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 / pow2 48 * pow2 48 * pow208 + t4 % pow2 48 * pow208) % S.prime; (==) { Math.Lemmas.paren_mul_right (t4 / pow2 48) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 / pow2 48 * pow2 256 + t4 % pow2 48 * pow208) % S.prime; (==) { lemma_a_plus_b_mul_pow256 (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 % pow2 48 * pow208) (t4 / pow2 48) } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 % pow2 48 * pow208 + t4 / pow2 48 * 0x1000003D1) % S.prime; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Definitions.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 391, "start_col": 0, "start_line": 380 }
module Hacl.Spec.K256.Field52.Definitions.Lemmas open FStar.Mul open Lib.IntTypes open Hacl.Spec.K256.Field52.Definitions module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S = Spec.K256 module ML = Hacl.Spec.K256.MathLemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_as_nat_mod2: x:felem5 -> Lemma (let (x0,x1,x2,x3,x4) = x in as_nat5 x % 2 = v x0 % 2) let lemma_as_nat_mod2 x = let (x0,x1,x2,x3,x4) = x in assert (as_nat5 x = v x0 + v x1 * pow52 + v x2 * pow104 + v x3 * pow156 + v x4 * pow208); assert (as_nat5 x % 2 = (v x0 + v x1 * pow52 + v x2 * pow104 + v x3 * pow156 + v x4 * pow208) % 2); ML.lemma_a_plus_b_pow2_mod2 (v x0 + v x1 * pow52 + v x2 * pow104 + v x3 * pow156) (v x4) 208; ML.lemma_a_plus_b_pow2_mod2 (v x0 + v x1 * pow52 + v x2 * pow104) (v x3) 156; ML.lemma_a_plus_b_pow2_mod2 (v x0 + v x1 * pow52) (v x2) 104; ML.lemma_a_plus_b_pow2_mod2 (v x0) (v x1) 52; assert (as_nat5 x % 2 = v x0 % 2) val lemma_nat_from_bytes_be_mod2: f:LSeq.lseq uint8 32 -> Lemma (BSeq.nat_from_bytes_be f % 2 = v (LSeq.index f 31) % 2) let lemma_nat_from_bytes_be_mod2 f = let x0 = LSeq.index f 31 in BSeq.nat_from_intseq_be_slice_lemma f 31; BSeq.nat_from_intseq_be_lemma0 (LSeq.slice f 31 32); assert (BSeq.nat_from_intseq_be f == v x0 + pow2 8 * BSeq.nat_from_intseq_be (LSeq.slice f 0 31)); ML.lemma_a_plus_b_pow2_mod2 (v x0) (BSeq.nat_from_intseq_be (LSeq.slice f 0 31)) 8 val unfold_nat_from_uint64_four: b:LSeq.lseq uint64 4 -> Lemma (BSeq.nat_from_intseq_be b == v (LSeq.index b 3) + v (LSeq.index b 2) * pow2 64 + v (LSeq.index b 1) * pow2 128 + v (LSeq.index b 0) * pow2 192) let unfold_nat_from_uint64_four b = let b0 = v (LSeq.index b 0) in let b1 = v (LSeq.index b 1) in let b2 = v (LSeq.index b 2) in let b3 = v (LSeq.index b 3) in let res = BSeq.nat_from_intseq_be b in BSeq.nat_from_intseq_be_slice_lemma b 3; BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 3 4); assert (res == b3 + pow2 64 * (BSeq.nat_from_intseq_be (Seq.slice b 0 3))); BSeq.nat_from_intseq_be_slice_lemma #U64 #SEC #3 (Seq.slice b 0 3) 2; BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 2 3); assert (BSeq.nat_from_intseq_be (Seq.slice b 0 3) == b2 + pow2 64 * (BSeq.nat_from_intseq_be (Seq.slice b 0 2))); BSeq.nat_from_intseq_be_slice_lemma #U64 #SEC #2 (Seq.slice b 0 2) 1; BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 1 2); assert (BSeq.nat_from_intseq_be (Seq.slice b 0 2) == b1 + pow2 64 * (BSeq.nat_from_intseq_be (Seq.slice b 0 1))); BSeq.nat_from_intseq_be_lemma0 (Seq.slice b 0 1); assert (res == b3 + pow2 64 * (b2 + pow2 64 * (b1 + pow2 64 * b0))); ML.lemma_as_nat64_horner b3 b2 b1 b0 val lemma_prime : unit -> Lemma (pow2 256 % S.prime = 0x1000003D1) let lemma_prime () = () val lemma_pow2_256_minus_prime : unit -> Lemma (pow2 256 - S.prime = 0x1000003D1) let lemma_pow2_256_minus_prime () = () val lemma_pow2_260_mod_prime: unit -> Lemma (pow2 260 % S.prime = 0x1000003D10) let lemma_pow2_260_mod_prime () = calc (==) { pow2 260 % S.prime; (==) { Math.Lemmas.pow2_plus 256 4 } pow2 256 * pow2 4 % S.prime; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow2 256) (pow2 4) S.prime } (pow2 256 % S.prime) * pow2 4 % S.prime; (==) { lemma_prime () } 0x1000003D1 * pow2 4 % S.prime; (==) { assert_norm (0x1000003D1 * pow2 4 = 0x1000003D10) } 0x1000003D10 % S.prime; (==) { Math.Lemmas.small_mod 0x1000003D10 S.prime } 0x1000003D10; } val lemma_as_nat_bound_f4_lt_powa: f:felem5 -> a:nat -> Lemma (requires (let (f0,f1,f2,f3,f4) = f in felem_fits5 f (1,1,1,1,1) /\ v f4 < pow2 a)) (ensures as_nat5 f <= pow2 (208 + a) - 1) let lemma_as_nat_bound_f4_lt_powa f a = let (f0,f1,f2,f3,f4) = f in calc (<=) { //as_nat5 f == v f0 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208; (<=) { } pow2 52 - 1 + v f1 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208; (<=) { Math.Lemmas.lemma_mult_le_right pow52 (v f1) (pow2 52 - 1); Math.Lemmas.distributivity_sub_left (pow2 52) 1 pow52 } pow2 52 * pow52 + v f2 * pow104 + v f3 * pow156 + v f4 * pow208 - 1; (<=) { Math.Lemmas.lemma_mult_le_right pow104 (v f2) (pow2 52 - 1); Math.Lemmas.distributivity_sub_left (pow2 52) 1 pow104; Math.Lemmas.pow2_plus 52 52 } pow2 52 * pow104 + v f3 * pow156 + v f4 * pow208 - 1; (<=) { Math.Lemmas.lemma_mult_le_right pow156 (v f3) (pow2 52 - 1); Math.Lemmas.distributivity_sub_left (pow2 52) 1 pow156; Math.Lemmas.pow2_plus 52 104 } pow2 52 * pow156 + v f4 * pow208 - 1; (<=) { Math.Lemmas.lemma_mult_le_right pow208 (v f4) (pow2 a - 1); Math.Lemmas.distributivity_sub_left (pow2 a) 1 pow208; Math.Lemmas.pow2_plus 52 156; Math.Lemmas.pow2_plus a 208 } pow2 (208 + a) - 1; } val lemma_as_nat_bound: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures as_nat5 f < pow2 256) let lemma_as_nat_bound f = lemma_as_nat_bound_f4_lt_powa f 48 val lemma_as_nat_bound_f4_lt_pow12: f:felem5 -> Lemma (requires (let (f0,f1,f2,f3,f4) = f in felem_fits5 f (1,1,1,1,1) /\ v f4 < pow2 12)) (ensures as_nat5 f <= pow2 220 - 1) let lemma_as_nat_bound_f4_lt_pow12 f = lemma_as_nat_bound_f4_lt_powa f 12 val lemma_as_nat_decompose: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let (f0,f1,f2,f3,f4) = f in v f4 = as_nat5 f / pow208 /\ v f3 = as_nat5 f % pow208 / pow156 /\ v f2 = as_nat5 f % pow156 / pow104 /\ v f1 = as_nat5 f % pow104 / pow52 /\ v f0 = as_nat5 f % pow52)) let lemma_as_nat_decompose f = let (f0,f1,f2,f3,f4) = f in lemma_as_nat_bound f; Math.Lemmas.euclidean_division_definition (as_nat5 f) pow208; assert (v f4 = as_nat5 f / pow208); Math.Lemmas.euclidean_division_definition (as_nat5 f % pow208) pow156; assert (v f3 = as_nat5 f % pow208 / pow156); Math.Lemmas.pow2_modulo_modulo_lemma_1 (as_nat5 f) 156 208; assert (as_nat5 f % pow208 % pow156 == as_nat5 f % pow156); Math.Lemmas.euclidean_division_definition (as_nat5 f % pow156) pow104; assert (v f2 = as_nat5 f % pow156 / pow104); Math.Lemmas.pow2_modulo_modulo_lemma_1 (as_nat5 f) 104 156; assert (as_nat5 f % pow156 % pow104 == as_nat5 f % pow104); Math.Lemmas.euclidean_division_definition (as_nat5 f % pow104) pow52; assert (v f1 = as_nat5 f % pow104 / pow52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (as_nat5 f) 52 104; assert (as_nat5 f % pow104 % pow52 == as_nat5 f % pow52); assert (v f0 = as_nat5 f % pow52) #push-options "--ifuel 1" val as_nat_inj (f1 f2: felem5) : Lemma (requires felem_fits5 f1 (1,1,1,1,1) /\ felem_fits5 f2 (1,1,1,1,1) /\ as_nat5 f1 == as_nat5 f2) (ensures (let (a0,a1,a2,a3,a4) = f1 in let (b0,b1,b2,b3,b4) = f2 in a0 == b0 /\ a1 == b1 /\ a2 == b2 /\ a3 == b3 /\ a4 == b4)) let as_nat_inj f1 f2 = lemma_as_nat_decompose f1; lemma_as_nat_decompose f2 #pop-options val lemma_normalize_x_le_1: t4:uint64 -> Lemma (requires felem_fits_last1 t4 2) (ensures v t4 / pow2 48 <= 1) let lemma_normalize_x_le_1 t4 = calc (==) { (2 * (pow2 48 - 1)) / pow2 48; (==) { Math.Lemmas.distributivity_add_right 2 (pow2 48) 1 } (2 * pow2 48 - 2) / pow2 48; (==) { Math.Lemmas.division_addition_lemma (-2) (pow2 48) 2 } (-2) / pow2 48 + 2; (==) { assert_norm ((-2) / pow2 48 = -1) } 1; }; assert (v t4 <= 2 * (pow2 48 - 1)); Math.Lemmas.lemma_div_le (v t4) (2 * pow2 48 - 2) (pow2 48); assert (v t4 / pow2 48 <= 1) val lemma_div_pow48: t4:uint64 -> Lemma (requires felem_fits_last1 t4 2) (ensures v t4 / pow2 48 == (if v t4 < pow2 48 then 0 else 1)) let lemma_div_pow48 t4 = if v t4 < pow2 48 then Math.Lemmas.small_div (v t4) (pow2 48) else begin lemma_normalize_x_le_1 t4; assert (v t4 / pow2 48 <= 1); Math.Lemmas.lemma_div_le (pow2 48) (v t4) (pow2 48); assert (1 <= v t4 / pow2 48) end val lemma_mask52: a:uint64 -> Lemma (let r = a &. mask52 in v r = v a % pow2 52 /\ felem_fits1 r 1) let lemma_mask52 a = let r = a &. mask52 in assert_norm (v mask52 = pow2 52 - 1); mod_mask_lemma a 52ul; assert (v (mod_mask #U64 #SEC 52ul) == v mask52); assert (v r = v a % pow2 52); assert (felem_fits1 r 1) val lemma_mask48: a:uint64 -> Lemma (let r = a &. mask48 in v r = v a % pow2 48 /\ felem_fits_last1 r 1) let lemma_mask48 a = let r = a &. mask48 in assert_norm (v mask48 = pow2 48 - 1); mod_mask_lemma a 48ul; assert (v (mod_mask #U64 #SEC 48ul) == v mask48); assert (v r = v a % pow2 48); assert (felem_fits_last1 r 1) val lemma_add_rsh52: m1:scale64 -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 4096) (ensures (let c = a +. (b >>. 52ul) in felem_fits1 c (m1 + 1) /\ v c = v a + v b / pow2 52)) let lemma_add_rsh52 m1 m2 a b = let c = a +. (b >>. 52ul) in calc (<) { v a + v b / pow2 52; (<) { Math.Lemmas.lemma_div_lt (v b) 64 52 } m1 * max52 + pow2 12; (<=) { Math.Lemmas.pow2_lt_compat 52 12 } m1 * max52 + max52; (==) { Math.Lemmas.distributivity_add_left m1 1 max52 } (m1 + 1) * max52; }; Math.Lemmas.lemma_mult_le_right max52 (m1 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a + v b / pow2 52) (pow2 64); assert (v c = v a + v b / pow2 52); assert (felem_fits1 c (m1 + 1)) val lemma_add_rsh52_last: m1:scale64_last -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits_last1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 65536) (ensures (let c = a +. (b >>. 52ul) in felem_fits_last1 c (m1 + 1) /\ v c = v a + v b / pow2 52)) let lemma_add_rsh52_last m1 m2 a b = let c = a +. (b >>. 52ul) in calc (<) { v a + v b / pow2 52; (<) { Math.Lemmas.lemma_div_lt (v b) 64 52 } m1 * max48 + pow2 12; (<=) { Math.Lemmas.pow2_lt_compat 48 12 } m1 * max48 + max48; (==) { Math.Lemmas.distributivity_add_left m1 1 max48 } (m1 + 1) * max48; }; Math.Lemmas.lemma_mult_le_right max48 (m1 + 1) 65536; assert_norm (65536 * max48 < pow2 64); Math.Lemmas.small_mod (v a + v b / pow2 52) (pow2 64); assert (v c = v a + v b / pow2 52); assert (felem_fits_last1 c (m1 + 1)) val lemma_carry52: m1:scale64 -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 4096) (ensures (let c = a +. (b >>. 52ul) in let d = b &. mask52 in felem_fits1 d 1 /\ felem_fits1 c (m1 + 1) /\ v d = v b % pow2 52 /\ v c = v a + v b / pow2 52)) let lemma_carry52 m1 m2 a b = lemma_mask52 b; lemma_add_rsh52 m1 m2 a b val lemma_carry_last52: m1:scale64_last -> m2:scale64 -> a:uint64 -> b:uint64 -> Lemma (requires felem_fits_last1 a m1 /\ felem_fits1 b m2 /\ m1 + 1 <= 65536) (ensures (let c = a +. (b >>. 52ul) in let d = b &. mask52 in felem_fits1 d 1 /\ felem_fits_last1 c (m1 + 1) /\ v d = v b % pow2 52 /\ v c = v a + v b / pow2 52)) let lemma_carry_last52 m1 m2 a b = lemma_mask52 b; lemma_add_rsh52_last m1 m2 a b val lemma_small_sub_mod: a:nat -> n:pos -> Lemma (requires n <= a /\ a < 2 * n) (ensures a % n = a - n) let lemma_small_sub_mod a n = calc (==) { a % n; (==) { Math.Lemmas.sub_div_mod_1 a n } (a - n) % n; (==) { Math.Lemmas.small_mod (a - n) n } a - n; } val carry_last_small_mod_lemma: t4:uint64 -> t3':uint64 -> Lemma (requires felem_fits_last1 t4 1 /\ v (t4 +. (t3' >>. 52ul)) == v t4 + v t3' / pow2 52) (ensures (let r = t4 +. (t3' >>. 52ul) in felem_fits_last1 r 2 /\ v r < v t4 + pow2 12 /\ (v r >= pow2 48 ==> v r % pow2 48 < pow2 12))) let carry_last_small_mod_lemma t4 t3' = let r = t4 +. (t3' >>. 52ul) in assert (v r = v t4 + v t3' / pow2 52); Math.Lemmas.lemma_div_lt (v t3') 64 52; assert (v r < v t4 + pow2 12); Math.Lemmas.pow2_lt_compat 48 12; assert (felem_fits_last1 r 2); if v r >= pow2 48 then begin lemma_small_sub_mod (v r) (pow2 48); assert (v r % pow2 48 = v r - pow2 48); assert (v r % pow2 48 < pow2 12) end val lemma_a_plus_b_mul_pow256 (a b:int) : Lemma ((a + b * pow2 256) % S.prime == (a + b * 0x1000003D1) % S.prime) let lemma_a_plus_b_mul_pow256 a b = calc (==) { (a + b * pow2 256) % S.prime; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 256) S.prime } (a + b * pow2 256 % S.prime) % S.prime; (==) { Math.Lemmas.lemma_mod_mul_distr_r b (pow2 256) S.prime } (a + b * (pow2 256 % S.prime) % S.prime) % S.prime; (==) { lemma_prime () } (a + b * 0x1000003D1 % S.prime) % S.prime; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b * 0x1000003D1) S.prime } (a + b * 0x1000003D1) % S.prime; } val as_nat_mod_prime (t0 t1 t2 t3 t4:int) : Lemma ((t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 * pow208) % S.prime = (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 % pow2 48) * pow208 + t4 / pow2 48 * 0x1000003D1) % S.prime)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t0: Prims.int -> t1: Prims.int -> t2: Prims.int -> t3: Prims.int -> t4: Prims.int -> FStar.Pervasives.Lemma (ensures (t0 + t1 * Hacl.Spec.K256.Field52.Definitions.pow52 + t2 * Hacl.Spec.K256.Field52.Definitions.pow104 + t3 * Hacl.Spec.K256.Field52.Definitions.pow156 + t4 * Hacl.Spec.K256.Field52.Definitions.pow208) % Spec.K256.PointOps.prime = (t0 + t1 * Hacl.Spec.K256.Field52.Definitions.pow52 + t2 * Hacl.Spec.K256.Field52.Definitions.pow104 + t3 * Hacl.Spec.K256.Field52.Definitions.pow156 + (t4 % Prims.pow2 48) * Hacl.Spec.K256.Field52.Definitions.pow208 + (t4 / Prims.pow2 48) * 0x1000003D1) % Spec.K256.PointOps.prime)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208", "Spec.K256.PointOps.prime", "Prims.pow2", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_a_plus_b_mul_pow256" ]
[]
false
false
true
false
false
let as_nat_mod_prime t0 t1 t2 t3 t4 =
calc ( == ) { (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + t4 * pow208) % S.prime; ( == ) { Math.Lemmas.euclidean_division_definition t4 (pow2 48) } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + ((t4 / pow2 48) * pow2 48 + t4 % pow2 48) * pow208) % S.prime; ( == ) { Math.Lemmas.distributivity_add_left ((t4 / pow2 48) * pow2 48) (t4 % pow2 48) pow208 } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + ((t4 / pow2 48) * pow2 48) * pow208 + (t4 % pow2 48) * pow208) % S.prime; ( == ) { (Math.Lemmas.paren_mul_right (t4 / pow2 48) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208) } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 / pow2 48) * pow2 256 + (t4 % pow2 48) * pow208 ) % S.prime; ( == ) { lemma_a_plus_b_mul_pow256 (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 % pow2 48) * pow208) (t4 / pow2 48) } (t0 + t1 * pow52 + t2 * pow104 + t3 * pow156 + (t4 % pow2 48) * pow208 + (t4 / pow2 48) * 0x1000003D1) % S.prime; }
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_le_is_uints_from_bytes_le
val bn_from_bytes_le_is_uints_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (bn_from_bytes_le #t len b == uints_from_bytes_le b)
val bn_from_bytes_le_is_uints_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (bn_from_bytes_le #t len b == uints_from_bytes_le b)
let bn_from_bytes_le_is_uints_from_bytes_le #t len b = let lp = bn_from_bytes_le #t len b in let rp = uints_from_bytes_le #t #SEC #(len / numbytes t) b in //uints_from_bytes_le_nat_lemma #t #SEC #(len / numbytes t) b; //assert (nat_from_intseq_le rp == nat_from_bytes_le b); //bn_from_bytes_le_lemma #t len b; //assert (bn_v lp == nat_from_bytes_le b); //assert (nat_from_intseq_le rp == bn_v lp); assert (bn_v rp == bn_v lp); bn_eval_inj (len / numbytes t) rp lp
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 478, "start_col": 0, "start_line": 468 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b) let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0) let rec lemma_nat_from_bytes_le_zeroes len b = if len = 0 then () else begin nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b)) let nat_from_bytes_le_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp 0 len0 b in assert (slice r 0 len0 == b); assert (forall (i:nat). i < len - len0 ==> r.[len0 + i] == u8 0); nat_from_intseq_le_slice_lemma #U8 #SEC #len r len0; assert (nat_from_intseq_le r == nat_from_intseq_le (slice r 0 len0) + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); lemma_nat_from_bytes_le_zeroes (len - len0) (Seq.slice r len0 len) val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == nat_from_bytes_le b) let bn_from_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in let res = uints_from_bytes_le #t #SEC #bnLen tmp in uints_from_bytes_le_nat_lemma #t #SEC #bnLen tmp; bn_v_is_nat_from_intseq_le_lemma bnLen res; nat_from_bytes_le_eq_lemma len tmpLen b val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == nat_to_intseq_le #U8 len (bn_v b)) let bn_to_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in let res = sub tmp 0 len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); uints_to_bytes_le_nat_lemma #t #SEC bnLen (bn_v b); bn_v_is_nat_from_intseq_le_lemma bnLen b; lemma_nat_from_to_intseq_le_preserves_value bnLen b; assert (uints_to_bytes_le #t #SEC #bnLen b == nat_to_intseq_le #U8 tmpLen (bn_v b)); let aux (i:nat{i < len}) : Lemma (index #uint8 #tmpLen (nat_to_intseq_le #U8 tmpLen (bn_v b)) i == index #uint8 #len (nat_to_intseq_le #U8 len (bn_v b)) i) = index_nat_to_intseq_le #U8 #SEC tmpLen (bn_v b) i; index_nat_to_intseq_le #U8 #SEC len (bn_v b) i in Classical.forall_intro aux; eq_intro (nat_to_intseq_le #U8 #SEC len (bn_v b)) res val bn_from_bytes_le_is_uints_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (bn_from_bytes_le #t len b == uints_from_bytes_le b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t /\ len % Lib.IntTypes.numbytes t = 0 } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.bn_from_bytes_le len b == Lib.ByteSequence.uints_from_bytes_le b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.bn_eval_inj", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.ByteSequence.uints_from_bytes_le", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Convert.bn_from_bytes_le" ]
[]
true
false
true
false
false
let bn_from_bytes_le_is_uints_from_bytes_le #t len b =
let lp = bn_from_bytes_le #t len b in let rp = uints_from_bytes_le #t #SEC #(len / numbytes t) b in assert (bn_v rp == bn_v lp); bn_eval_inj (len / numbytes t) rp lp
false
Print.fst
Print.just_print
val just_print (s: string) : Tac unit
val just_print (s: string) : Tac unit
let just_print (s: string): Tac unit = dump s
{ "file_name": "examples/native_tactics/Print.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 22, "start_col": 0, "start_line": 21 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Print open FStar.Tactics.V2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Print.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.string", "FStar.Stubs.Tactics.V2.Builtins.dump", "Prims.unit" ]
[]
false
true
false
false
false
let just_print (s: string) : Tac unit =
dump s
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_is_uints_from_bytes_be
val bn_from_bytes_be_is_uints_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (reverse (bn_from_bytes_be #t len b) == uints_from_bytes_be b)
val bn_from_bytes_be_is_uints_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (reverse (bn_from_bytes_be #t len b) == uints_from_bytes_be b)
let bn_from_bytes_be_is_uints_from_bytes_be #t len b = let lp = bn_from_bytes_be #t len b in let rp = uints_from_bytes_be #t #SEC #(len / numbytes t) b in uints_from_bytes_be_nat_lemma #t #SEC #(len / numbytes t) b; assert (nat_from_intseq_be rp == nat_from_bytes_be b); bn_from_bytes_be_lemma #t len b; assert (bn_v lp == nat_from_bytes_be b); bn_v_is_nat_from_intseq_be_lemma (len / numbytes t) lp; assert (bn_v lp == nat_from_intseq_be (reverse lp)); assert (nat_from_intseq_be rp == nat_from_intseq_be (reverse lp)); nat_from_intseq_be_inj rp (reverse lp)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 499, "start_col": 0, "start_line": 487 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b) let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0) let rec lemma_nat_from_bytes_le_zeroes len b = if len = 0 then () else begin nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b)) let nat_from_bytes_le_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp 0 len0 b in assert (slice r 0 len0 == b); assert (forall (i:nat). i < len - len0 ==> r.[len0 + i] == u8 0); nat_from_intseq_le_slice_lemma #U8 #SEC #len r len0; assert (nat_from_intseq_le r == nat_from_intseq_le (slice r 0 len0) + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); lemma_nat_from_bytes_le_zeroes (len - len0) (Seq.slice r len0 len) val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == nat_from_bytes_le b) let bn_from_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in let res = uints_from_bytes_le #t #SEC #bnLen tmp in uints_from_bytes_le_nat_lemma #t #SEC #bnLen tmp; bn_v_is_nat_from_intseq_le_lemma bnLen res; nat_from_bytes_le_eq_lemma len tmpLen b val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == nat_to_intseq_le #U8 len (bn_v b)) let bn_to_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in let res = sub tmp 0 len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); uints_to_bytes_le_nat_lemma #t #SEC bnLen (bn_v b); bn_v_is_nat_from_intseq_le_lemma bnLen b; lemma_nat_from_to_intseq_le_preserves_value bnLen b; assert (uints_to_bytes_le #t #SEC #bnLen b == nat_to_intseq_le #U8 tmpLen (bn_v b)); let aux (i:nat{i < len}) : Lemma (index #uint8 #tmpLen (nat_to_intseq_le #U8 tmpLen (bn_v b)) i == index #uint8 #len (nat_to_intseq_le #U8 len (bn_v b)) i) = index_nat_to_intseq_le #U8 #SEC tmpLen (bn_v b) i; index_nat_to_intseq_le #U8 #SEC len (bn_v b) i in Classical.forall_intro aux; eq_intro (nat_to_intseq_le #U8 #SEC len (bn_v b)) res val bn_from_bytes_le_is_uints_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (bn_from_bytes_le #t len b == uints_from_bytes_le b) let bn_from_bytes_le_is_uints_from_bytes_le #t len b = let lp = bn_from_bytes_le #t len b in let rp = uints_from_bytes_le #t #SEC #(len / numbytes t) b in //uints_from_bytes_le_nat_lemma #t #SEC #(len / numbytes t) b; //assert (nat_from_intseq_le rp == nat_from_bytes_le b); //bn_from_bytes_le_lemma #t len b; //assert (bn_v lp == nat_from_bytes_le b); //assert (nat_from_intseq_le rp == bn_v lp); assert (bn_v rp == bn_v lp); bn_eval_inj (len / numbytes t) rp lp val bn_from_bytes_be_is_uints_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t /\ len % numbytes t = 0} -> b:lseq uint8 len -> Lemma (reverse (bn_from_bytes_be #t len b) == uints_from_bytes_be b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t /\ len % Lib.IntTypes.numbytes t = 0 } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.reverse (Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b) == Lib.ByteSequence.uints_from_bytes_be b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Lib.ByteSequence.nat_from_intseq_be_inj", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Convert.reverse", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "Prims.pow2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.bits", "Lib.ByteSequence.nat_from_intseq_be", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_be_lemma", "Prims.op_Division", "Lib.ByteSequence.nat_from_bytes_be", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma", "Lib.IntTypes.U8", "Lib.ByteSequence.uints_from_bytes_be_nat_lemma", "Lib.IntTypes.int_t", "Lib.ByteSequence.uints_from_bytes_be", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be" ]
[]
true
false
true
false
false
let bn_from_bytes_be_is_uints_from_bytes_be #t len b =
let lp = bn_from_bytes_be #t len b in let rp = uints_from_bytes_be #t #SEC #(len / numbytes t) b in uints_from_bytes_be_nat_lemma #t #SEC #(len / numbytes t) b; assert (nat_from_intseq_be rp == nat_from_bytes_be b); bn_from_bytes_be_lemma #t len b; assert (bn_v lp == nat_from_bytes_be b); bn_v_is_nat_from_intseq_be_lemma (len / numbytes t) lp; assert (bn_v lp == nat_from_intseq_be (reverse lp)); assert (nat_from_intseq_be rp == nat_from_intseq_be (reverse lp)); nat_from_intseq_be_inj rp (reverse lp)
false
Hacl.Impl.Ed25519.Field51.fst
Hacl.Impl.Ed25519.Field51.linv
val linv (a: LSeq.lseq uint64 20) : Type0
val linv (a: LSeq.lseq uint64 20) : Type0
let linv (a:LSeq.lseq uint64 20) : Type0 = let open Hacl.Spec.Curve25519.Field51 in mul_inv_t (lseq_as_felem (LSeq.sub a 0 5)) /\ mul_inv_t (lseq_as_felem (LSeq.sub a 5 5)) /\ mul_inv_t (lseq_as_felem (LSeq.sub a 10 5)) /\ mul_inv_t (lseq_as_felem (LSeq.sub a 15 5)) /\ inv_ext_point a
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Field51.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 75, "start_col": 0, "start_line": 69 }
module Hacl.Impl.Ed25519.Field51 open FStar.HyperStack open Lib.IntTypes open Lib.Buffer open FStar.Mul module LSeq = Lib.Sequence module P = Hacl.Impl.Curve25519.Field51 module S = Spec.Curve25519 let felem = lbuffer uint64 5ul let point = lbuffer uint64 20ul let as_nat (h:mem) (f:felem) : GTot nat = P.as_nat h f let fevalh (h:mem) (f:felem) : GTot S.elem = P.fevalh h f noextract val point_eval:h:mem -> p:point -> GTot Spec.Ed25519.ext_point let point_eval h p = let x = gsub p 0ul 5ul in let y = gsub p 5ul 5ul in let z = gsub p 10ul 5ul in let t = gsub p 15ul 5ul in (fevalh h x, fevalh h y, fevalh h z, fevalh h t) noextract val felem_fits: h:mem -> f:felem -> m:Hacl.Spec.Curve25519.Field51.Definition.scale64_5 -> Type0 let felem_fits h f m = P.felem_fits h f m noextract let as_felem (h:mem) (f:felem) = P.as_felem h f noextract let mul_inv_t (h:mem) (f:felem) : GTot Type0 = P.mul_inv_t h f noextract let point_inv_t (h:mem) (p:point) : GTot Type0 = mul_inv_t h (gsub p 0ul 5ul) /\ mul_inv_t h (gsub p 5ul 5ul) /\ mul_inv_t h (gsub p 10ul 5ul) /\ mul_inv_t h (gsub p 15ul 5ul) unfold let lseq_as_felem (a:LSeq.lseq uint64 5) : Hacl.Spec.Curve25519.Field51.Definition.felem5 = let open Lib.Sequence in (a.[0], a.[1], a.[2], a.[3], a.[4]) unfold let refl_ext_point (a:LSeq.lseq uint64 20) : GTot Spec.Ed25519.ext_point = let open Hacl.Spec.Curve25519.Field51.Definition in let x = feval (lseq_as_felem (LSeq.sub a 0 5)) in let y = feval (lseq_as_felem (LSeq.sub a 5 5)) in let z = feval (lseq_as_felem (LSeq.sub a 10 5)) in let t = feval (lseq_as_felem (LSeq.sub a 15 5)) in (x, y, z, t) unfold let inv_ext_point (a:LSeq.lseq uint64 20) : Type0 = Spec.Ed25519.point_inv (refl_ext_point a)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Field51.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "P" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 20 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.mul_inv_t", "Hacl.Impl.Ed25519.Field51.lseq_as_felem", "Lib.Sequence.sub", "Hacl.Impl.Ed25519.Field51.inv_ext_point" ]
[]
false
false
false
false
true
let linv (a: LSeq.lseq uint64 20) : Type0 =
let open Hacl.Spec.Curve25519.Field51 in mul_inv_t (lseq_as_felem (LSeq.sub a 0 5)) /\ mul_inv_t (lseq_as_felem (LSeq.sub a 5 5)) /\ mul_inv_t (lseq_as_felem (LSeq.sub a 10 5)) /\ mul_inv_t (lseq_as_felem (LSeq.sub a 15 5)) /\ inv_ext_point a
false
Lib.IntVector.Transpose.fst
Lib.IntVector.Transpose.transpose8x8_lseq_is_transposewxw
val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012)
val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012)
let transpose8x8_lseq_is_transposewxw #t vs0 = let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in eq_intro res0 (f_lseq8 vs0 transpose8x8_0); let res1 = transposewxw_f n 1 res0 in eq_intro res1 (f_lseq8 res0 transpose8x8_1); let res2 = transposewxw_f n 2 res1 in eq_intro res2 (f_lseq8 res1 transpose8x8_2); eq_intro (transposewxw_lseq 3 vs0) (f_lseq8 vs0 transpose8x8_012)
{ "file_name": "lib/Lib.IntVector.Transpose.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 67, "end_line": 214, "start_col": 0, "start_line": 201 }
module Lib.IntVector.Transpose module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// transpose4x4 /// inline_for_extraction val transpose4x4_0: #t:v_inttype -> vec_t4 t -> vec_t4 t let transpose4x4_0 #t (v0,v1,v2,v3) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v0'' = vec_interleave_low_n 2 v0' v2' in let v1'' = vec_interleave_high_n 2 v0' v2' in let v2'' = vec_interleave_low_n 2 v1' v3' in let v3'' = vec_interleave_high_n 2 v1' v3' in (v0'',v2'',v1'',v3'') inline_for_extraction val transpose4x4_uint32: #t:v_inttype{t == U32} -> vec_t4 t -> vec_t4 t let transpose4x4_uint32 #t vs = let (v0'',v2'',v1'',v3'') = transpose4x4_0 #t vs in (v0'',v1'',v2'',v3'') inline_for_extraction val transpose4x4_uint64: #t:v_inttype{t == U64} -> vec_t4 t -> vec_t4 t let transpose4x4_uint64 #t vs = transpose4x4_0 #t vs let transpose4x4 #t vs = match t with | U32 -> transpose4x4_uint32 #t vs | U64 -> transpose4x4_uint64 #t vs /// /// transpose8x8 /// inline_for_extraction val transpose8x8_0: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low v0 v1 in let v1' = vec_interleave_high v0 v1 in let v2' = vec_interleave_low v2 v3 in let v3' = vec_interleave_high v2 v3 in let v4' = vec_interleave_low v4 v5 in let v5' = vec_interleave_high v4 v5 in let v6' = vec_interleave_low v6 v7 in let v7' = vec_interleave_high v6 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_1: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_1 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 2 v0 v2 in let v2' = vec_interleave_high_n 2 v0 v2 in let v1' = vec_interleave_low_n 2 v1 v3 in let v3' = vec_interleave_high_n 2 v1 v3 in let v4' = vec_interleave_low_n 2 v4 v6 in let v6' = vec_interleave_high_n 2 v4 v6 in let v5' = vec_interleave_low_n 2 v5 v7 in let v7' = vec_interleave_high_n 2 v5 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_2: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_2 #t (v0,v1,v2,v3,v4,v5,v6,v7) = let v0' = vec_interleave_low_n 4 v0 v4 in let v4' = vec_interleave_high_n 4 v0 v4 in let v1' = vec_interleave_low_n 4 v1 v5 in let v5' = vec_interleave_high_n 4 v1 v5 in let v2' = vec_interleave_low_n 4 v2 v6 in let v6' = vec_interleave_high_n 4 v2 v6 in let v3' = vec_interleave_low_n 4 v3 v7 in let v7' = vec_interleave_high_n 4 v3 v7 in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_012: #t:v_inttype -> vec_t8 t -> vec_t8 t let transpose8x8_012 #t vs0 = let (v0,v1,v2,v3,v4,v5,v6,v7) = vs0 in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_0 #t (v0,v1,v2,v3,v4,v5,v6,v7) in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_1 #t (v0',v1',v2',v3',v4',v5',v6',v7') in let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_2 #t (v0',v1',v2',v3',v4',v5',v6',v7') in (v0',v1',v2',v3',v4',v5',v6',v7') inline_for_extraction val transpose8x8_uint32: #t:v_inttype{t == U32} -> vec_t8 t -> vec_t8 t let transpose8x8_uint32 #t vs0 = let (v0',v1',v2',v3',v4',v5',v6',v7') = transpose8x8_012 #t vs0 in (v0',v2',v1',v3',v4',v6',v5',v7') let transpose8x8 #t vs = match t with | U32 -> transpose8x8_uint32 #t vs /// /// generic transpose /// val lemma_l_plus_pow2i_lt: #w:pos -> n:nat{pow2 n == w} -> i:nat{i < n} -> l:nat{l < w} -> Lemma (requires l % (2 * pow2 i) < pow2 i) (ensures l + pow2 i < w) let lemma_l_plus_pow2i_lt #w n i l = let pow2i1 = pow2 (i + 1) in calc (<) { l + pow2 i; (==) { Math.Lemmas.euclidean_division_definition l pow2i1 } l / pow2i1 * pow2i1 + l % pow2i1 + pow2 i; (==) { Math.Lemmas.pow2_plus 1 i } l / pow2i1 * pow2i1 + l % (2 * pow2 i) + pow2 i; (<) { assert (l % (2 * pow2 i) < pow2 i) } l / pow2i1 * pow2i1 + pow2 i + pow2 i; (==) { Math.Lemmas.pow2_double_sum i } l / pow2i1 * pow2i1 + pow2i1; (==) { Math.Lemmas.distributivity_add_left (l / pow2i1) 1 pow2i1 } (l / pow2i1 + 1) * pow2i1; (<=) { Math.Lemmas.lemma_div_lt_nat l n (i + 1) } pow2 (n - i - 1) * pow2 (i + 1); (==) { Math.Lemmas.pow2_plus (n - i - 1) (i + 1) } pow2 n; } inline_for_extraction val transposewxw_f_l: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> l:nat{l < w} -> vec_t t w let transposewxw_f_l #w #t n i vs l = Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 i n; if l % (2 * pow2 i) < pow2 i then begin lemma_l_plus_pow2i_lt #w n i l; vec_interleave_low_n (pow2 i) vs.[l] vs.[l + pow2 i] end else vec_interleave_high_n (pow2 i) vs.[l - pow2 i] vs.[l] inline_for_extraction val transposewxw_f: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> i:nat{i < n} -> lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_f #w #t n i vs = createi w (transposewxw_f_l #w n i vs) val transposewxw_lseq: #w:width -> #t:v_inttype -> n:nat{pow2 n == w} -> vs:lseq (vec_t t w) w -> lseq (vec_t t w) w let transposewxw_lseq #w #t n vs = Loops.repeati n (transposewxw_f #w n) vs /// /// transposewxw_lseq lemmas /// inline_for_extraction let f_lseq4 (#t:v_inttype) (vs:lseq (vec_t t 4) 4) (f:vec_t4 t -> vec_t4 t) : lseq (vec_t t 4) 4 = let (v0,v1,v2,v3) = (vs.[0],vs.[1],vs.[2],vs.[3]) in let (r0,r1,r2,r3) = f (v0,v1,v2,v3) in create4 r0 r1 r2 r3 val transpose4x4_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 4) 4 -> Lemma (transposewxw_lseq 2 vs `Seq.equal` f_lseq4 vs transpose4x4_0) let transpose4x4_lseq_is_transposewxw #t vs0 = let n = 2 in Loops.unfold_repeati n (transposewxw_f #4 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #4 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #4 n) vs0; eq_intro (transposewxw_lseq 2 vs0) (f_lseq4 vs0 transpose4x4_0) inline_for_extraction let f_lseq8 (#t:v_inttype) (vs:lseq (vec_t t 8) 8) (f:vec_t8 t -> vec_t8 t) : lseq (vec_t t 8) 8 = let (v0,v1,v2,v3,v4,v5,v6,v7) = (vs.[0],vs.[1],vs.[2],vs.[3],vs.[4],vs.[5],vs.[6],vs.[7]) in let (r0,r1,r2,r3,r4,r5,r6,r7) = f (v0,v1,v2,v3,v4,v5,v6,v7) in create8 r0 r1 r2 r3 r4 r5 r6 r7 val transpose8x8_lseq_is_transposewxw: #t:v_inttype -> vs:lseq (vec_t t 8) 8 -> Lemma (transposewxw_lseq 3 vs `Seq.equal` f_lseq8 vs transpose8x8_012)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.IntVector.Transpose.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vs: Lib.Sequence.lseq (Lib.IntVector.vec_t t 8) 8 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Lib.IntVector.Transpose.transposewxw_lseq 3 vs) (Lib.IntVector.Transpose.f_lseq8 vs Lib.IntVector.Transpose.transpose8x8_012))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntVector.v_inttype", "Lib.Sequence.lseq", "Lib.IntVector.vec_t", "Lib.Sequence.eq_intro", "Lib.IntVector.Transpose.transposewxw_lseq", "Lib.IntVector.Transpose.f_lseq8", "Lib.IntVector.Transpose.transpose8x8_012", "Prims.unit", "Lib.IntVector.Transpose.transpose8x8_2", "Lib.IntVector.Transpose.transposewxw_f", "Lib.IntVector.Transpose.transpose8x8_1", "Lib.IntVector.Transpose.transpose8x8_0", "Lib.LoopCombinators.eq_repeati0", "Lib.LoopCombinators.unfold_repeati", "Prims.int" ]
[]
true
false
true
false
false
let transpose8x8_lseq_is_transposewxw #t vs0 =
let n = 3 in Loops.unfold_repeati n (transposewxw_f #8 n) vs0 2; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 1; Loops.unfold_repeati n (transposewxw_f #8 n) vs0 0; Loops.eq_repeati0 n (transposewxw_f #8 n) vs0; let res0 = transposewxw_f n 0 vs0 in eq_intro res0 (f_lseq8 vs0 transpose8x8_0); let res1 = transposewxw_f n 1 res0 in eq_intro res1 (f_lseq8 res0 transpose8x8_1); let res2 = transposewxw_f n 2 res1 in eq_intro res2 (f_lseq8 res1 transpose8x8_2); eq_intro (transposewxw_lseq 3 vs0) (f_lseq8 vs0 transpose8x8_012)
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma_
val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b))
val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b))
let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 75, "end_line": 330, "start_col": 0, "start_line": 315 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Hacl.Spec.Bignum.Definitions.lbignum t len {Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 (Lib.IntTypes.bits t * len)} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.bn_to_bytes_be_ len b == Lib.ByteSequence.nat_to_intseq_be (Lib.IntTypes.numbytes t * len) (Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.bits", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_", "Lib.ByteSequence.nat_to_intseq_be", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Lib.Sequence.index", "Prims.op_Multiply", "Prims.l_True", "Prims.squash", "Lib.IntTypes.int_t", "Prims.Nil", "FStar.Pervasives.pattern", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma_aux", "Prims._assert", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_Modulus", "Prims.op_Division", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction", "Lib.IntTypes.uint", "Hacl.Spec.Bignum.Convert.index_bn_to_bytes_be_", "Lib.ByteSequence.index_nat_to_intseq_be", "Lib.Sequence.seq", "Prims.l_and", "Lib.Sequence.length", "Lib.ByteSequence.nat_from_intseq_be" ]
[]
false
false
true
false
false
let bn_to_bytes_be_lemma_ #t len b =
let numb = numbytes t in let lemma_aux (i: nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[ i ] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[ i ] == uint #U8 #SEC (v b.[ len - i / numb - 1 ] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b))
false
Rename.fst
Rename.l1
val l1 : x: Prims.bool -> y: Prims.int -> z: Prims.unit -> Prims.unit
let l1 (x : bool) (y : int) (z : unit) = assert (phi ==> (psi ==> xi)) by tau ()
{ "file_name": "examples/native_tactics/Rename.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 37, "start_col": 0, "start_line": 36 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rename (* Testing the new printing based on the static environment *) open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi [@@plugin] let tau = fun () -> let h0 = implies_intro () in let h1 = implies_intro () in dump "Test"; exact (`p)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Rename.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.bool -> y: Prims.int -> z: Prims.unit -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.int", "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_imp", "Rename.phi", "Rename.psi", "Rename.xi", "Rename.tau" ]
[]
false
false
false
true
false
let l1 (x: bool) (y: int) (z: unit) =
FStar.Tactics.Effect.assert_by_tactic (phi ==> (psi ==> xi)) (fun _ -> (); tau ())
false
Rename.fst
Rename.tau
val tau : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
let tau = fun () -> let h0 = implies_intro () in let h1 = implies_intro () in dump "Test"; exact (`p)
{ "file_name": "examples/native_tactics/Rename.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 34, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rename (* Testing the new printing based on the static environment *) open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Rename.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.exact", "FStar.Stubs.Tactics.V2.Builtins.dump", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro" ]
[]
false
true
false
false
false
let tau =
fun () -> let h0 = implies_intro () in let h1 = implies_intro () in dump "Test"; exact (`p)
false
Pulse.Common.fst
Pulse.Common.assertby
val assertby (p: prop) (pf: (unit -> Lemma p)) : Lemma p
val assertby (p: prop) (pf: (unit -> Lemma p)) : Lemma p
let assertby (p:prop) (pf : unit -> Lemma p) : Lemma p = pf ()
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 7, "end_line": 149, "start_col": 0, "start_line": 148 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys) let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs // let rec __lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) (i:nat{i < L.length xs}) // : Lemma (requires map_opt f xs == Some ys) // (ensures f (xs `L.index` i) == Some (ys `L.index` i)) // = match xs, ys, i with // | _, _, 0 -> () // | x::xs, y::ys, _ -> // __lemma_map_opt_index f xs ys (i-1) // let lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) // : Lemma (requires map_opt f xs == Some ys) // (ensures forall i. f (xs `L.index` i) == Some (ys `L.index` i)) // = Classical.forall_intro (Classical.move_requires (__lemma_map_opt_index f xs ys)) let rec dec_index #a (top:'z) (l : list a{l << top}) (i : nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] = match l, i with | _, 0 -> () | _::l, _ -> dec_index top l (i-1) let rec lemma_map_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> b) (xs : list a{xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)] = match xs with | [] -> () | x::xs -> lemma_map_dec_len top f xs let rec __lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}-> 'b)) (xs : list 'a{xs << top}) (ys : list 'b) (i:nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i) = match xs, ys, i with | _, _, 0 -> () | x::xs, y::ys, _ -> __lemma_map_dec_index top f xs ys (i-1) let lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}) -> 'b) (xs : list 'a{xs << top}) : Lemma (ensures forall i. f (xs `L.index` i) == map_dec top xs f `L.index` i) = Classical.forall_intro (Classical.move_requires (__lemma_map_dec_index top f xs (map_dec top xs f))) let lemma_map_dec_index_i (top:'z) (f : (x:'a{x<<top}) -> 'b) (xs : list 'a{xs << top}) (i : nat {i < L.length xs}) : Lemma (ensures f (xs `L.index` i) == map_dec top xs f `L.index` i) = lemma_map_dec_index top f xs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.prop -> pf: (_: Prims.unit -> FStar.Pervasives.Lemma (ensures p)) -> FStar.Pervasives.Lemma (ensures p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.prop", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let assertby (p: prop) (pf: (unit -> Lemma p)) : Lemma p =
pf ()
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_le_lemma
val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == nat_to_intseq_le #U8 len (bn_v b))
val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == nat_to_intseq_le #U8 len (bn_v b))
let bn_to_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in let res = sub tmp 0 len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); uints_to_bytes_le_nat_lemma #t #SEC bnLen (bn_v b); bn_v_is_nat_from_intseq_le_lemma bnLen b; lemma_nat_from_to_intseq_le_preserves_value bnLen b; assert (uints_to_bytes_le #t #SEC #bnLen b == nat_to_intseq_le #U8 tmpLen (bn_v b)); let aux (i:nat{i < len}) : Lemma (index #uint8 #tmpLen (nat_to_intseq_le #U8 tmpLen (bn_v b)) i == index #uint8 #len (nat_to_intseq_le #U8 len (bn_v b)) i) = index_nat_to_intseq_le #U8 #SEC tmpLen (bn_v b) i; index_nat_to_intseq_le #U8 #SEC len (bn_v b) i in Classical.forall_intro aux; eq_intro (nat_to_intseq_le #U8 #SEC len (bn_v b)) res
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 459, "start_col": 0, "start_line": 438 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b)) let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res (* Little-endian *) val bn_v_is_nat_from_intseq_le_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_le b) let rec bn_v_is_nat_from_intseq_le_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_le_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_le b1); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v b == nat_from_intseq_le b1 + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_le_slice_lemma b (len - 1); nat_from_intseq_le_lemma0 (slice b (len - 1) len); assert (nat_from_intseq_le b == nat_from_intseq_le b1 + pow2 ((len - 1) * bits t) * v b.[len - 1]) end val lemma_nat_from_bytes_le_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_le b == 0) let rec lemma_nat_from_bytes_le_zeroes len b = if len = 0 then () else begin nat_from_intseq_le_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_le_lemma0 (slice b 0 1); lemma_nat_from_bytes_le_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_le_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_le b == nat_from_intseq_le (update_sub tmp 0 len0 b)) let nat_from_bytes_le_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp 0 len0 b in assert (slice r 0 len0 == b); assert (forall (i:nat). i < len - len0 ==> r.[len0 + i] == u8 0); nat_from_intseq_le_slice_lemma #U8 #SEC #len r len0; assert (nat_from_intseq_le r == nat_from_intseq_le (slice r 0 len0) + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); assert (nat_from_intseq_le r == nat_from_intseq_le b + pow2 (len0 * 8) * nat_from_intseq_le (Seq.slice r len0 len)); lemma_nat_from_bytes_le_zeroes (len - len0) (Seq.slice r len0 len) val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == nat_from_bytes_le b) let bn_from_bytes_le_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in let res = uints_from_bytes_le #t #SEC #bnLen tmp in uints_from_bytes_le_nat_lemma #t #SEC #bnLen tmp; bn_v_is_nat_from_intseq_le_lemma bnLen res; nat_from_bytes_le_eq_lemma len tmpLen b val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == nat_to_intseq_le #U8 len (bn_v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) {Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 (8 * len)} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.bn_to_bytes_le len b == Lib.ByteSequence.nat_to_intseq_le len (Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.nat_to_intseq_le", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Lib.IntTypes.uint8", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Prims.l_True", "Prims.squash", "Lib.IntTypes.int_t", "Prims.Nil", "FStar.Pervasives.pattern", "Lib.ByteSequence.index_nat_to_intseq_le", "Prims._assert", "Lib.Sequence.seq", "FStar.Seq.Base.length", "Prims.l_and", "Lib.Sequence.length", "Lib.IntTypes.bits", "Lib.ByteSequence.nat_from_intseq_le", "Lib.ByteSequence.uints_to_bytes_le", "Lib.ByteSequence.lemma_nat_from_to_intseq_le_preserves_value", "Hacl.Spec.Bignum.Convert.bn_v_is_nat_from_intseq_le_lemma", "Lib.ByteSequence.uints_to_bytes_le_nat_lemma", "FStar.Math.Lemmas.pow2_le_compat", "Lib.Sequence.lseq", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.op_Addition", "Prims.l_Forall", "Lib.Sequence.sub", "Prims.int", "Prims.pos", "Prims.op_Subtraction" ]
[]
false
false
true
false
false
let bn_to_bytes_le_lemma #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in let res = sub tmp 0 len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); uints_to_bytes_le_nat_lemma #t #SEC bnLen (bn_v b); bn_v_is_nat_from_intseq_le_lemma bnLen b; lemma_nat_from_to_intseq_le_preserves_value bnLen b; assert (uints_to_bytes_le #t #SEC #bnLen b == nat_to_intseq_le #U8 tmpLen (bn_v b)); let aux (i: nat{i < len}) : Lemma (index #uint8 #tmpLen (nat_to_intseq_le #U8 tmpLen (bn_v b)) i == index #uint8 #len (nat_to_intseq_le #U8 len (bn_v b)) i) = index_nat_to_intseq_le #U8 #SEC tmpLen (bn_v b) i; index_nat_to_intseq_le #U8 #SEC len (bn_v b) i in Classical.forall_intro aux; eq_intro (nat_to_intseq_le #U8 #SEC len (bn_v b)) res
false
Vale.X64.InsSha.fst
Vale.X64.InsSha.va_codegen_success_SHA256_rnds2
val va_codegen_success_SHA256_rnds2 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_pbool
val va_codegen_success_SHA256_rnds2 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_pbool
let va_codegen_success_SHA256_rnds2 dst src = (va_ttrue ())
{ "file_name": "obj/Vale.X64.InsSha.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 28, "start_col": 0, "start_line": 27 }
module Vale.X64.InsSha open Vale.Def.Types_s open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.Decls open Vale.X64.CryptoInstructions_s open Spec.Hash.Definitions open Spec.SHA2 open Vale.X64.CPU_Features_s module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s module P = Vale.X64.Print_s friend Vale.X64.Decls #reset-options "--initial_fuel 4 --max_fuel 4 --max_ifuel 2 --z3rlimit 20" //-- SHA256_rnds2 [@ "opaque_to_smt"] let va_code_SHA256_rnds2 dst src = (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src)))
{ "checked_file": "/", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CryptoInstructions_s.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.InsSha.fst" }
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.CryptoInstructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 4, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.X64.Decls.va_operand_xmm -> src: Vale.X64.Decls.va_operand_xmm -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_operand_xmm", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_SHA256_rnds2 dst src =
(va_ttrue ())
false
Vale.X64.InsSha.fst
Vale.X64.InsSha.va_codegen_success_SHA256_msg1
val va_codegen_success_SHA256_msg1 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_pbool
val va_codegen_success_SHA256_msg1 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_pbool
let va_codegen_success_SHA256_msg1 dst src = (va_ttrue ())
{ "file_name": "obj/Vale.X64.InsSha.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 61, "start_col": 0, "start_line": 60 }
module Vale.X64.InsSha open Vale.Def.Types_s open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.Decls open Vale.X64.CryptoInstructions_s open Spec.Hash.Definitions open Spec.SHA2 open Vale.X64.CPU_Features_s module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s module P = Vale.X64.Print_s friend Vale.X64.Decls #reset-options "--initial_fuel 4 --max_fuel 4 --max_ifuel 2 --z3rlimit 20" //-- SHA256_rnds2 [@ "opaque_to_smt"] let va_code_SHA256_rnds2 dst src = (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) [@ "opaque_to_smt"] let va_codegen_success_SHA256_rnds2 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_SHA256_rnds2 va_b0 va_s0 dst src t block hash_orig = va_reveal_opaque (`%va_code_SHA256_rnds2) (va_code_SHA256_rnds2 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) va_s0 in lemma_sha256_rnds2 (va_eval_xmm va_old_s src) (va_eval_xmm va_old_s dst) (va_get_xmm 0 va_old_s) t block hash_orig; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_SHA256_rnds2 dst src t block hash_orig va_s0 va_k = let (va_sM, va_f0) = va_lemma_SHA256_rnds2 (va_code_SHA256_rnds2 dst src) va_s0 dst src t block hash_orig in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_xmm dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_xmm dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- SHA256_msg1 [@ "opaque_to_smt"] let va_code_SHA256_msg1 dst src = (mk_ins (make_instr (I.ins_SHA256_msg1) (OReg dst) (OReg src)))
{ "checked_file": "/", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CryptoInstructions_s.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.InsSha.fst" }
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.CryptoInstructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 4, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.X64.Decls.va_operand_xmm -> src: Vale.X64.Decls.va_operand_xmm -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_operand_xmm", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_SHA256_msg1 dst src =
(va_ttrue ())
false
Pulse.Common.fst
Pulse.Common.for_all_dec
val for_all_dec (top: 'a) (l: list 'b {l << top}) (f: (x: 'b{x << l} -> bool)) : bool
val for_all_dec (top: 'a) (l: list 'b {l << top}) (f: (x: 'b{x << l} -> bool)) : bool
let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 42, "start_col": 0, "start_line": 39 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: 'a -> l: Prims.list 'b {l << top} -> f: (x: 'b{x << l} -> Prims.bool) -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.precedes", "Prims.bool", "Prims.op_AmpAmp", "Pulse.Common.for_all_dec" ]
[ "recursion" ]
false
false
false
false
false
let rec for_all_dec (top: 'a) (l: list 'b {l << top}) (f: (x: 'b{x << l} -> bool)) : bool =
match l with | [] -> true | x :: xs -> f x && for_all_dec top xs f
false
Vale.X64.InsSha.fst
Vale.X64.InsSha.va_codegen_success_SHA256_msg2
val va_codegen_success_SHA256_msg2 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_pbool
val va_codegen_success_SHA256_msg2 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_pbool
let va_codegen_success_SHA256_msg2 dst src = (va_ttrue ())
{ "file_name": "obj/Vale.X64.InsSha.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 92, "start_col": 0, "start_line": 91 }
module Vale.X64.InsSha open Vale.Def.Types_s open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.Decls open Vale.X64.CryptoInstructions_s open Spec.Hash.Definitions open Spec.SHA2 open Vale.X64.CPU_Features_s module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s module P = Vale.X64.Print_s friend Vale.X64.Decls #reset-options "--initial_fuel 4 --max_fuel 4 --max_ifuel 2 --z3rlimit 20" //-- SHA256_rnds2 [@ "opaque_to_smt"] let va_code_SHA256_rnds2 dst src = (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) [@ "opaque_to_smt"] let va_codegen_success_SHA256_rnds2 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_SHA256_rnds2 va_b0 va_s0 dst src t block hash_orig = va_reveal_opaque (`%va_code_SHA256_rnds2) (va_code_SHA256_rnds2 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) va_s0 in lemma_sha256_rnds2 (va_eval_xmm va_old_s src) (va_eval_xmm va_old_s dst) (va_get_xmm 0 va_old_s) t block hash_orig; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_SHA256_rnds2 dst src t block hash_orig va_s0 va_k = let (va_sM, va_f0) = va_lemma_SHA256_rnds2 (va_code_SHA256_rnds2 dst src) va_s0 dst src t block hash_orig in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_xmm dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_xmm dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- SHA256_msg1 [@ "opaque_to_smt"] let va_code_SHA256_msg1 dst src = (mk_ins (make_instr (I.ins_SHA256_msg1) (OReg dst) (OReg src))) [@ "opaque_to_smt"] let va_codegen_success_SHA256_msg1 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_SHA256_msg1 va_b0 va_s0 dst src t block = va_reveal_opaque (`%va_code_SHA256_msg1) (va_code_SHA256_msg1 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_SHA256_msg1) (OReg dst) (OReg src))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_SHA256_msg1) (OReg dst) (OReg src))) va_s0 in lemma_sha256_msg1 (va_eval_xmm va_old_s dst) (va_eval_xmm va_old_s src) t block; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_SHA256_msg1 dst src t block va_s0 va_k = let (va_sM, va_f0) = va_lemma_SHA256_msg1 (va_code_SHA256_msg1 dst src) va_s0 dst src t block in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_xmm dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_xmm dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- SHA256_msg2 [@ "opaque_to_smt"] let va_code_SHA256_msg2 dst src = (mk_ins (make_instr (I.ins_SHA256_msg2) (OReg dst) (OReg src)))
{ "checked_file": "/", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CryptoInstructions_s.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.InsSha.fst" }
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.CryptoInstructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 4, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.X64.Decls.va_operand_xmm -> src: Vale.X64.Decls.va_operand_xmm -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_operand_xmm", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_SHA256_msg2 dst src =
(va_ttrue ())
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma_aux
val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)
val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)
let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; }
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 306, "start_col": 0, "start_line": 285 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos{Lib.IntTypes.numbytes t * len <= Lib.IntTypes.max_size_t} -> b: Hacl.Spec.Bignum.Definitions.lbignum t len {Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 (Lib.IntTypes.bits t * len)} -> i: Prims.nat{i < Lib.IntTypes.numbytes t * len} -> FStar.Pervasives.Lemma (ensures (let numb = Lib.IntTypes.numbytes t in Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 (8 * (numb * len - i - 1)) % Prims.pow2 8 == Lib.IntTypes.v b.[ len - i / numb - 1 ] / Prims.pow2 (8 * (numb - 1 - i % numb)) % Prims.pow2 8))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.bits", "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_index", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1" ]
[]
false
false
true
false
false
let bn_to_bytes_be_lemma_aux #t len b i =
let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc ( == ) { v b.[ e1 ] / pow2 (8 * e) % pow2 8; ( == ) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; ( == ) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; ( == ) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; }
false
Pulse.Common.fst
Pulse.Common.map_opt
val map_opt : f: (_: _ -> FStar.Pervasives.Native.option _) -> l: Prims.list _ -> FStar.Pervasives.Native.option (Prims.list _)
let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys)
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 16, "end_line": 68, "start_col": 0, "start_line": 63 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: _ -> FStar.Pervasives.Native.option _) -> l: Prims.list _ -> FStar.Pervasives.Native.option (Prims.list _)
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.option", "Prims.list", "FStar.Pervasives.Native.Some", "Prims.Nil", "Pulse.Common.op_let_Question", "Pulse.Common.map_opt", "Prims.Cons" ]
[ "recursion" ]
false
false
false
true
false
let rec map_opt f l =
match l with | [] -> Some [] | x :: xs -> let? y = f x in let? ys = map_opt f xs in Some (y :: ys)
false
Pulse.Common.fst
Pulse.Common.map_opt_dec
val map_opt_dec (#a #b #z: _) (top: z) (f: (x: a{x << top} -> option b)) (l: list a {l << top}) : option (list b)
val map_opt_dec (#a #b #z: _) (top: z) (f: (x: a{x << top} -> option b)) (l: list a {l << top}) : option (list b)
let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys)
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 16, "end_line": 76, "start_col": 0, "start_line": 70 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: z -> f: (x: a{x << top} -> FStar.Pervasives.Native.option b) -> l: Prims.list a {l << top} -> FStar.Pervasives.Native.option (Prims.list b)
Prims.Tot
[ "total" ]
[]
[ "Prims.precedes", "FStar.Pervasives.Native.option", "Prims.list", "FStar.Pervasives.Native.Some", "Prims.Nil", "Pulse.Common.op_let_Question", "Pulse.Common.map_opt_dec", "Prims.Cons" ]
[ "recursion" ]
false
false
false
false
false
let rec map_opt_dec #a #b #z (top: z) (f: (x: a{x << top} -> option b)) (l: list a {l << top}) : option (list b) =
match l with | [] -> Some [] | x :: xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y :: ys)
false
Pulse.Common.fst
Pulse.Common.map_dec
val map_dec (top: 'a) (l: list 'b {l << top}) (f: (x: 'b{x << l} -> 'c)) : list 'c
val map_dec (top: 'a) (l: list 'b {l << top}) (f: (x: 'b{x << l} -> 'c)) : list 'c
let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 47, "start_col": 0, "start_line": 44 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: 'a -> l: Prims.list 'b {l << top} -> f: (x: 'b{x << l} -> 'c) -> Prims.list 'c
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.precedes", "Prims.Nil", "Prims.Cons", "Pulse.Common.map_dec" ]
[ "recursion" ]
false
false
false
false
false
let rec map_dec (top: 'a) (l: list 'b {l << top}) (f: (x: 'b{x << l} -> 'c)) : list 'c =
match l with | [] -> [] | x :: xs -> f x :: map_dec top xs f
false
Steel.ST.Array.fst
Steel.ST.Array.compare
val compare (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0 #s1:Ghost.erased (Seq.seq t)) (l:US.t { US.v l == length a0 /\ length a0 == length a1 } ) : ST bool (pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (requires True) (ensures fun b -> b <==> eq2 #(Seq.seq t) s0 s1)
val compare (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0 #s1:Ghost.erased (Seq.seq t)) (l:US.t { US.v l == length a0 /\ length a0 == length a1 } ) : ST bool (pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (requires True) (ensures fun b -> b <==> eq2 #(Seq.seq t) s0 s1)
let compare #t #p0 #p1 a0 a1 #s0 #s1 l = pts_to_length a0 _; pts_to_length a1 _; if l = 0sz then ( assert (Seq.equal s0 s1); return true ) else ( compare_pts a0 a1 l )
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 533, "start_col": 0, "start_line": 521 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x) let gather #_ #_ a #x1 p1 #x2 p2 = rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _) let index #_ #p a #s i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise s)); let res = H.index a i in rewrite (H.pts_to _ _ _) (pts_to _ _ _); return (lower res) let upd #_ a #s i v = rewrite (pts_to a _ _) (H.pts_to a P.full_perm (seq_map raise s)); H.upd a i (raise v); assert (seq_map raise (Seq.upd s (US.v i) v) `Seq.equal` Seq.upd (seq_map raise s) (US.v i) (raise v)); rewrite (H.pts_to _ _ _) (pts_to _ _ _) let ghost_join #_ #_ #x1 #x2 #p a1 a2 h = rewrite (pts_to a1 _ _) (H.pts_to a1 p (seq_map raise x1)); rewrite (pts_to a2 _ _) (H.pts_to a2 p (seq_map raise x2)); H.ghost_join a1 a2 h; assert (seq_map raise (x1 `Seq.append` x2) `Seq.equal` (seq_map raise x1 `Seq.append` seq_map raise x2)); rewrite (H.pts_to _ _ _) (H.pts_to (merge a1 a2) p (seq_map raise (x1 `Seq.append` x2))); rewrite (H.pts_to _ _ _) (pts_to (merge a1 a2) _ _) let ptr_shift p off = H.ptr_shift p off let ghost_split #_ #_ #x #p a i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); let _ = H.ghost_split a i in //H.ghost_split a i; assert (seq_map raise (Seq.slice x 0 (US.v i)) `Seq.equal` Seq.slice (seq_map raise x) 0 (US.v i)); rewrite (H.pts_to (H.split_l a i) _ _) (H.pts_to (split_l a i) p (seq_map raise (Seq.slice x 0 (US.v i)))); rewrite (H.pts_to (split_l a i) _ _) (pts_to (split_l a i) _ _); assert (seq_map raise (Seq.slice x (US.v i) (Seq.length x)) `Seq.equal` Seq.slice (seq_map raise x) (US.v i) (Seq.length (seq_map raise x))); Seq.lemma_split x (US.v i); rewrite (H.pts_to (H.split_r a i) _ _) (H.pts_to (split_r a i) p (seq_map raise (Seq.slice x (US.v i) (Seq.length x)))); rewrite (H.pts_to (split_r a i) _ _) (pts_to (split_r a i) _ _) let memcpy a0 a1 l = H.memcpy a0 a1 l //////////////////////////////////////////////////////////////////////////////// // compare //////////////////////////////////////////////////////////////////////////////// module R = Steel.ST.Reference #push-options "--fuel 0 --ifuel 1 --z3rlimit_factor 2" let equal_up_to #t (s0: Seq.seq t) (s1: Seq.seq t) (v : option US.t) : prop = Seq.length s0 = Seq.length s1 /\ (match v with | None -> Ghost.reveal s0 =!= Ghost.reveal s1 | Some v -> US.v v <= Seq.length s0 /\ Seq.slice s0 0 (US.v v) `Seq.equal` Seq.slice s1 0 (US.v v)) let within_bounds (x:option US.t) (l:US.t) (b:Ghost.erased bool) : prop = if b then Some? x /\ US.(Some?.v x <^ l) else None? x \/ US.(Some?.v x >=^ l) let compare_inv (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (s0: Seq.seq t) (s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (b: bool) = pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (x:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x) `star` pure (within_bounds x l b)) let elim_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (b: bool) : STGhostT (Ghost.erased (option US.t)) o (compare_inv a0 a1 s0 s1 l ctr b) (fun x -> let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x) `star` pure (within_bounds x l b)) = let open US in assert_spinoff ((compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr b) == (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l b)))); rewrite (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr b) (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l b))); let _v = elim_exists () in _v let intro_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (x: Ghost.erased (option US.t)) (b:bool { within_bounds x l b }) : STGhostT unit o (let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x)) (fun _ -> compare_inv a0 a1 s0 s1 l ctr (Ghost.hide b)) = let open US in intro_pure (within_bounds x l (Ghost.hide b)); intro_exists_erased x (fun (x:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x) `star` pure (within_bounds x l (Ghost.hide b))); assert_norm ((compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide b)) == (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l (Ghost.hide b))))); rewrite (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l (Ghost.hide b)))) (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide b)) let intro_exists_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (x: Ghost.erased (option US.t)) : STGhostT unit o (let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x)) (fun _ -> exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) = let b : bool = match Ghost.reveal x with | None -> false | Some x -> US.(x <^ l) in assert (within_bounds x l b); intro_compare_inv #_ #_ #p0 #p1 a0 a1 #s0 #s1 l ctr x b; intro_exists _ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr) let extend_equal_up_to_lemma (#t:Type0) (s0:Seq.seq t) (s1:Seq.seq t) (i:nat{ i < Seq.length s0 /\ Seq.length s0 == Seq.length s1 }) : Lemma (requires Seq.equal (Seq.slice s0 0 i) (Seq.slice s1 0 i) /\ Seq.index s0 i == Seq.index s1 i) (ensures Seq.equal (Seq.slice s0 0 (i + 1)) (Seq.slice s1 0 (i + 1))) = assert (forall k. k < i ==> Seq.index s0 k == Seq.index (Seq.slice s0 0 i) k /\ Seq.index s1 k == Seq.index (Seq.slice s1 0 i) k) let extend_equal_up_to (#o:_) (#t:Type0) (#s0:Seq.seq t) (#s1:Seq.seq t) (len:US.t) (i:US.t{ Seq.length s0 == Seq.length s1 /\ US.(i <^ len) /\ US.v len == Seq.length s0 } ) : STGhost unit o (pure (equal_up_to s0 s1 (Some i))) (fun _ -> pure (equal_up_to s0 s1 (Some US.(i +^ 1sz)))) (requires Seq.index s0 (US.v i) == Seq.index s1 (US.v i)) (ensures fun _ -> True) = elim_pure _; extend_equal_up_to_lemma s0 s1 (US.v i); intro_pure (equal_up_to s0 s1 (Some US.(i +^ 1sz))) let extend_equal_up_to_neg (#o:_) (#t:Type0) (#s0:Seq.seq t) (#s1:Seq.seq t) (len:US.t) (i:US.t{ Seq.length s0 == Seq.length s1 /\ US.(i <^ len) /\ US.v len == Seq.length s0 } ) : STGhost unit o (pure (equal_up_to s0 s1 (Some i))) (fun _ -> pure (equal_up_to s0 s1 None)) (requires Seq.index s0 (US.v i) =!= Seq.index s1 (US.v i)) (ensures fun _ -> True) = elim_pure _; intro_pure _ let init_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) : STGhost unit o (let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm (Some 0sz)) (fun _ -> exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) (requires ( length a0 > 0 /\ length a0 == length a1 /\ US.v l == length a0 )) (ensures (fun _ -> True)) = pts_to_length a0 _; pts_to_length a1 _; intro_pure (equal_up_to s0 s1 (Ghost.hide (Some 0sz))); rewrite (R.pts_to ctr Steel.FractionalPermission.full_perm (Some 0sz)) (R.pts_to ctr Steel.FractionalPermission.full_perm (Ghost.hide (Some 0sz))); intro_exists_compare_inv a0 a1 l ctr (Ghost.hide (Some 0sz)) let compare_pts (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Ghost.erased (Seq.seq t)) (#s1: Ghost.erased (Seq.seq t)) (l:US.t) : ST bool (pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (requires length a0 > 0 /\ length a0 == length a1 /\ US.v l == length a0 ) (ensures fun b -> b = (Ghost.reveal s0 = Ghost.reveal s1)) = pts_to_length a0 _; pts_to_length a1 _; let ctr = R.alloc (Some 0sz) in let cond () : STT bool (exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) (fun b -> compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide b)) = let _b = elim_exists () in let _ = elim_compare_inv _ _ _ _ _ in let x = R.read ctr in elim_pure (within_bounds _ _ _); match x with | None -> intro_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr _ false; return false | Some x -> let res = US.(x <^ l) in intro_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr _ res; return res in let body () : STT unit (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide true)) (fun _ -> exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) = let _i = elim_compare_inv _ _ _ _ _ in elim_pure (within_bounds _ _ _); let Some i = R.read ctr in assert_spinoff ((pure (equal_up_to s0 s1 _i)) == (pure (equal_up_to s0 s1 (Some i)))); rewrite (pure (equal_up_to s0 s1 _i)) (pure (equal_up_to s0 s1 (Some i))); let v0 = index a0 i in let v1 = index a1 i in if v0 = v1 then ( R.write ctr (Some US.(i +^ 1sz)); extend_equal_up_to l i; intro_exists_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr (Ghost.hide (Some (US.(i +^ 1sz)))) ) else ( R.write ctr None; extend_equal_up_to_neg l i; intro_exists_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr (Ghost.hide None) ) in init_compare_inv a0 a1 l ctr; Steel.ST.Loops.while_loop (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr) cond body; let _ = elim_compare_inv _ _ _ _ _ in elim_pure (equal_up_to _ _ _); let v = R.read ctr in R.free ctr; elim_pure (within_bounds _ _ _); match v with | None -> return false | Some _ -> return true
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.Reference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Steel.ST.Array.array t -> a1: Steel.ST.Array.array t -> l: FStar.SizeT.t { FStar.SizeT.v l == Steel.ST.Array.length a0 /\ Steel.ST.Array.length a0 == Steel.ST.Array.length a1 } -> Steel.ST.Effect.ST Prims.bool
Steel.ST.Effect.ST
[]
[]
[ "Prims.eqtype", "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.SizeT.t", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.SizeT.v", "Steel.ST.Array.length", "Prims.op_Equality", "FStar.SizeT.__uint_to_t", "Steel.ST.Util.return", "Prims.bool", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.ST.Array.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Steel.ST.Array.compare_pts", "Steel.ST.Array.pts_to_length" ]
[]
false
true
false
false
false
let compare #t #p0 #p1 a0 a1 #s0 #s1 l =
pts_to_length a0 _; pts_to_length a1 _; if l = 0sz then (assert (Seq.equal s0 s1); return true) else (compare_pts a0 a1 l)
false
Pulse.Common.fst
Pulse.Common.zip
val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)})
val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)})
let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> []
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 61, "start_col": 0, "start_line": 59 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list a -> l2: Prims.list b -> l: Prims.list (a * b) { FStar.List.Tot.Base.length l == Prims.min (FStar.List.Tot.Base.length l1) (FStar.List.Tot.Base.length l2) }
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "Pulse.Common.zip", "Prims.Nil", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.min" ]
[ "recursion" ]
false
false
false
false
false
let rec zip #a #b l1 l2 =
match l1, l2 with | x :: xs, y :: ys -> (x, y) :: (zip xs ys) | _ -> []
false
Pulse.Common.fst
Pulse.Common.concat_map_opt
val concat_map_opt (#a #b: _) (f: (a -> option (list b))) (l: list a) : option (list b)
val concat_map_opt (#a #b: _) (f: (a -> option (list b))) (l: list a) : option (list b)
let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys)
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 15, "end_line": 84, "start_col": 0, "start_line": 78 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> FStar.Pervasives.Native.option (Prims.list b)) -> l: Prims.list a -> FStar.Pervasives.Native.option (Prims.list b)
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.option", "Prims.list", "FStar.Pervasives.Native.Some", "Prims.Nil", "Pulse.Common.op_let_Question", "Pulse.Common.concat_map_opt", "FStar.List.Tot.Base.append" ]
[ "recursion" ]
false
false
false
true
false
let rec concat_map_opt #a #b (f: (a -> option (list b))) (l: list a) : option (list b) =
match l with | [] -> Some [] | x :: xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y @ ys)
false
BitFields.fst
BitFields.bitfield_group
val bitfield_group : Type0
let bitfield_group = int & typ & list atomic_field
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 50, "end_line": 31, "start_col": 0, "start_line": 31 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple3", "Prims.int", "Ast.typ", "Prims.list", "Ast.atomic_field" ]
[]
false
false
false
true
true
let bitfield_group =
int & typ & list atomic_field
false
Pulse.Common.fst
Pulse.Common.lemma_map_opt_dec_len
val lemma_map_opt_dec_len (#a #b #z: _) (top: z) (f: (x: a{x << top} -> option b)) (xs: list a {xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)]
val lemma_map_opt_dec_len (#a #b #z: _) (top: z) (f: (x: a{x << top} -> option b)) (xs: list a {xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)]
let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 45, "end_line": 92, "start_col": 0, "start_line": 86 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: z -> f: (x: a{x << top} -> FStar.Pervasives.Native.option b) -> xs: Prims.list a {xs << top} -> FStar.Pervasives.Lemma (requires Some? (Pulse.Common.map_opt_dec top f xs)) (ensures FStar.List.Tot.Base.length (Some?.v (Pulse.Common.map_opt_dec top f xs)) == FStar.List.Tot.Base.length xs) [SMTPat (Pulse.Common.map_opt_dec top f xs)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.precedes", "FStar.Pervasives.Native.option", "Prims.list", "Pulse.Common.lemma_map_opt_dec_len", "Prims.unit", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Pulse.Common.map_opt_dec", "Prims.squash", "Prims.eq2", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_map_opt_dec_len #a #b #z (top: z) (f: (x: a{x << top} -> option b)) (xs: list a {xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] =
match xs with | [] -> () | x :: xs -> lemma_map_opt_dec_len top f xs
false
Pulse.Common.fst
Pulse.Common.zipWith
val zipWith (f: ('a -> 'b -> Tac 'c)) (l: list 'a) (m: list 'b) : Tac (l': (list 'c){L.length l' == min (L.length l) (L.length m)})
val zipWith (f: ('a -> 'b -> Tac 'c)) (l: list 'a) (m: list 'b) : Tac (l': (list 'c){L.length l' == min (L.length l) (L.length m)})
let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch"
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 55, "start_col": 0, "start_line": 49 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> _: 'b -> FStar.Tactics.Effect.Tac 'c) -> l: Prims.list 'a -> m: Prims.list 'b -> FStar.Tactics.Effect.Tac (l': Prims.list 'c { FStar.List.Tot.Base.length l' == Prims.min (FStar.List.Tot.Base.length l) (FStar.List.Tot.Base.length m) })
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.min", "Prims.Cons", "Pulse.Common.zipWith", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.Derived.fail" ]
[ "recursion" ]
false
true
false
false
false
let rec zipWith (f: ('a -> 'b -> Tac 'c)) (l: list 'a) (m: list 'b) : Tac (l': (list 'c){L.length l' == min (L.length l) (L.length m)}) =
match l, m with | [], [] -> [] | x :: xs, y :: ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch"
false
BitFields.fst
BitFields.subst'
val subst' : Type0
let subst' = list (ident & expr)
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 64, "start_col": 0, "start_line": 64 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *) let bitfield_group = int & typ & list atomic_field let grouped_fields = either field bitfield_group let group_bit_fields (rewrite_composite_field: field -> ML field) (fields: list field) : ML (list grouped_fields) = List.fold_right (fun field out -> match field.v with | RecordField _ _ | SwitchCaseField _ _ -> Inl (rewrite_composite_field field) :: out | AtomicField af -> match af.v.field_bitwidth with | None -> Inl field :: out | Some (Inl _) -> failwith "Bit fields should have been elaborated already" | Some (Inr bf) -> match out with | Inr (index, typ, atomic_fields)::tl -> if index = bf.v.bitfield_identifier then Inr(index, typ, af :: atomic_fields) :: tl //extend this bitfield group else Inr(bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group | _ -> Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group ) fields []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "Ast.ident", "Ast.expr" ]
[]
false
false
false
true
true
let subst' =
list (ident & expr)
false
Pulse.Common.fst
Pulse.Common.lemma_map_dec_index
val lemma_map_dec_index (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) : Lemma (ensures forall i. f (xs `L.index` i) == (map_dec top xs f) `L.index` i)
val lemma_map_dec_index (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) : Lemma (ensures forall i. f (xs `L.index` i) == (map_dec top xs f) `L.index` i)
let lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}) -> 'b) (xs : list 'a{xs << top}) : Lemma (ensures forall i. f (xs `L.index` i) == map_dec top xs f `L.index` i) = Classical.forall_intro (Classical.move_requires (__lemma_map_dec_index top f xs (map_dec top xs f)))
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 104, "end_line": 142, "start_col": 0, "start_line": 140 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys) let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs // let rec __lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) (i:nat{i < L.length xs}) // : Lemma (requires map_opt f xs == Some ys) // (ensures f (xs `L.index` i) == Some (ys `L.index` i)) // = match xs, ys, i with // | _, _, 0 -> () // | x::xs, y::ys, _ -> // __lemma_map_opt_index f xs ys (i-1) // let lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) // : Lemma (requires map_opt f xs == Some ys) // (ensures forall i. f (xs `L.index` i) == Some (ys `L.index` i)) // = Classical.forall_intro (Classical.move_requires (__lemma_map_opt_index f xs ys)) let rec dec_index #a (top:'z) (l : list a{l << top}) (i : nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] = match l, i with | _, 0 -> () | _::l, _ -> dec_index top l (i-1) let rec lemma_map_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> b) (xs : list a{xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)] = match xs with | [] -> () | x::xs -> lemma_map_dec_len top f xs let rec __lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}-> 'b)) (xs : list 'a{xs << top}) (ys : list 'b) (i:nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i) = match xs, ys, i with | _, _, 0 -> () | x::xs, y::ys, _ -> __lemma_map_dec_index top f xs ys (i-1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: 'z -> f: (x: 'a{x << top} -> 'b) -> xs: Prims.list 'a {xs << top} -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat { i < FStar.List.Tot.Base.length xs /\ i < FStar.List.Tot.Base.length (Pulse.Common.map_dec top xs f) }). f (FStar.List.Tot.Base.index xs i) == FStar.List.Tot.Base.index (Pulse.Common.map_dec top xs f) i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.precedes", "Prims.list", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "Prims.l_imp", "Prims.eq2", "Pulse.Common.map_dec", "FStar.List.Tot.Base.index", "FStar.Classical.move_requires", "Pulse.Common.__lemma_map_dec_index", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.l_and", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_map_dec_index (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) : Lemma (ensures forall i. f (xs `L.index` i) == (map_dec top xs f) `L.index` i) =
Classical.forall_intro (Classical.move_requires (__lemma_map_dec_index top f xs (map_dec top xs f)))
false
BitFields.fst
BitFields.grouped_fields
val grouped_fields : Type0
let grouped_fields = either field bitfield_group
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 48, "end_line": 32, "start_col": 0, "start_line": 32 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Ast.either", "Ast.field", "BitFields.bitfield_group" ]
[]
false
false
false
true
true
let grouped_fields =
either field bitfield_group
false
Pulse.Common.fst
Pulse.Common.dec_index
val dec_index (#a: _) (top: 'z) (l: list a {l << top}) (i: nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)]
val dec_index (#a: _) (top: 'z) (l: list a {l << top}) (i: nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)]
let rec dec_index #a (top:'z) (l : list a{l << top}) (i : nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] = match l, i with | _, 0 -> () | _::l, _ -> dec_index top l (i-1)
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 113, "start_col": 0, "start_line": 108 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys) let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs // let rec __lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) (i:nat{i < L.length xs}) // : Lemma (requires map_opt f xs == Some ys) // (ensures f (xs `L.index` i) == Some (ys `L.index` i)) // = match xs, ys, i with // | _, _, 0 -> () // | x::xs, y::ys, _ -> // __lemma_map_opt_index f xs ys (i-1) // let lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) // : Lemma (requires map_opt f xs == Some ys) // (ensures forall i. f (xs `L.index` i) == Some (ys `L.index` i)) // = Classical.forall_intro (Classical.move_requires (__lemma_map_opt_index f xs ys))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: 'z -> l: Prims.list a {l << top} -> i: Prims.nat{i < FStar.List.Tot.Base.length l} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.index l i << top) [SMTPat (FStar.List.Tot.Base.index l i << top)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.precedes", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "Pulse.Common.dec_index", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.List.Tot.Base.index", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec dec_index #a (top: 'z) (l: list a {l << top}) (i: nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] =
match l, i with | _, 0 -> () | _ :: l, _ -> dec_index top l (i - 1)
false
Pulse.Common.fst
Pulse.Common.__lemma_map_dec_index
val __lemma_map_dec_index (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) (ys: list 'b) (i: nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i)
val __lemma_map_dec_index (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) (ys: list 'b) (i: nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i)
let rec __lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}-> 'b)) (xs : list 'a{xs << top}) (ys : list 'b) (i:nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i) = match xs, ys, i with | _, _, 0 -> () | x::xs, y::ys, _ -> __lemma_map_dec_index top f xs ys (i-1)
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 44, "end_line": 138, "start_col": 0, "start_line": 132 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys) let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs // let rec __lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) (i:nat{i < L.length xs}) // : Lemma (requires map_opt f xs == Some ys) // (ensures f (xs `L.index` i) == Some (ys `L.index` i)) // = match xs, ys, i with // | _, _, 0 -> () // | x::xs, y::ys, _ -> // __lemma_map_opt_index f xs ys (i-1) // let lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) // : Lemma (requires map_opt f xs == Some ys) // (ensures forall i. f (xs `L.index` i) == Some (ys `L.index` i)) // = Classical.forall_intro (Classical.move_requires (__lemma_map_opt_index f xs ys)) let rec dec_index #a (top:'z) (l : list a{l << top}) (i : nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] = match l, i with | _, 0 -> () | _::l, _ -> dec_index top l (i-1) let rec lemma_map_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> b) (xs : list a{xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)] = match xs with | [] -> () | x::xs -> lemma_map_dec_len top f xs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: 'z -> f: (x: 'a{x << top} -> 'b) -> xs: Prims.list 'a {xs << top} -> ys: Prims.list 'b -> i: Prims.nat{i < FStar.List.Tot.Base.length xs} -> FStar.Pervasives.Lemma (requires ys == Pulse.Common.map_dec top xs f) (ensures f (FStar.List.Tot.Base.index xs i) == FStar.List.Tot.Base.index ys i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.precedes", "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.Mktuple3", "Prims.int", "Pulse.Common.__lemma_map_dec_index", "Prims.op_Subtraction", "Prims.unit", "Prims.eq2", "Pulse.Common.map_dec", "Prims.squash", "FStar.List.Tot.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec __lemma_map_dec_index (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) (ys: list 'b) (i: nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i) =
match xs, ys, i with | _, _, 0 -> () | x :: xs, y :: ys, _ -> __lemma_map_dec_index top f xs ys (i - 1)
false
BitFields.fst
BitFields.eliminate_decls
val eliminate_decls (env: B.global_env) (ds: list decl) : ML (list decl)
val eliminate_decls (env: B.global_env) (ds: list decl) : ML (list decl)
let eliminate_decls (env:B.global_env) (ds:list decl) : ML (list decl) = List.map (eliminate_one_decl env) ds
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 190, "start_col": 0, "start_line": 189 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *) let bitfield_group = int & typ & list atomic_field let grouped_fields = either field bitfield_group let group_bit_fields (rewrite_composite_field: field -> ML field) (fields: list field) : ML (list grouped_fields) = List.fold_right (fun field out -> match field.v with | RecordField _ _ | SwitchCaseField _ _ -> Inl (rewrite_composite_field field) :: out | AtomicField af -> match af.v.field_bitwidth with | None -> Inl field :: out | Some (Inl _) -> failwith "Bit fields should have been elaborated already" | Some (Inr bf) -> match out with | Inr (index, typ, atomic_fields)::tl -> if index = bf.v.bitfield_identifier then Inr(index, typ, af :: atomic_fields) :: tl //extend this bitfield group else Inr(bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group | _ -> Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group ) fields [] let subst' = list (ident & expr) let coalesce_grouped_bit_field env (f:bitfield_group) : ML (field & subst') = let id, typ, fields = f in let size = B.size_of_integral_typ env typ typ.range in let bitsize = 8 * size in let order = B.bit_order_of_integral_typ env typ typ.range in let field_id = with_range (to_ident' (Printf.sprintf "__bitfield_%d" id)) dummy_range in let id = with_range (Identifier field_id) field_id.range in let mk_e (e:expr') :expr = with_range e field_id.range in let bitfield_attrs f : ML _ = match f.field_bitwidth with | Some (Inr bf) -> bf.v | _ -> failwith "Must have elaborated bitfield" in let field_dependence, field_constraint, field_action, subst = List.fold_left (fun (acc:(bool & _ & option (action & bool) & _)) f -> let (dep, acc_constraint, acc_action, subst) = acc in let f = f.v in let acc_action, acc_dep = match acc_action, f.field_action with | None, None | Some _, None -> acc_action, false | None, Some (_, d) -> f.field_action, d | Some (acc, dep_0), Some (fa, dep_1) -> if Action_act? acc.v && Action_act? fa.v then Some (Ast.sequence_non_failing_actions acc fa, dep_0 || dep_1), dep_0 || dep_1 else failwith "Multiple, potentially failing actions are not supported on bitfields" in let dep = dep || acc_dep || f.field_dependence in let acc_constraint = match f.field_constraint, acc_constraint with | None, _ -> acc_constraint | Some _, None -> f.field_constraint | Some c, Some acc -> Some (mk_e (App And [acc; c])) in let bf_exp = App (BitFieldOf bitsize order) [id; mk_e (Constant (Int UInt32 (bitfield_attrs f).bitfield_from)); mk_e (Constant (Int UInt32 (bitfield_attrs f).bitfield_to))] in let subst = (f.field_ident, mk_e bf_exp) :: subst in dep, acc_constraint, acc_action, subst) (false, None, None, []) fields in let struct_field = { field_dependence = field_dependence; field_ident = field_id; field_type = typ; field_array_opt = FieldScalar; field_constraint = field_constraint; field_bitwidth = None; field_action = field_action; field_probe = None } in let af = with_dummy_range struct_field in with_dummy_range (AtomicField af), subst let rec rewrite_field (env:B.global_env) (f:field) : ML (f':field {field_tag_equal f f'}) = match f.v with | AtomicField _ -> f | RecordField fs field_name -> let gfs = group_bit_fields (rewrite_field env) fs in let fs, subst = List.fold_right (fun f (fields, subst) -> match f with | Inl f -> (f::fields, subst) | Inr gf -> let f, subst' = coalesce_grouped_bit_field (B.mk_env env) gf in f::fields, subst'@subst) gfs ([], []) in let fs = List.map (subst_field (mk_subst subst)) fs in { f with v = RecordField fs field_name } | SwitchCaseField (e, cases) field_name -> let cases = List.map (function | Case p f -> Case p (rewrite_field env f) | DefaultCase f -> DefaultCase (rewrite_field env f)) cases in { f with v = SwitchCaseField (e, cases) field_name } let eliminate_one_decl (env:B.global_env) (d:decl) : ML decl = match d.d_decl.v with | Record names params where fields -> let i = with_dummy_range (to_ident' "_") in let { v = RecordField fields _ } = rewrite_field env (with_dummy_range (RecordField fields i)) in List.iter (fun f -> Options.debug_print_string (Printf.sprintf "Bitfields: Field %s has comments <%s>\n" (print_field f) (String.concat "\n" f.comments))) fields; let fields = match fields with | [{v=AtomicField af; range; comments}] -> //just one field, it need no longer be dependent let af' = { af.v with field_dependence = false } in let af' = { af with v = af' } in [{v=AtomicField af; range; comments}] | _ -> fields in decl_with_v d (Record names params where fields) | _ -> d
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
env: GlobalEnv.global_env -> ds: Prims.list Ast.decl -> FStar.All.ML (Prims.list Ast.decl)
FStar.All.ML
[ "ml" ]
[]
[ "GlobalEnv.global_env", "Prims.list", "Ast.decl", "FStar.List.map", "BitFields.eliminate_one_decl" ]
[]
false
true
false
false
false
let eliminate_decls (env: B.global_env) (ds: list decl) : ML (list decl) =
List.map (eliminate_one_decl env) ds
false
Pulse.Common.fst
Pulse.Common.lemma_map_dec_index_i
val lemma_map_dec_index_i (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) (i: nat{i < L.length xs}) : Lemma (ensures f (xs `L.index` i) == (map_dec top xs f) `L.index` i)
val lemma_map_dec_index_i (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) (i: nat{i < L.length xs}) : Lemma (ensures f (xs `L.index` i) == (map_dec top xs f) `L.index` i)
let lemma_map_dec_index_i (top:'z) (f : (x:'a{x<<top}) -> 'b) (xs : list 'a{xs << top}) (i : nat {i < L.length xs}) : Lemma (ensures f (xs `L.index` i) == map_dec top xs f `L.index` i) = lemma_map_dec_index top f xs
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 32, "end_line": 146, "start_col": 0, "start_line": 144 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys) let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs // let rec __lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) (i:nat{i < L.length xs}) // : Lemma (requires map_opt f xs == Some ys) // (ensures f (xs `L.index` i) == Some (ys `L.index` i)) // = match xs, ys, i with // | _, _, 0 -> () // | x::xs, y::ys, _ -> // __lemma_map_opt_index f xs ys (i-1) // let lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) // : Lemma (requires map_opt f xs == Some ys) // (ensures forall i. f (xs `L.index` i) == Some (ys `L.index` i)) // = Classical.forall_intro (Classical.move_requires (__lemma_map_opt_index f xs ys)) let rec dec_index #a (top:'z) (l : list a{l << top}) (i : nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] = match l, i with | _, 0 -> () | _::l, _ -> dec_index top l (i-1) let rec lemma_map_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> b) (xs : list a{xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)] = match xs with | [] -> () | x::xs -> lemma_map_dec_len top f xs let rec __lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}-> 'b)) (xs : list 'a{xs << top}) (ys : list 'b) (i:nat{i < L.length xs}) : Lemma (requires ys == map_dec top xs f) (ensures f (xs `L.index` i) == ys `L.index` i) = match xs, ys, i with | _, _, 0 -> () | x::xs, y::ys, _ -> __lemma_map_dec_index top f xs ys (i-1) let lemma_map_dec_index (top:'z) (f : (x:'a{x<<top}) -> 'b) (xs : list 'a{xs << top}) : Lemma (ensures forall i. f (xs `L.index` i) == map_dec top xs f `L.index` i) = Classical.forall_intro (Classical.move_requires (__lemma_map_dec_index top f xs (map_dec top xs f)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: 'z -> f: (x: 'a{x << top} -> 'b) -> xs: Prims.list 'a {xs << top} -> i: Prims.nat{i < FStar.List.Tot.Base.length xs} -> FStar.Pervasives.Lemma (ensures f (FStar.List.Tot.Base.index xs i) == FStar.List.Tot.Base.index (Pulse.Common.map_dec top xs f) i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.precedes", "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "Pulse.Common.lemma_map_dec_index", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.index", "Pulse.Common.map_dec", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_map_dec_index_i (top: 'z) (f: (x: 'a{x << top} -> 'b)) (xs: list 'a {xs << top}) (i: nat{i < L.length xs}) : Lemma (ensures f (xs `L.index` i) == (map_dec top xs f) `L.index` i) =
lemma_map_dec_index top f xs
false
Steel.ST.GhostPCMReference.fst
Steel.ST.GhostPCMReference.gather
val gather (#o:inames) (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v0:a) (v1:a) : STGhostT (_:unit{composable p v0 v1}) o (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op p v0 v1))
val gather (#o:inames) (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v0:a) (v1:a) : STGhostT (_:unit{composable p v0 v1}) o (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op p v0 v1))
let gather (#o:inames) (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v0:a) (v1:a) : STGhostT (_:unit{composable p v0 v1}) o (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op p v0 v1)) = let _ = coerce_ghost (fun _ -> G.gather r (raise_val v0) (raise_val v1)) in ()
{ "file_name": "lib/steel/Steel.ST.GhostPCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 6, "end_line": 110, "start_col": 0, "start_line": 100 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.GhostPCMReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions open FStar.PCM open FStar.Universe module UP = FStar.Universe.PCM module G = Steel.GhostPCMReference let ref (a:Type u#0) (p:pcm a) : Type u#0 = G.ref (raise_t u#0 u#1 a) (UP.raise p) /// pts_to is fixed to ref contents in u#0 let pts_to (#a:Type u#0) (#pcm:pcm a) (r:ref a pcm) ([@@@smt_fallback] v:a) = G.pts_to #(raise_t a) #(UP.raise pcm) r (raise_val v) /// Allocates a new reference, initially storing value [x]. let alloc (#o:inames) (#a:Type) (#pcm:pcm a) (x:a) : STGhost (ref a pcm) o emp (fun r -> pts_to r x) (requires pcm.refine x) (ensures fun _ -> True) = coerce_ghost (fun _ -> G.alloc (raise_val x)) let read (#o:inames) (#a:Type) (#pcm:pcm a) (#v0:a) (r:ref a pcm) : STGhost a o (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v) = let v = coerce_ghost (fun _ -> G.read r) in downgrade_val v let write (#o:inames) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:a) (v1:a) : STGhost unit o (pts_to r v0) (fun _ -> pts_to r v1) (requires frame_preserving pcm v0 v1 /\ pcm.refine v1) (ensures fun _ -> True) = coerce_ghost (fun _ -> G.write r (raise_val v0) (raise_val v1)) let upd_gen (#o:inames) (#a:Type) (#p:pcm a) (r:ref a p) (x y:a) (f:frame_preserving_upd p x y) : STGhostT unit o (pts_to r x) (fun _ -> pts_to r y) = coerce_ghost (fun _ -> G.upd_gen r (raise_val x) (raise_val y) (UP.raise_frame_preserving_upd f)) /// Splits permission on reference [r], in a way that is compatible with the governing PCM. let share (#o:inames) (#a:Type) (#p:pcm a) (r:ref a p) (v:a) (v0:a) (v1:a) : STGhost unit o (pts_to r v) (fun _ -> pts_to r v0 `star` pts_to r v1) (requires composable p v0 v1 /\ v == op p v0 v1) (ensures fun _ -> True) = coerce_ghost (fun _ -> G.share r (raise_val v) (raise_val v0) (raise_val v1))
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.GhostPCMReference.fsti.checked", "prims.fst.checked", "FStar.Universe.PCM.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GhostPCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.GhostPCMReference", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Universe.PCM", "short_module": "UP" }, { "abbrev": false, "full_module": "FStar.Universe", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.GhostPCMReference.ref a p -> v0: a -> v1: a -> Steel.ST.Effect.Ghost.STGhostT (_: Prims.unit{FStar.PCM.composable p v0 v1})
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.ST.GhostPCMReference.ref", "Prims.unit", "FStar.PCM.composable", "FStar.Universe.raise_t", "FStar.Universe.PCM.raise", "FStar.Universe.raise_val", "Steel.ST.Coercions.coerce_ghost", "Steel.Effect.Common.star", "Steel.GhostPCMReference.pts_to", "FStar.PCM.op", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.GhostPCMReference.gather", "Steel.ST.GhostPCMReference.pts_to" ]
[]
false
true
false
false
false
let gather (#o: inames) (#a: Type) (#p: FStar.PCM.pcm a) (r: ref a p) (v0 v1: a) : STGhostT (_: unit{composable p v0 v1}) o ((pts_to r v0) `star` (pts_to r v1)) (fun _ -> pts_to r (op p v0 v1)) =
let _ = coerce_ghost (fun _ -> G.gather r (raise_val v0) (raise_val v1)) in ()
false
Vale.Test.X64.Args.fst
Vale.Test.X64.Args.va_codegen_success_Test
val va_codegen_success_Test : win:bool -> Tot va_pbool
val va_codegen_success_Test : win:bool -> Tot va_pbool
let va_codegen_success_Test win = (va_pbool_and (va_codegen_success_CreateHeaplets ()) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_pbool_and (va_codegen_success_DestroyHeaplets ()) (va_ttrue ()))))
{ "file_name": "obj/Vale.Test.X64.Args.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 25, "start_col": 0, "start_line": 22 }
module Vale.Test.X64.Args open Vale.Arch.HeapImpl open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.QuickCode open Vale.X64.QuickCodes #set-options "--z3rlimit 20" //-- Test [@ "opaque_to_smt" va_qattr] let va_code_Test win = (va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ())))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.Test.X64.Args.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_pbool_and", "Vale.X64.InsMem.va_codegen_success_CreateHeaplets", "Vale.X64.InsBasic.va_codegen_success_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Machine_s.rRbx", "Vale.X64.InsMem.va_codegen_success_DestroyHeaplets", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Test win =
(va_pbool_and (va_codegen_success_CreateHeaplets ()) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_pbool_and (va_codegen_success_DestroyHeaplets ()) (va_ttrue ()))))
false
Pulse.Common.fst
Pulse.Common.lemma_map_dec_len
val lemma_map_dec_len (#a #b #z: _) (top: z) (f: (x: a{x << top} -> b)) (xs: list a {xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)]
val lemma_map_dec_len (#a #b #z: _) (top: z) (f: (x: a{x << top} -> b)) (xs: list a {xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)]
let rec lemma_map_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> b) (xs : list a{xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)] = match xs with | [] -> () | x::xs -> lemma_map_dec_len top f xs
{ "file_name": "lib/steel/pulse/Pulse.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 41, "end_line": 130, "start_col": 0, "start_line": 125 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Common module L = FStar.List.Tot open FStar.Tactics let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b = match f with | None -> None | Some x -> g x // let lem_bind_opt_some (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires Some? ((let?) x f)) // (ensures Some? x /\ Some? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () // let lem_bind_opt_none (x : option 'a) (f : 'a -> option 'b) // : Lemma (requires None? ((let?) x f)) // (ensures None? x \/ None? (f (Some?.v x))) // [SMTPat (Some? ((let?) x f))] // = () let rec for_all_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> bool)) : bool = match l with | [] -> true | x::xs -> f x && for_all_dec top xs f let rec map_dec (top:'a) (l : list 'b{l << top}) (f : (x:'b{x << l} -> 'c)) : list 'c = match l with | [] -> [] | x::xs -> f x :: map_dec top xs f let rec zipWith (f : 'a -> 'b -> Tac 'c) (l : list 'a) (m : list 'b) : Tac (l':(list 'c){L.length l' == min (L.length l) (L.length m)}) = match l, m with | [], [] -> [] | x::xs, y::ys -> f x y :: zipWith f xs ys | _ -> fail "zipWith: length mismatch" val zip : (#a:Type) -> (#b:Type) -> l1:list a -> l2:list b -> Tot (l:list (a * b){L.length l == min (L.length l1) (L.length l2)}) let rec zip #a #b l1 l2 = match l1, l2 with | x::xs, y::ys -> (x,y) :: (zip xs ys) | _ -> [] let rec map_opt f l = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt f xs in Some (y::ys) let rec map_opt_dec #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (l : list a{l << top}) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = map_opt_dec top f xs in Some (y::ys) let rec concat_map_opt #a #b (f : a -> option (list b)) (l : list a) : option (list b) = match l with | [] -> Some [] | x::xs -> let? y = f x in let? ys = concat_map_opt f xs in Some (y@ys) let rec lemma_map_opt_dec_len #a #b #z (top:z) (f : (x:a{x << top}) -> option b) (xs : list a{xs << top}) : Lemma (requires (Some? (map_opt_dec top f xs))) (ensures (L.length (Some?.v (map_opt_dec top f xs)) == L.length xs)) [SMTPat (map_opt_dec top f xs)] = match xs with | [] -> () | x::xs -> lemma_map_opt_dec_len top f xs // let rec __lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) (i:nat{i < L.length xs}) // : Lemma (requires map_opt f xs == Some ys) // (ensures f (xs `L.index` i) == Some (ys `L.index` i)) // = match xs, ys, i with // | _, _, 0 -> () // | x::xs, y::ys, _ -> // __lemma_map_opt_index f xs ys (i-1) // let lemma_map_opt_index (f : 'a -> option 'b) (xs : list 'a) (ys : list 'b) // : Lemma (requires map_opt f xs == Some ys) // (ensures forall i. f (xs `L.index` i) == Some (ys `L.index` i)) // = Classical.forall_intro (Classical.move_requires (__lemma_map_opt_index f xs ys)) let rec dec_index #a (top:'z) (l : list a{l << top}) (i : nat{i < L.length l}) : Lemma (l `L.index` i << top) [SMTPat (l `L.index` i << top)] = match l, i with | _, 0 -> () | _::l, _ -> dec_index top l (i-1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
top: z -> f: (x: a{x << top} -> b) -> xs: Prims.list a {xs << top} -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.length (Pulse.Common.map_dec top xs f) == FStar.List.Tot.Base.length xs) [SMTPat (Pulse.Common.map_dec top xs f)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.precedes", "Prims.list", "Pulse.Common.lemma_map_dec_len", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.nat", "FStar.List.Tot.Base.length", "Pulse.Common.map_dec", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_map_dec_len #a #b #z (top: z) (f: (x: a{x << top} -> b)) (xs: list a {xs << top}) : Lemma (ensures (L.length (map_dec top xs f) == L.length xs)) [SMTPat (map_dec top xs f)] =
match xs with | [] -> () | x :: xs -> lemma_map_dec_len top f xs
false
Hacl.Spec.Bignum.Convert.fst
Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma
val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b))
val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b))
let bn_to_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i:nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 363, "start_col": 0, "start_line": 339 }
module Hacl.Spec.Bignum.Convert open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len let bn_from_uint #t len x = let b = create len (uint #t 0) in b.[0] <- x val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x) let bn_from_uint_lemma #t len x = let b = create len (uint #t 0) in let b = b.[0] <- x in bn_eval_split_i b 1; assert (bn_v b == bn_v (slice b 0 1) + pow2 (bits t) * bn_v (slice b 1 len)); eq_intro (slice b 1 len) (create (len - 1) (uint #t 0)); bn_eval_zeroes #t (len - 1) (len - 1); assert (bn_v b == bn_v (slice b 0 1)); bn_eval1 (slice b 0 1) val bn_from_bytes_be_f: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> i:nat{i < len} -> limb t let bn_from_bytes_be_f #t len b i = uint_from_bytes_be (sub b ((len - i - 1) * numbytes t) (numbytes t)) val bn_from_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lseq uint8 (numbytes t * len) -> lbignum t len let bn_from_bytes_be_ #t len b = createi len (bn_from_bytes_be_f len b) val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in bn_from_bytes_be_ bnLen tmp val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lseq uint8 len -> lbignum t (blocks len (numbytes t)) let bn_from_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp 0 len b in uints_from_bytes_le tmp val bn_to_bytes_be_f: #t:limb_t -> len:size_nat -> lbignum t len -> i:nat{i < len} -> unit -> unit & lseq uint8 (numbytes t) let bn_to_bytes_be_f #t len b i () = (), uint_to_bytes_be b.[len - i - 1] val bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> lbignum t len -> lseq uint8 (numbytes t * len) let bn_to_bytes_be_ #t len b = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (bn_to_bytes_be_f len b) () in o val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_be #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in sub tmp (tmpLen - len) len val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> lbignum t (blocks len (numbytes t)) -> lseq uint8 len let bn_to_bytes_le #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = uints_to_bytes_le b in sub tmp 0 len /// /// Lemmas /// val reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> lbignum t len let reverse #t #len b = createi len (fun i -> b.[len - i - 1]) val twice_reverse: #t:limb_t -> #len:size_nat -> b:lbignum t len -> Lemma (reverse (reverse b) == b) let twice_reverse #t #len b = let lemma_aux (i:nat{i < len}) : Lemma ((reverse (reverse b)).[i] == b.[i]) = () in Classical.forall_intro lemma_aux; eq_intro (reverse (reverse b)) b val reverse_slice1: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (slice (reverse b) 1 len == reverse (slice b 0 (len - 1))) let reverse_slice1 #t #len b = let lemma_aux (i:nat{i < len - 1}) : Lemma ((slice (reverse b) 1 len).[i] == (reverse (slice b 0 (len - 1))).[i]) = () in Classical.forall_intro lemma_aux; eq_intro (slice (reverse b) 1 len) (reverse (slice b 0 (len - 1))) val bn_from_bytes_be_is_uints_from_bytes_be_reverse: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_from_bytes_be_ len b == reverse (uints_from_bytes_be b)) let bn_from_bytes_be_is_uints_from_bytes_be_reverse #t len b = let lemma_aux (i:nat{i < len}) : Lemma ((bn_from_bytes_be_ len b).[i] == (reverse #t #len (uints_from_bytes_be b)).[i]) = index_uints_from_bytes_be #t #SEC #len b (len - i - 1) in Classical.forall_intro lemma_aux; eq_intro (bn_from_bytes_be_ len b) (reverse (uints_from_bytes_be b)) val bn_v_is_nat_from_intseq_be_lemma: #t:limb_t -> len:size_nat -> b:lbignum t len -> Lemma (bn_v b == nat_from_intseq_be (reverse b)) let rec bn_v_is_nat_from_intseq_be_lemma #t len b = if len = 0 then bn_eval0 b else begin let b1 = slice b 0 (len - 1) in bn_v_is_nat_from_intseq_be_lemma (len - 1) b1; assert (bn_v b1 == nat_from_intseq_be (reverse b1)); bn_eval_split_i #t #len b (len - 1); bn_eval_unfold_i #t #1 (slice b (len - 1) len) 1; bn_eval0 #t #1 (slice b (len - 1) len); assert (bn_v (slice b (len - 1) len) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b1) + pow2 (bits t * (len - 1)) * v b.[len - 1]); nat_from_intseq_be_slice_lemma (reverse b) 1; reverse_slice1 #t #len b; assert ((reverse b).[0] == b.[len - 1]); nat_from_intseq_be_lemma0 (slice (reverse b) 0 1); assert (nat_from_intseq_be (slice (reverse b) 0 1) == v b.[len - 1]); assert (bn_v b == nat_from_intseq_be (reverse b)); () end val bn_from_bytes_be_lemma_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lseq uint8 (numbytes t * len) -> Lemma (bn_v (bn_from_bytes_be_ len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma_ #t len b = bn_v_is_nat_from_intseq_be_lemma len (bn_from_bytes_be_ len b); bn_from_bytes_be_is_uints_from_bytes_be_reverse len b; twice_reverse (uints_from_bytes_be #t #SEC #len b); assert (bn_v (bn_from_bytes_be_ len b) == nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b)); uints_from_bytes_be_nat_lemma #t #SEC #len b; assert (nat_from_intseq_be (uints_from_bytes_be #t #SEC #len b) == nat_from_bytes_be b) val lemma_nat_from_bytes_be_zeroes: len:size_nat -> b:lseq uint8 len -> Lemma (requires (forall (i:nat). i < len ==> b.[i] == u8 0)) (ensures nat_from_intseq_be b == 0) let rec lemma_nat_from_bytes_be_zeroes len b = if len = 0 then () else begin nat_from_intseq_be_slice_lemma #U8 #SEC #len b 1; nat_from_intseq_be_lemma0 (slice b 0 1); lemma_nat_from_bytes_be_zeroes (len-1) (slice b 1 len) end val nat_from_bytes_be_eq_lemma: len0:size_nat -> len:size_nat{len0 <= len} -> b:lseq uint8 len0 -> Lemma (let tmp = create len (u8 0) in nat_from_intseq_be b == nat_from_intseq_be (update_sub tmp (len - len0) len0 b)) let nat_from_bytes_be_eq_lemma len0 len b = let tmp = create len (u8 0) in let r = update_sub tmp (len - len0) len0 b in assert (slice r (len - len0) len == b); assert (forall (i:nat). i < len - len0 ==> r.[i] == u8 0); nat_from_intseq_be_slice_lemma #U8 #SEC #len r (len - len0); assert (nat_from_intseq_be r == nat_from_intseq_be (slice r (len - len0) len) + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); assert (nat_from_intseq_be r == nat_from_intseq_be b + pow2 (len0 * 8) * nat_from_intseq_be (Seq.slice r 0 (len - len0))); lemma_nat_from_bytes_be_zeroes (len - len0) (Seq.slice r 0 (len - len0)) val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == nat_from_bytes_be b) let bn_from_bytes_be_lemma #t len b = let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = create tmpLen (u8 0) in let tmp = update_sub tmp (tmpLen - len) len b in let res = bn_from_bytes_be_ #t bnLen tmp in bn_from_bytes_be_lemma_ #t bnLen tmp; assert (bn_v (bn_from_bytes_be_ #t bnLen tmp) == nat_from_bytes_be tmp); nat_from_bytes_be_eq_lemma len tmpLen b val index_bn_to_bytes_be_: #t:limb_t -> len:size_nat{numbytes t * len <= max_size_t} -> b:lbignum t len -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in (bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) let index_bn_to_bytes_be_ #t len b i = let numb = numbytes t in let bi = b.[len - i / numb - 1] in index_generate_blocks (numb) len len (bn_to_bytes_be_f len b) i; assert ((bn_to_bytes_be_ #t len b).[i] == (uint_to_bytes_be bi).[i % numb]); index_uint_to_bytes_be bi; assert ((uint_to_bytes_be bi).[i % numb] == uint #U8 #SEC (v bi / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)) val bn_to_bytes_be_lemma_aux: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> i:nat{i < numbytes t * len} -> Lemma (let numb = numbytes t in bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8 == v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8) let bn_to_bytes_be_lemma_aux #t len b i = let pbits = bits t in let numb = numbytes t in let e = numb - 1 - i % numb in let e1 = len - i / numb - 1 in let e2 = numb * len - 1 - i in calc (==) { v b.[e1] / pow2 (8 * e) % pow2 8; (==) { bn_eval_index b e1 } (bn_v b / pow2 (pbits * e1) % pow2 (pbits)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (pbits * e1) (pbits + pbits * e1) } (bn_v b % pow2 (pbits + pbits * e1) / pow2 (pbits * e1)) / pow2 (8 * e) % pow2 8; (==) { Math.Lemmas.division_multiplication_lemma (bn_v b % pow2 (pbits + pbits * e1)) (pow2 (pbits * e1)) (pow2 (8 * e)) } (bn_v b % pow2 (pbits + pbits * e1)) / (pow2 (pbits * e1) * pow2 (8 * e)) % pow2 8; (==) { Math.Lemmas.pow2_plus (pbits * e1) (8 * e) } (bn_v b % pow2 (pbits + pbits * e1)) / pow2 (pbits * e1 + 8 * e) % pow2 8; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b) (8 * e2) (pbits + pbits * e1) } (bn_v b / pow2 (8 * e2)) % pow2 (pbits + pbits * e1 - 8 * e2) % pow2 8; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 (8 * e2)) 8 (pbits + pbits * e1 - 8 * e2) } (bn_v b / pow2 (8 * (numb * len - i - 1))) % pow2 8; } val bn_to_bytes_be_lemma_: #t:limb_t -> len:size_pos{numbytes t * len <= max_size_t} -> b:lbignum t len{bn_v b < pow2 (bits t * len)} -> Lemma (bn_to_bytes_be_ #t len b == nat_to_intseq_be #U8 #SEC (numbytes t * len) (bn_v b)) let bn_to_bytes_be_lemma_ #t len b = let numb = numbytes t in let lemma_aux (i:nat{i < numb * len}) : Lemma ((bn_to_bytes_be_ #t len b).[i] == index #uint8 #(numb * len) (nat_to_intseq_be (numb * len) (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) in index_nat_to_intseq_be #U8 #SEC (numb * len) (bn_v b) (numb * len - i - 1); assert (index #uint8 #(numb * len) rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (numb * len - i - 1)) % pow2 8)); index_bn_to_bytes_be_ len b i; assert ((bn_to_bytes_be_ #t len b).[i] == uint #U8 #SEC (v b.[len - i / numb - 1] / pow2 (8 * (numb - 1 - i % numb)) % pow2 8)); bn_to_bytes_be_lemma_aux len b i; () in Classical.forall_intro lemma_aux; eq_intro (bn_to_bytes_be_ len b) (nat_to_intseq_be (numb * len) (bn_v b)) val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * blocks len (numbytes t) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == nat_to_intseq_be #U8 #SEC len (bn_v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Convert.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) {Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 (8 * len)} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Convert.bn_to_bytes_be len b == Lib.ByteSequence.nat_to_intseq_be len (Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.nat_to_intseq_be", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Lib.IntTypes.uint8", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.sub", "Prims.op_Subtraction", "Lib.Sequence.index", "Prims.l_True", "Prims.squash", "Lib.IntTypes.int_t", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Addition", "Lib.IntTypes.uint", "Lib.ByteSequence.index_nat_to_intseq_be", "Lib.Sequence.seq", "Prims.l_and", "Lib.Sequence.length", "Prims.op_Multiply", "Lib.ByteSequence.nat_from_intseq_be", "FStar.Seq.Base.length", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma_", "FStar.Math.Lemmas.pow2_le_compat", "Lib.Sequence.lseq", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_", "Prims.pos" ]
[]
false
false
true
false
false
let bn_to_bytes_be_lemma #t len b =
let bnLen = blocks len (numbytes t) in let tmpLen = numbytes t * bnLen in let tmp = bn_to_bytes_be_ bnLen b in let res = sub tmp (tmpLen - len) len in assert (bn_v b < pow2 (8 * len)); Math.Lemmas.pow2_le_compat (bits t * bnLen) (8 * len); assert (bn_v b < pow2 (bits t * bnLen)); bn_to_bytes_be_lemma_ bnLen b; assert (tmp == nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)); let lemma_aux (i: nat{i < len}) : Lemma (index (sub #uint8 #tmpLen (nat_to_intseq_be #U8 #SEC tmpLen (bn_v b)) (tmpLen - len) len) i == index #uint8 #len (nat_to_intseq_be #U8 #SEC len (bn_v b)) i) = let rp = nat_to_intseq_be #U8 #SEC len (bn_v b) in index_nat_to_intseq_be #U8 #SEC len (bn_v b) (len - i - 1); assert (index #uint8 #len rp i == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); let lp = nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) in assert (index (sub #uint8 #tmpLen lp (tmpLen - len) len) i == index #uint8 #tmpLen lp (tmpLen - len + i)); index_nat_to_intseq_be #U8 #SEC tmpLen (bn_v b) (len - i - 1); assert (index #uint8 #tmpLen lp (tmpLen - len + i) == uint #U8 #SEC (bn_v b / pow2 (8 * (len - i - 1)) % pow2 8)); () in Classical.forall_intro lemma_aux; eq_intro (nat_to_intseq_be #U8 #SEC len (bn_v b)) res
false
Vale.Test.X64.Args.fst
Vale.Test.X64.Args.va_code_Test
val va_code_Test : win:bool -> Tot va_code
val va_code_Test : win:bool -> Tot va_code
let va_code_Test win = (va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ())))))
{ "file_name": "obj/Vale.Test.X64.Args.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 91, "end_line": 19, "start_col": 0, "start_line": 17 }
module Vale.Test.X64.Args open Vale.Arch.HeapImpl open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.QuickCode open Vale.X64.QuickCodes #set-options "--z3rlimit 20" //-- Test
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.Test.X64.Args.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.InsMem.va_code_CreateHeaplets", "Vale.X64.InsBasic.va_code_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Machine_s.rRbx", "Vale.X64.InsMem.va_code_DestroyHeaplets", "Vale.X64.Decls.va_CNil", "Vale.X64.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Test win =
(va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ())))))
false
Vale.Test.X64.Args.fst
Vale.Test.X64.Args.va_qcode_Test
val va_qcode_Test (va_mods: va_mods_t) (win: bool) (arg0 arg1 arg2 arg3 arg4 arg5 arg6 arg7: buffer64) : (va_quickCode unit (va_code_Test win))
val va_qcode_Test (va_mods: va_mods_t) (win: bool) (arg0 arg1 arg2 arg3 arg4 arg5 arg6 arg7: buffer64) : (va_quickCode unit (va_code_Test win))
let va_qcode_Test (va_mods:va_mods_t) (win:bool) (arg0:buffer64) (arg1:buffer64) (arg2:buffer64) (arg3:buffer64) (arg4:buffer64) (arg5:buffer64) (arg6:buffer64) (arg7:buffer64) : (va_quickCode unit (va_code_Test win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 79 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Args.vaf *****" (va_quick_CreateHeaplets ([declare_buffer64 arg0 0 Secret Immutable; declare_buffer64 arg1 0 Secret Immutable; declare_buffer64 arg2 0 Secret Immutable; declare_buffer64 arg3 0 Secret Immutable; declare_buffer64 arg4 0 Secret Immutable; declare_buffer64 arg5 0 Secret Immutable; declare_buffer64 arg6 0 Secret Immutable; declare_buffer64 arg7 0 Secret Immutable])) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 89 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Args.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 91 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Args.vaf *****" (va_quick_DestroyHeaplets ()) (va_QEmpty (()))))))
{ "file_name": "obj/Vale.Test.X64.Args.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 41, "start_col": 0, "start_line": 28 }
module Vale.Test.X64.Args open Vale.Arch.HeapImpl open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.QuickCode open Vale.X64.QuickCodes #set-options "--z3rlimit 20" //-- Test [@ "opaque_to_smt" va_qattr] let va_code_Test win = (va_Block (va_CCons (va_code_CreateHeaplets ()) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_CCons (va_code_DestroyHeaplets ()) (va_CNil ()))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_Test win = (va_pbool_and (va_codegen_success_CreateHeaplets ()) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_pbool_and (va_codegen_success_DestroyHeaplets ()) (va_ttrue ()))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.Test.X64.Args.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Test.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_mods: Vale.X64.QuickCode.va_mods_t -> win: Prims.bool -> arg0: Vale.X64.Memory.buffer64 -> arg1: Vale.X64.Memory.buffer64 -> arg2: Vale.X64.Memory.buffer64 -> arg3: Vale.X64.Memory.buffer64 -> arg4: Vale.X64.Memory.buffer64 -> arg5: Vale.X64.Memory.buffer64 -> arg6: Vale.X64.Memory.buffer64 -> arg7: Vale.X64.Memory.buffer64 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.Test.X64.Args.va_code_Test win)
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.QuickCode.va_mods_t", "Prims.bool", "Vale.X64.Memory.buffer64", "Vale.X64.QuickCodes.qblock", "Prims.unit", "Prims.Cons", "Vale.X64.Decls.va_code", "Vale.X64.InsMem.va_code_CreateHeaplets", "Vale.X64.InsBasic.va_code_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Machine_s.rRbx", "Vale.X64.InsMem.va_code_DestroyHeaplets", "Prims.Nil", "Vale.X64.Machine_s.precode", "Vale.X64.Decls.ins", "Vale.X64.Decls.ocmp", "Vale.X64.Decls.va_state", "Vale.X64.QuickCodes.va_QSeq", "Vale.X64.QuickCodes.va_range1", "Vale.X64.InsMem.va_quick_CreateHeaplets", "Vale.Arch.HeapImpl.buffer_info", "Vale.X64.InsMem.declare_buffer64", "Vale.Arch.HeapTypes_s.Secret", "Vale.Arch.HeapImpl.Immutable", "Vale.X64.InsBasic.va_quick_Mov64", "Vale.X64.InsMem.va_quick_DestroyHeaplets", "Vale.X64.QuickCodes.va_QEmpty", "Vale.X64.State.vale_state", "Vale.X64.QuickCodes.quickCodes", "Vale.X64.QuickCode.va_quickCode", "Vale.Test.X64.Args.va_code_Test" ]
[]
false
false
false
false
false
let va_qcode_Test (va_mods: va_mods_t) (win: bool) (arg0 arg1 arg2 arg3 arg4 arg5 arg6 arg7: buffer64) : (va_quickCode unit (va_code_Test win)) =
(qblock va_mods (fun (va_s: va_state) -> let va_old_s:va_state = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 79 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Args.vaf *****" (va_quick_CreateHeaplets ([ declare_buffer64 arg0 0 Secret Immutable; declare_buffer64 arg1 0 Secret Immutable; declare_buffer64 arg2 0 Secret Immutable; declare_buffer64 arg3 0 Secret Immutable; declare_buffer64 arg4 0 Secret Immutable; declare_buffer64 arg5 0 Secret Immutable; declare_buffer64 arg6 0 Secret Immutable; declare_buffer64 arg7 0 Secret Immutable ])) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 89 column 10 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Args.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRax) (va_op_opr64_reg64 rRbx)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 91 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/test/Vale.Test.X64.Args.vaf *****" (va_quick_DestroyHeaplets ()) (va_QEmpty (()))))))
false
CQueue.fst
CQueue.squash
val squash (p: Type u#a) : Type0
val squash (p: Type u#a) : Type0
let squash (p:Type u#a) : Type0 = squash p
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 11, "start_col": 0, "start_line": 11 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q}
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Type -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.squash" ]
[]
false
false
false
true
true
let squash (p: Type u#a) : Type0 =
squash p
false
BitFields.fst
BitFields.rewrite_field
val rewrite_field (env: B.global_env) (f: field) : ML (f': field{field_tag_equal f f'})
val rewrite_field (env: B.global_env) (f: field) : ML (f': field{field_tag_equal f f'})
let rec rewrite_field (env:B.global_env) (f:field) : ML (f':field {field_tag_equal f f'}) = match f.v with | AtomicField _ -> f | RecordField fs field_name -> let gfs = group_bit_fields (rewrite_field env) fs in let fs, subst = List.fold_right (fun f (fields, subst) -> match f with | Inl f -> (f::fields, subst) | Inr gf -> let f, subst' = coalesce_grouped_bit_field (B.mk_env env) gf in f::fields, subst'@subst) gfs ([], []) in let fs = List.map (subst_field (mk_subst subst)) fs in { f with v = RecordField fs field_name } | SwitchCaseField (e, cases) field_name -> let cases = List.map (function | Case p f -> Case p (rewrite_field env f) | DefaultCase f -> DefaultCase (rewrite_field env f)) cases in { f with v = SwitchCaseField (e, cases) field_name }
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 164, "start_col": 0, "start_line": 132 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *) let bitfield_group = int & typ & list atomic_field let grouped_fields = either field bitfield_group let group_bit_fields (rewrite_composite_field: field -> ML field) (fields: list field) : ML (list grouped_fields) = List.fold_right (fun field out -> match field.v with | RecordField _ _ | SwitchCaseField _ _ -> Inl (rewrite_composite_field field) :: out | AtomicField af -> match af.v.field_bitwidth with | None -> Inl field :: out | Some (Inl _) -> failwith "Bit fields should have been elaborated already" | Some (Inr bf) -> match out with | Inr (index, typ, atomic_fields)::tl -> if index = bf.v.bitfield_identifier then Inr(index, typ, af :: atomic_fields) :: tl //extend this bitfield group else Inr(bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group | _ -> Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group ) fields [] let subst' = list (ident & expr) let coalesce_grouped_bit_field env (f:bitfield_group) : ML (field & subst') = let id, typ, fields = f in let size = B.size_of_integral_typ env typ typ.range in let bitsize = 8 * size in let order = B.bit_order_of_integral_typ env typ typ.range in let field_id = with_range (to_ident' (Printf.sprintf "__bitfield_%d" id)) dummy_range in let id = with_range (Identifier field_id) field_id.range in let mk_e (e:expr') :expr = with_range e field_id.range in let bitfield_attrs f : ML _ = match f.field_bitwidth with | Some (Inr bf) -> bf.v | _ -> failwith "Must have elaborated bitfield" in let field_dependence, field_constraint, field_action, subst = List.fold_left (fun (acc:(bool & _ & option (action & bool) & _)) f -> let (dep, acc_constraint, acc_action, subst) = acc in let f = f.v in let acc_action, acc_dep = match acc_action, f.field_action with | None, None | Some _, None -> acc_action, false | None, Some (_, d) -> f.field_action, d | Some (acc, dep_0), Some (fa, dep_1) -> if Action_act? acc.v && Action_act? fa.v then Some (Ast.sequence_non_failing_actions acc fa, dep_0 || dep_1), dep_0 || dep_1 else failwith "Multiple, potentially failing actions are not supported on bitfields" in let dep = dep || acc_dep || f.field_dependence in let acc_constraint = match f.field_constraint, acc_constraint with | None, _ -> acc_constraint | Some _, None -> f.field_constraint | Some c, Some acc -> Some (mk_e (App And [acc; c])) in let bf_exp = App (BitFieldOf bitsize order) [id; mk_e (Constant (Int UInt32 (bitfield_attrs f).bitfield_from)); mk_e (Constant (Int UInt32 (bitfield_attrs f).bitfield_to))] in let subst = (f.field_ident, mk_e bf_exp) :: subst in dep, acc_constraint, acc_action, subst) (false, None, None, []) fields in let struct_field = { field_dependence = field_dependence; field_ident = field_id; field_type = typ; field_array_opt = FieldScalar; field_constraint = field_constraint; field_bitwidth = None; field_action = field_action; field_probe = None } in let af = with_dummy_range struct_field in with_dummy_range (AtomicField af), subst
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
env: GlobalEnv.global_env -> f: Ast.field -> FStar.All.ML (f': Ast.field{Ast.field_tag_equal f f'})
FStar.All.ML
[ "ml" ]
[]
[ "GlobalEnv.global_env", "Ast.field", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.field'", "Ast.with_meta_t", "Ast.atomic_field'", "Prims.b2t", "Ast.field_tag_equal", "Prims.list", "Ast.ident", "FStar.Pervasives.Native.tuple2", "Ast.expr", "Ast.Mkwith_meta_t", "Ast.RecordField", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.__proj__Mkwith_meta_t__item__comments", "FStar.List.map", "Ast.subst_field", "Ast.subst", "Ast.mk_subst", "FStar.List.fold_right", "Ast.either", "BitFields.bitfield_group", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons", "BitFields.subst'", "FStar.List.Tot.Base.op_At", "BitFields.coalesce_grouped_bit_field", "Binding.env", "Binding.mk_env", "Prims.Nil", "BitFields.grouped_fields", "BitFields.group_bit_fields", "BitFields.rewrite_field", "Ast.case", "Ast.SwitchCaseField", "Ast.Case", "Ast.DefaultCase" ]
[ "recursion" ]
false
true
false
false
false
let rec rewrite_field (env: B.global_env) (f: field) : ML (f': field{field_tag_equal f f'}) =
match f.v with | AtomicField _ -> f | RecordField fs field_name -> let gfs = group_bit_fields (rewrite_field env) fs in let fs, subst = List.fold_right (fun f (fields, subst) -> match f with | Inl f -> (f :: fields, subst) | Inr gf -> let f, subst' = coalesce_grouped_bit_field (B.mk_env env) gf in f :: fields, subst' @ subst) gfs ([], []) in let fs = List.map (subst_field (mk_subst subst)) fs in { f with v = RecordField fs field_name } | SwitchCaseField (e, cases) field_name -> let cases = List.map (function | Case p f -> Case p (rewrite_field env f) | DefaultCase f -> DefaultCase (rewrite_field env f)) cases in { f with v = SwitchCaseField (e, cases) field_name }
false
CQueue.fst
CQueue.vpure
val vpure (p: prop) : Tot vprop
val vpure (p: prop) : Tot vprop
let vpure (p: prop) : Tot vprop = VUnit (vpure' p)
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 50, "end_line": 105, "start_col": 0, "start_line": 105 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; }
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.prop -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Prims.prop", "Steel.Effect.Common.VUnit", "CQueue.vpure'", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let vpure (p: prop) : Tot vprop =
VUnit (vpure' p)
false
CQueue.fst
CQueue.vpure'
val vpure' (p: prop) : GTot vprop'
val vpure' (p: prop) : GTot vprop'
let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; }
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 1, "end_line": 102, "start_col": 0, "start_line": 95 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.prop -> Prims.GTot Steel.Effect.Common.vprop'
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.prop", "Steel.Effect.Common.Mkvprop'", "Steel.Memory.pure", "CQueue.squash", "CQueue.vpure_sel", "Steel.Effect.Common.vprop'" ]
[]
false
false
false
false
false
let vpure' (p: prop) : GTot vprop' =
{ hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p }
false
BitFields.fst
BitFields.eliminate_one_decl
val eliminate_one_decl (env: B.global_env) (d: decl) : ML decl
val eliminate_one_decl (env: B.global_env) (d: decl) : ML decl
let eliminate_one_decl (env:B.global_env) (d:decl) : ML decl = match d.d_decl.v with | Record names params where fields -> let i = with_dummy_range (to_ident' "_") in let { v = RecordField fields _ } = rewrite_field env (with_dummy_range (RecordField fields i)) in List.iter (fun f -> Options.debug_print_string (Printf.sprintf "Bitfields: Field %s has comments <%s>\n" (print_field f) (String.concat "\n" f.comments))) fields; let fields = match fields with | [{v=AtomicField af; range; comments}] -> //just one field, it need no longer be dependent let af' = { af.v with field_dependence = false } in let af' = { af with v = af' } in [{v=AtomicField af; range; comments}] | _ -> fields in decl_with_v d (Record names params where fields) | _ -> d
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 10, "end_line": 187, "start_col": 0, "start_line": 167 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *) let bitfield_group = int & typ & list atomic_field let grouped_fields = either field bitfield_group let group_bit_fields (rewrite_composite_field: field -> ML field) (fields: list field) : ML (list grouped_fields) = List.fold_right (fun field out -> match field.v with | RecordField _ _ | SwitchCaseField _ _ -> Inl (rewrite_composite_field field) :: out | AtomicField af -> match af.v.field_bitwidth with | None -> Inl field :: out | Some (Inl _) -> failwith "Bit fields should have been elaborated already" | Some (Inr bf) -> match out with | Inr (index, typ, atomic_fields)::tl -> if index = bf.v.bitfield_identifier then Inr(index, typ, af :: atomic_fields) :: tl //extend this bitfield group else Inr(bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group | _ -> Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group ) fields [] let subst' = list (ident & expr) let coalesce_grouped_bit_field env (f:bitfield_group) : ML (field & subst') = let id, typ, fields = f in let size = B.size_of_integral_typ env typ typ.range in let bitsize = 8 * size in let order = B.bit_order_of_integral_typ env typ typ.range in let field_id = with_range (to_ident' (Printf.sprintf "__bitfield_%d" id)) dummy_range in let id = with_range (Identifier field_id) field_id.range in let mk_e (e:expr') :expr = with_range e field_id.range in let bitfield_attrs f : ML _ = match f.field_bitwidth with | Some (Inr bf) -> bf.v | _ -> failwith "Must have elaborated bitfield" in let field_dependence, field_constraint, field_action, subst = List.fold_left (fun (acc:(bool & _ & option (action & bool) & _)) f -> let (dep, acc_constraint, acc_action, subst) = acc in let f = f.v in let acc_action, acc_dep = match acc_action, f.field_action with | None, None | Some _, None -> acc_action, false | None, Some (_, d) -> f.field_action, d | Some (acc, dep_0), Some (fa, dep_1) -> if Action_act? acc.v && Action_act? fa.v then Some (Ast.sequence_non_failing_actions acc fa, dep_0 || dep_1), dep_0 || dep_1 else failwith "Multiple, potentially failing actions are not supported on bitfields" in let dep = dep || acc_dep || f.field_dependence in let acc_constraint = match f.field_constraint, acc_constraint with | None, _ -> acc_constraint | Some _, None -> f.field_constraint | Some c, Some acc -> Some (mk_e (App And [acc; c])) in let bf_exp = App (BitFieldOf bitsize order) [id; mk_e (Constant (Int UInt32 (bitfield_attrs f).bitfield_from)); mk_e (Constant (Int UInt32 (bitfield_attrs f).bitfield_to))] in let subst = (f.field_ident, mk_e bf_exp) :: subst in dep, acc_constraint, acc_action, subst) (false, None, None, []) fields in let struct_field = { field_dependence = field_dependence; field_ident = field_id; field_type = typ; field_array_opt = FieldScalar; field_constraint = field_constraint; field_bitwidth = None; field_action = field_action; field_probe = None } in let af = with_dummy_range struct_field in with_dummy_range (AtomicField af), subst let rec rewrite_field (env:B.global_env) (f:field) : ML (f':field {field_tag_equal f f'}) = match f.v with | AtomicField _ -> f | RecordField fs field_name -> let gfs = group_bit_fields (rewrite_field env) fs in let fs, subst = List.fold_right (fun f (fields, subst) -> match f with | Inl f -> (f::fields, subst) | Inr gf -> let f, subst' = coalesce_grouped_bit_field (B.mk_env env) gf in f::fields, subst'@subst) gfs ([], []) in let fs = List.map (subst_field (mk_subst subst)) fs in { f with v = RecordField fs field_name } | SwitchCaseField (e, cases) field_name -> let cases = List.map (function | Case p f -> Case p (rewrite_field env f) | DefaultCase f -> DefaultCase (rewrite_field env f)) cases in { f with v = SwitchCaseField (e, cases) field_name }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
env: GlobalEnv.global_env -> d: Ast.decl -> FStar.All.ML Ast.decl
FStar.All.ML
[ "ml" ]
[]
[ "GlobalEnv.global_env", "Ast.decl", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.decl'", "Ast.__proj__Mkdecl__item__d_decl", "Ast.typedef_names", "Prims.list", "Ast.param", "FStar.Pervasives.Native.option", "Ast.expr", "Ast.record", "Ast.with_meta_t", "Ast.field'", "Ast.ident", "Ast.range", "Ast.comments", "Ast.decl_with_v", "Ast.Record", "Ast.atomic_field'", "Prims.Cons", "Ast.Mkwith_meta_t", "Ast.AtomicField", "Prims.Nil", "Ast.__proj__Mkwith_meta_t__item__range", "Ast.__proj__Mkwith_meta_t__item__comments", "Ast.Mkatomic_field'", "Ast.__proj__Mkatomic_field'__item__field_ident", "Ast.__proj__Mkatomic_field'__item__field_type", "Ast.__proj__Mkatomic_field'__item__field_array_opt", "Ast.__proj__Mkatomic_field'__item__field_constraint", "Ast.__proj__Mkatomic_field'__item__field_bitwidth", "Ast.__proj__Mkatomic_field'__item__field_action", "Ast.__proj__Mkatomic_field'__item__field_probe", "Prims.unit", "FStar.List.iter", "Options.debug_print_string", "Prims.string", "FStar.String.concat", "FStar.Printf.sprintf", "Ast.print_field", "Ast.field", "Prims.b2t", "Ast.field_tag_equal", "Ast.with_dummy_range", "Ast.RecordField", "BitFields.rewrite_field", "Ast.ident'", "Ast.to_ident'" ]
[]
false
true
false
false
false
let eliminate_one_decl (env: B.global_env) (d: decl) : ML decl =
match d.d_decl.v with | Record names params where fields -> let i = with_dummy_range (to_ident' "_") in let { v = RecordField fields _ } = rewrite_field env (with_dummy_range (RecordField fields i)) in List.iter (fun f -> Options.debug_print_string (Printf.sprintf "Bitfields: Field %s has comments <%s>\n" (print_field f) (String.concat "\n" f.comments))) fields; let fields = match fields with | [{ v = AtomicField af ; range = range ; comments = comments }] -> let af' = { af.v with field_dependence = false } in let af' = { af with v = af' } in [{ v = AtomicField af; range = range; comments = comments }] | _ -> fields in decl_with_v d (Record names params where fields) | _ -> d
false
BitFields.fst
BitFields.group_bit_fields
val group_bit_fields (rewrite_composite_field: (field -> ML field)) (fields: list field) : ML (list grouped_fields)
val group_bit_fields (rewrite_composite_field: (field -> ML field)) (fields: list field) : ML (list grouped_fields)
let group_bit_fields (rewrite_composite_field: field -> ML field) (fields: list field) : ML (list grouped_fields) = List.fold_right (fun field out -> match field.v with | RecordField _ _ | SwitchCaseField _ _ -> Inl (rewrite_composite_field field) :: out | AtomicField af -> match af.v.field_bitwidth with | None -> Inl field :: out | Some (Inl _) -> failwith "Bit fields should have been elaborated already" | Some (Inr bf) -> match out with | Inr (index, typ, atomic_fields)::tl -> if index = bf.v.bitfield_identifier then Inr(index, typ, af :: atomic_fields) :: tl //extend this bitfield group else Inr(bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group | _ -> Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out //new bitfield group ) fields []
{ "file_name": "src/3d/BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 9, "end_line": 62, "start_col": 0, "start_line": 34 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BitFields open FStar.List.Tot open FStar.Mul open Ast open FStar.All module B = Binding module H = Hashtable (* This module implements a pass over the source AST coalescing adjacent bit fields and replacing expressions on bitfields using offsets into larger fgields *) let bitfield_group = int & typ & list atomic_field let grouped_fields = either field bitfield_group
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Options.fsti.checked", "Hashtable.fsti.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.All.fst.checked", "Binding.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "BitFields.fst" }
[ { "abbrev": true, "full_module": "Hashtable", "short_module": "H" }, { "abbrev": true, "full_module": "Binding", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
rewrite_composite_field: (_: Ast.field -> FStar.All.ML Ast.field) -> fields: Prims.list Ast.field -> FStar.All.ML (Prims.list BitFields.grouped_fields)
FStar.All.ML
[ "ml" ]
[]
[ "Ast.field", "Prims.list", "FStar.List.fold_right", "Ast.with_meta_t", "Ast.field'", "Ast.either", "FStar.Pervasives.Native.tuple3", "Prims.int", "Ast.typ", "Ast.atomic_field'", "Ast.__proj__Mkwith_meta_t__item__v", "Ast.ident", "Prims.Cons", "Ast.Inl", "FStar.Pervasives.Native.tuple2", "Ast.expr", "Ast.case", "Ast.__proj__Mkatomic_field'__item__field_bitwidth", "FStar.All.failwith", "Ast.bitfield_attr", "Prims.op_Equality", "Ast.__proj__Mkbitfield_attr'__item__bitfield_identifier", "Ast.bitfield_attr'", "Ast.Inr", "FStar.Pervasives.Native.Mktuple3", "Prims.bool", "Ast.__proj__Mkbitfield_attr'__item__bitfield_type", "Prims.Nil", "BitFields.grouped_fields" ]
[]
false
true
false
false
false
let group_bit_fields (rewrite_composite_field: (field -> ML field)) (fields: list field) : ML (list grouped_fields) =
List.fold_right (fun field out -> match field.v with | RecordField _ _ | SwitchCaseField _ _ -> Inl (rewrite_composite_field field) :: out | AtomicField af -> match af.v.field_bitwidth with | None -> Inl field :: out | Some (Inl _) -> failwith "Bit fields should have been elaborated already" | Some (Inr bf) -> match out with | Inr (index, typ, atomic_fields) :: tl -> if index = bf.v.bitfield_identifier then Inr (index, typ, af :: atomic_fields) :: tl else Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out | _ -> Inr (bf.v.bitfield_identifier, bf.v.bitfield_type, [af]) :: out) fields []
false
CQueue.fst
CQueue.vbind0
val vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop
val vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop
let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 63, "end_line": 183, "start_col": 0, "start_line": 178 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.Effect.Common.vprop -> t: Type0 -> b: (_: Steel.Effect.Common.t_of a -> Steel.Effect.Common.vprop) -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.vrewrite", "Steel.Effect.Common.vdep", "CQueue.vbind0_payload", "CQueue.vbind0_rewrite" ]
[]
false
false
false
false
false
let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop =
(a `vdep` (vbind0_payload a t b)) `vrewrite` (vbind0_rewrite a t b)
false
CQueue.fst
CQueue.vbind_hp
val vbind_hp (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1)
val vbind_hp (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1)
let vbind_hp // necessary to hide the attribute on hp_of (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) = hp_of (vbind0 a t b)
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 22, "end_line": 190, "start_col": 0, "start_line": 185 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x) [@@__steel_reduce__; __reduce__] let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.Effect.Common.vprop -> t: Type0 -> b: (_: Steel.Effect.Common.t_of a -> Steel.Effect.Common.vprop) -> Steel.Memory.slprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.hp_of", "CQueue.vbind0", "Steel.Memory.slprop" ]
[]
false
false
false
false
false
let vbind_hp (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) =
hp_of (vbind0 a t b)
false
Vale.X64.InsSha.fst
Vale.X64.InsSha.va_code_SHA256_msg1
val va_code_SHA256_msg1 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_code
val va_code_SHA256_msg1 : dst:va_operand_xmm -> src:va_operand_xmm -> Tot va_code
let va_code_SHA256_msg1 dst src = (mk_ins (make_instr (I.ins_SHA256_msg1) (OReg dst) (OReg src)))
{ "file_name": "obj/Vale.X64.InsSha.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 57, "start_col": 0, "start_line": 56 }
module Vale.X64.InsSha open Vale.Def.Types_s open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.Decls open Vale.X64.CryptoInstructions_s open Spec.Hash.Definitions open Spec.SHA2 open Vale.X64.CPU_Features_s module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s module P = Vale.X64.Print_s friend Vale.X64.Decls #reset-options "--initial_fuel 4 --max_fuel 4 --max_ifuel 2 --z3rlimit 20" //-- SHA256_rnds2 [@ "opaque_to_smt"] let va_code_SHA256_rnds2 dst src = (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) [@ "opaque_to_smt"] let va_codegen_success_SHA256_rnds2 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_SHA256_rnds2 va_b0 va_s0 dst src t block hash_orig = va_reveal_opaque (`%va_code_SHA256_rnds2) (va_code_SHA256_rnds2 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_SHA256_rnds2) (OReg dst) (OReg src))) va_s0 in lemma_sha256_rnds2 (va_eval_xmm va_old_s src) (va_eval_xmm va_old_s dst) (va_get_xmm 0 va_old_s) t block hash_orig; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_SHA256_rnds2 dst src t block hash_orig va_s0 va_k = let (va_sM, va_f0) = va_lemma_SHA256_rnds2 (va_code_SHA256_rnds2 dst src) va_s0 dst src t block hash_orig in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_xmm dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_xmm dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- SHA256_msg1
{ "checked_file": "/", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CryptoInstructions_s.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.InsSha.fst" }
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.CryptoInstructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 4, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.X64.Decls.va_operand_xmm -> src: Vale.X64.Decls.va_operand_xmm -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_operand_xmm", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.opXmm", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_SHA256_msg1", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.quad32", "Vale.X64.Machine_s.reg_xmm", "Vale.X64.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_SHA256_msg1 dst src =
(mk_ins (make_instr (I.ins_SHA256_msg1) (OReg dst) (OReg src)))
false