file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Int64.fsti
FStar.Int64.lte
val lte (a b: t) : Tot bool
val lte (a b: t) : Tot bool
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 118, "start_col": 0, "start_line": 118 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.t", "FStar.Int.lte", "FStar.Int64.n", "FStar.Int64.v", "Prims.bool" ]
[]
false
false
false
true
false
let lte (a b: t) : Tot bool =
lte #n (v a) (v b)
false
FStar.Int64.fsti
FStar.Int64.op_Plus_Hat
val op_Plus_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.Pure FStar.Int64.t
let op_Plus_Hat = add
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 121, "start_col": 7, "start_line": 121 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.add" ]
[]
false
false
false
false
false
let op_Plus_Hat =
add
false
FStar.Int64.fsti
FStar.Int64.op_Subtraction_Hat
val op_Subtraction_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.Pure FStar.Int64.t
let op_Subtraction_Hat = sub
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 122, "start_col": 7, "start_line": 122 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.sub" ]
[]
false
false
false
false
false
let op_Subtraction_Hat =
sub
false
FStar.Int64.fsti
FStar.Int64.op_Star_Hat
val op_Star_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.Pure FStar.Int64.t
let op_Star_Hat = mul
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 123, "start_col": 7, "start_line": 123 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.mul" ]
[]
false
false
false
false
false
let op_Star_Hat =
mul
false
FStar.Int64.fsti
FStar.Int64.op_Percent_Hat
val op_Percent_Hat : a: FStar.Int64.t -> b: FStar.Int64.t{FStar.Int64.v b <> 0} -> Prims.Pure FStar.Int64.t
let op_Percent_Hat = rem
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 125, "start_col": 7, "start_line": 125 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t{FStar.Int64.v b <> 0} -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.rem" ]
[]
false
false
false
false
false
let op_Percent_Hat =
rem
false
FStar.Int64.fsti
FStar.Int64.op_Slash_Hat
val op_Slash_Hat : a: FStar.Int64.t -> b: FStar.Int64.t{FStar.Int64.v b <> 0} -> Prims.Pure FStar.Int64.t
let op_Slash_Hat = div
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 124, "start_col": 7, "start_line": 124 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t{FStar.Int64.v b <> 0} -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.div" ]
[]
false
false
false
false
false
let op_Slash_Hat =
div
false
FStar.Int64.fsti
FStar.Int64.op_Hat_Hat
val op_Hat_Hat : x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
let op_Hat_Hat = logxor
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 126, "start_col": 7, "start_line": 126 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.logxor" ]
[]
false
false
false
false
false
let op_Hat_Hat =
logxor
false
FStar.Int64.fsti
FStar.Int64.op_Amp_Hat
val op_Amp_Hat : x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
let op_Amp_Hat = logand
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 127, "start_col": 7, "start_line": 127 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.logand" ]
[]
false
false
false
false
false
let op_Amp_Hat =
logand
false
C.Loops.fst
C.Loops.total_while_gen
val total_while_gen (#t: Type) (#a: (t -> Type)) (tmes: (x: t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ (if tcontinue y then tmes y << tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
val total_while_gen (#t: Type) (#a: (t -> Type)) (tmes: (x: t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ (if tcontinue y then tmes y << tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
let rec total_while_gen (#t: Type) (#a:t -> Type) (tmes: (x:t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t) -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ ( if tcontinue y then tmes y << tmes x else True) ))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) = let y = body x in let continue = tcontinue y in if continue then total_while_gen tmes tinv tcontinue body y else y
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 8, "end_line": 527, "start_col": 0, "start_line": 504 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer in1) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies (loc_buffer b) h0 h1 /\ ( let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_1 b /\ live h_2 b /\ ( let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == Spec.Loops.repeat (UInt32.v max) f s) )) inline_for_extraction let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == Spec.Loops.repeat i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; Spec.Loops.repeat_induction (UInt32.v i + 1) f (as_seq h0 b) in Spec.Loops.repeat_base 0 f (as_seq h0 b); for 0ul max inv f' (** Implementation of Spec.Loops.repeat_range *) (** The type of the specification of the loop body (the function f given to Spec.Loops.repeat_range *) inline_for_extraction let repeat_range_body_spec (a: Type0) (max: nat) : Tot Type = (a -> i:nat{i < max} -> Tot a) (** The type of the semantics (interpretation) of a memory state as a value of the type `a` of the high-level state on which the loop body specification operates *) inline_for_extraction let repeat_range_body_interp (a: Type0) (inv: (HS.mem -> GTot Type0)) : Tot Type = (h: HS.mem { inv h } ) -> GTot a (** The type of the implementation of the loop body, proven correct with respect to the corresponding specification `f` *) inline_for_extraction let repeat_range_body_impl (#a:Type0) (min:UInt32.t) (max:UInt32.t{UInt32.v min <= UInt32.v max}) (f: Ghost.erased (repeat_range_body_spec a (UInt32.v max))) (inv: (HS.mem -> GTot Type0)) (interp: repeat_range_body_interp a inv) : Tot Type = (i:UInt32.t{UInt32.v min <= UInt32.v i /\ UInt32.v i < UInt32.v max}) -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h0 _ h1 -> inv h0 /\ inv h1 /\ interp h1 == (Ghost.reveal f) (interp h0) (UInt32.v i) )) (** The implementation of the actual loop To be extracted as: for (int i = min; i < max; ++i) f(b, i); This combinator is generic. Typically, the interpretation reads the contents of a few objects (buffers, references, etc.), and the invariant contains a modifies clause that asserts that only those objects are modified, and that they are live. *) inline_for_extraction val repeat_range: #a:Type0 -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f: (Ghost.erased (repeat_range_body_spec a (UInt32.v max))) -> inv: (HS.mem -> GTot Type0) -> interp: repeat_range_body_interp a inv -> fc: repeat_range_body_impl min max f inv interp -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h_1 _ h_2 -> inv h_1 /\ inv h_2 /\ interp h_2 == Spec.Loops.repeat_range (UInt32.v min) (UInt32.v max) (Ghost.reveal f) (interp h_1) )) inline_for_extraction let repeat_range #a min max f inv interp fc = let h0 = HST.get() in let inv' (h1: HS.mem) (i: nat): Type0 = inv h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ interp h1 == Spec.Loops.repeat_range (UInt32.v min) i (Ghost.reveal f) (interp h0) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): HST.Stack unit (requires (fun h -> inv' h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv' h_2 (v i + 1)))) = fc i; Spec.Loops.repeat_range_induction (UInt32.v min) (UInt32.v i + 1) (Ghost.reveal f) (interp h0) in Spec.Loops.repeat_range_base (UInt32.v min) (Ghost.reveal f) (interp h0); for min max inv' f'
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmes: (x: t -> Prims.GTot (a x)) -> tinv: (_: Prims.bool -> _: t -> Prims.GTot Type0) -> tcontinue: (_: t -> Prims.bool) -> body: (x: t -> Prims.Pure t) -> x: t -> Prims.Pure t
Prims.Pure
[ "" ]
[]
[ "Prims.bool", "Prims.l_and", "Prims.precedes", "Prims.l_True", "Prims.logical", "C.Loops.total_while_gen" ]
[ "recursion" ]
false
false
false
false
false
let rec total_while_gen (#t: Type) (#a: (t -> Type)) (tmes: (x: t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ (if tcontinue y then tmes y << tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) =
let y = body x in let continue = tcontinue y in if continue then total_while_gen tmes tinv tcontinue body y else y
false
FStar.Int64.fsti
FStar.Int64.op_Bar_Hat
val op_Bar_Hat : x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
let op_Bar_Hat = logor
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 128, "start_col": 7, "start_line": 128 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.logor" ]
[]
false
false
false
false
false
let op_Bar_Hat =
logor
false
C.Loops.fst
C.Loops.total_while
val total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ (if continue then tmes y < tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
val total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ (if continue then tmes y < tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x))
let total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t) -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ ( if continue then tmes y < tmes x else True) ))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) = let (_, res) = total_while_gen (fun (_, x) -> tmes x) (fun b (b_, x) -> b == b_ /\ tinv b x) (fun (x, _) -> x) (fun (_, x) -> body x) (true, x) in res
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 5, "end_line": 555, "start_col": 0, "start_line": 530 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer in1) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies (loc_buffer b) h0 h1 /\ ( let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_1 b /\ live h_2 b /\ ( let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == Spec.Loops.repeat (UInt32.v max) f s) )) inline_for_extraction let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == Spec.Loops.repeat i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; Spec.Loops.repeat_induction (UInt32.v i + 1) f (as_seq h0 b) in Spec.Loops.repeat_base 0 f (as_seq h0 b); for 0ul max inv f' (** Implementation of Spec.Loops.repeat_range *) (** The type of the specification of the loop body (the function f given to Spec.Loops.repeat_range *) inline_for_extraction let repeat_range_body_spec (a: Type0) (max: nat) : Tot Type = (a -> i:nat{i < max} -> Tot a) (** The type of the semantics (interpretation) of a memory state as a value of the type `a` of the high-level state on which the loop body specification operates *) inline_for_extraction let repeat_range_body_interp (a: Type0) (inv: (HS.mem -> GTot Type0)) : Tot Type = (h: HS.mem { inv h } ) -> GTot a (** The type of the implementation of the loop body, proven correct with respect to the corresponding specification `f` *) inline_for_extraction let repeat_range_body_impl (#a:Type0) (min:UInt32.t) (max:UInt32.t{UInt32.v min <= UInt32.v max}) (f: Ghost.erased (repeat_range_body_spec a (UInt32.v max))) (inv: (HS.mem -> GTot Type0)) (interp: repeat_range_body_interp a inv) : Tot Type = (i:UInt32.t{UInt32.v min <= UInt32.v i /\ UInt32.v i < UInt32.v max}) -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h0 _ h1 -> inv h0 /\ inv h1 /\ interp h1 == (Ghost.reveal f) (interp h0) (UInt32.v i) )) (** The implementation of the actual loop To be extracted as: for (int i = min; i < max; ++i) f(b, i); This combinator is generic. Typically, the interpretation reads the contents of a few objects (buffers, references, etc.), and the invariant contains a modifies clause that asserts that only those objects are modified, and that they are live. *) inline_for_extraction val repeat_range: #a:Type0 -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f: (Ghost.erased (repeat_range_body_spec a (UInt32.v max))) -> inv: (HS.mem -> GTot Type0) -> interp: repeat_range_body_interp a inv -> fc: repeat_range_body_impl min max f inv interp -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h_1 _ h_2 -> inv h_1 /\ inv h_2 /\ interp h_2 == Spec.Loops.repeat_range (UInt32.v min) (UInt32.v max) (Ghost.reveal f) (interp h_1) )) inline_for_extraction let repeat_range #a min max f inv interp fc = let h0 = HST.get() in let inv' (h1: HS.mem) (i: nat): Type0 = inv h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ interp h1 == Spec.Loops.repeat_range (UInt32.v min) i (Ghost.reveal f) (interp h0) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): HST.Stack unit (requires (fun h -> inv' h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv' h_2 (v i + 1)))) = fc i; Spec.Loops.repeat_range_induction (UInt32.v min) (UInt32.v i + 1) (Ghost.reveal f) (interp h0) in Spec.Loops.repeat_range_base (UInt32.v min) (Ghost.reveal f) (interp h0); for min max inv' f' let rec total_while_gen (#t: Type) (#a:t -> Type) (tmes: (x:t -> GTot (a x))) (tinv: (bool -> t -> GTot Type0)) (tcontinue: (t -> Tot bool)) (body: (x: t) -> Pure t (requires (tinv true x)) (ensures (fun y -> tinv (tcontinue y) y /\ ( if tcontinue y then tmes y << tmes x else True) ))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) = let y = body x in let continue = tcontinue y in if continue then total_while_gen tmes tinv tcontinue body y else y
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmes: (_: t -> Prims.GTot Prims.nat) -> tinv: (_: Prims.bool -> _: t -> Prims.GTot Type0) -> body: (x: t -> Prims.Pure (Prims.bool * t)) -> x: t -> Prims.Pure t
Prims.Pure
[ "" ]
[]
[ "Prims.nat", "Prims.bool", "FStar.Pervasives.Native.tuple2", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.l_True", "Prims.logical", "C.Loops.total_while_gen", "Prims.eq2", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
false
false
false
let total_while (#t: Type) (tmes: (t -> GTot nat)) (tinv: (bool -> t -> GTot Type0)) (body: (x: t -> Pure (bool * t) (requires (tinv true x)) (ensures (fun (continue, y) -> tinv continue y /\ (if continue then tmes y < tmes x else True))))) (x: t) : Pure t (requires (tinv true x)) (ensures (fun y -> tinv false y)) (decreases (tmes x)) =
let _, res = total_while_gen (fun (_, x) -> tmes x) (fun b (b_, x) -> b == b_ /\ tinv b x) (fun (x, _) -> x) (fun (_, x) -> body x) (true, x) in res
false
FStar.WellFounded.Util.fsti
FStar.WellFounded.Util.top
val top : Type
let top = (b:Type & b)
{ "file_name": "ulib/FStar.WellFounded.Util.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 34, "start_col": 0, "start_line": 34 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy *) module FStar.WellFounded.Util open FStar.WellFounded (** Provides some utilities related to well-founded relations *) (* 1. Given a well-founded relation `r:binrel a` turn it into a well-founded relation on `binrel top`, by construction a relation that only relates `top` elements in `a` by `r` This is useful when writing type-polymorphic recursive functions whose termination depends on some custom well-founded order See tests/micro-benchmarks/TestWellFoundedRecursion.rel_poly2 *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.WellFounded.Util.fsti" }
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "Prims.dtuple2" ]
[]
false
false
false
true
true
let top =
(b: Type & b)
false
FStar.Int64.fsti
FStar.Int64.op_Greater_Greater_Hat
val op_Greater_Greater_Hat : a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
let op_Greater_Greater_Hat = shift_right
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 130, "start_col": 7, "start_line": 130 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.shift_right" ]
[]
false
false
false
false
false
let op_Greater_Greater_Hat =
shift_right
false
FStar.Int64.fsti
FStar.Int64.op_Less_Less_Hat
val op_Less_Less_Hat : a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
let op_Less_Less_Hat = shift_left
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 129, "start_col": 7, "start_line": 129 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.shift_left" ]
[]
false
false
false
false
false
let op_Less_Less_Hat =
shift_left
false
Hacl.Hash.MD.fst
Hacl.Hash.MD.len_add32
val len_add32 (a: hash_alg{not (is_keccak a)}) (prev_len: len_t a) (input_len: U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a }): x:len_t a { len_v a x = len_v a prev_len + U32.v input_len }
val len_add32 (a: hash_alg{not (is_keccak a)}) (prev_len: len_t a) (input_len: U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a }): x:len_t a { len_v a x = len_v a prev_len + U32.v input_len }
let len_add32 a prev_len input_len = let open FStar.Int.Cast.Full in match a with | SHA2_224 | SHA2_256 | MD5 | SHA1 | Blake2S -> assert_norm (pow2 61 < pow2 64); U64.(prev_len +^ uint32_to_uint64 input_len) | SHA2_384 | SHA2_512 | Blake2B -> assert_norm (pow2 125 < pow2 128); U128.(prev_len +^ uint64_to_uint128 (uint32_to_uint64 input_len))
{ "file_name": "code/hash/Hacl.Hash.MD.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 84, "start_col": 0, "start_line": 76 }
module Hacl.Hash.MD (** The Merkle-Damgård construction. *) module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module Int = Lib.IntTypes module Lemmas = FStar.Math.Lemmas module B = LowStar.Buffer module S = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open Hacl.Hash.Definitions open Hacl.Hash.Lemmas open Spec.Hash.Definitions open FStar.Mul module HI = Spec.Hash.Incremental module AH = Spec.Agile.Hash (** Auxiliary helpers *) #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" let padding_round (a: md_alg) (len: len_t a): Lemma ((len_v a len + pad_length a (len_v a len)) % block_length a = 0) = () private val mod_sub_add: a:int -> b:int -> c:int -> d:int -> p:pos -> Lemma (requires b % p = 0) (ensures (a - ((b + c) + d)) % p == (a - (c + d)) % p) let mod_sub_add a b c d p = calc (==) { (a - ((b + c) + d)) % p; == { Math.Lemmas.lemma_mod_sub_distr a ((b + c) + d) p } (a - ((b + c) + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l (b + c) d p } (a - ((b + c) % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l b c p } (a - ((b % p + c) % p + d) % p) % p; == { } (a - (c % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l c d p } (a - (c + d) % p) % p; == { Math.Lemmas.lemma_mod_sub_distr a (c + d) p } (a - (c + d)) % p; } let pad0_length_mod (a: hash_alg{is_md a}) (base_len: nat) (len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad0_length a (base_len + len) = pad0_length a len) = mod_sub_add (block_length a) base_len len (len_length a + 1) (block_length a) let pad_length_mod (a: hash_alg{is_md a}) (base_len len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad_length a (base_len + len) = pad_length a len) = pad0_length_mod a base_len len val pad_len_bound : a : md_alg -> prev_len:len_t a { len_v a prev_len % block_length a = 0 } -> input_len:U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a} -> Lemma( (U32.v input_len % block_length a) + pad_length a (len_v a prev_len + U32.v input_len) <= 2 * block_length a) let pad_len_bound a prev_len input_len = () (* Avoiding an ill-formed pattern error... *)
{ "checked_file": "/", "dependencies": [ "Spec.Hash.MD.fst.checked", "Spec.Hash.Lemmas.fsti.checked", "Spec.Hash.Incremental.fsti.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Hash.PadFinish.fsti.checked", "Hacl.Hash.Lemmas.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked", "C.Loops.fst.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "AH" }, { "abbrev": true, "full_module": "Spec.Hash.Incremental", "short_module": "HI" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "Int" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Prims.op_Negation (Spec.Hash.Definitions.is_keccak a)} -> prev_len: Spec.Hash.Definitions.len_t a -> input_len: FStar.UInt32.t { Spec.Hash.Definitions.less_than_max_input_length (FStar.UInt32.v input_len + Spec.Hash.Definitions.len_v a prev_len) a } -> x: Spec.Hash.Definitions.len_t a { Spec.Hash.Definitions.len_v a x = Spec.Hash.Definitions.len_v a prev_len + FStar.UInt32.v input_len }
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Prims.op_Negation", "Spec.Hash.Definitions.is_keccak", "Spec.Hash.Definitions.len_t", "FStar.UInt32.t", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.op_Addition", "FStar.UInt32.v", "Spec.Hash.Definitions.len_v", "FStar.UInt64.op_Plus_Hat", "FStar.Int.Cast.uint32_to_uint64", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.op_LessThan", "Prims.pow2", "FStar.UInt128.op_Plus_Hat", "FStar.UInt128.uint64_to_uint128", "Prims.op_Equality", "Prims.int" ]
[]
false
false
false
false
false
let len_add32 a prev_len input_len =
let open FStar.Int.Cast.Full in match a with | SHA2_224 | SHA2_256 | MD5 | SHA1 | Blake2S -> assert_norm (pow2 61 < pow2 64); let open U64 in prev_len +^ uint32_to_uint64 input_len | SHA2_384 | SHA2_512 | Blake2B -> assert_norm (pow2 125 < pow2 128); let open U128 in prev_len +^ uint64_to_uint128 (uint32_to_uint64 input_len)
false
FStar.Int64.fsti
FStar.Int64.op_Greater_Hat
val op_Greater_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
let op_Greater_Hat = gt
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 133, "start_col": 7, "start_line": 133 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.gt" ]
[]
false
false
false
true
false
let op_Greater_Hat =
gt
false
FStar.Int64.fsti
FStar.Int64.op_Equals_Hat
val op_Equals_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
let op_Equals_Hat = eq
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 132, "start_col": 7, "start_line": 132 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.eq" ]
[]
false
false
false
true
false
let op_Equals_Hat =
eq
false
FStar.Int64.fsti
FStar.Int64.op_Greater_Equals_Hat
val op_Greater_Equals_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
let op_Greater_Equals_Hat = gte
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 134, "start_col": 7, "start_line": 134 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.gte" ]
[]
false
false
false
true
false
let op_Greater_Equals_Hat =
gte
false
C.Loops.fst
C.Loops.in_place_map
val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) ))
val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) ))
let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b))
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 60, "end_line": 317, "start_col": 0, "start_line": 301 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Buffer.buffer a -> l: FStar.UInt32.t{FStar.UInt32.v l = LowStar.Monotonic.Buffer.length b} -> f: (_: a -> a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowStar.Buffer.buffer", "FStar.UInt32.t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "FStar.Seq.Base.lemma_eq_intro", "LowStar.Monotonic.Buffer.as_seq", "Spec.Loops.seq_map", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "LowStar.BufferOps.op_Array_Assignment", "LowStar.BufferOps.op_Array_Access", "Prims.nat", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "LowStar.Monotonic.Buffer.get" ]
[]
false
true
false
false
false
let in_place_map #a b l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j: nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b))
false
FStar.Int64.fsti
FStar.Int64.op_Less_Hat
val op_Less_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
let op_Less_Hat = lt
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 135, "start_col": 7, "start_line": 135 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.lt" ]
[]
false
false
false
true
false
let op_Less_Hat =
lt
false
C.Loops.fst
C.Loops.repeat
val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies (loc_buffer b) h0 h1 /\ ( let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_1 b /\ live h_2 b /\ ( let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == Spec.Loops.repeat (UInt32.v max) f s) ))
val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies (loc_buffer b) h0 h1 /\ ( let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_1 b /\ live h_2 b /\ ( let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == Spec.Loops.repeat (UInt32.v max) f s) ))
let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == Spec.Loops.repeat i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; Spec.Loops.repeat_induction (UInt32.v i + 1) f (as_seq h0 b) in Spec.Loops.repeat_base 0 f (as_seq h0 b); for 0ul max inv f'
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 20, "end_line": 410, "start_col": 0, "start_line": 396 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer in1) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies (loc_buffer b) h0 h1 /\ ( let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_1 b /\ live h_2 b /\ ( let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == Spec.Loops.repeat (UInt32.v max) f s) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: FStar.UInt32.t -> f: (s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s = FStar.UInt32.v l} -> s': FStar.Seq.Base.seq a {FStar.Seq.Base.length s' = FStar.Seq.Base.length s}) -> b: LowStar.Buffer.buffer a {LowStar.Monotonic.Buffer.length b = FStar.UInt32.v l} -> max: FStar.UInt32.t -> fc: (b: LowStar.Buffer.buffer a {LowStar.Monotonic.Buffer.length b = FStar.UInt32.v l} -> FStar.HyperStack.ST.Stack Prims.unit) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.Seq.Base.length", "FStar.UInt32.v", "Prims.nat", "LowStar.Buffer.buffer", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.live", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.eq2", "LowStar.Monotonic.Buffer.as_seq", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Spec.Loops.repeat_base", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "Spec.Loops.repeat_induction", "Spec.Loops.repeat", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let repeat #a l f b max fc =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == Spec.Loops.repeat i f (as_seq h0 b) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v max}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = fc b; Spec.Loops.repeat_induction (UInt32.v i + 1) f (as_seq h0 b) in Spec.Loops.repeat_base 0 f (as_seq h0 b); for 0ul max inv f'
false
FStar.WellFounded.Util.fsti
FStar.WellFounded.Util.lift_binrel_as_well_founded_relation
val lift_binrel_as_well_founded_relation (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded r) : well_founded_relation u#(a + 1) u#r (top u#a)
val lift_binrel_as_well_founded_relation (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded r) : well_founded_relation u#(a + 1) u#r (top u#a)
let lift_binrel_as_well_founded_relation (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded_relation u#(a + 1) u#r (top u#a) = as_well_founded #top #(lift_binrel r) (lift_binrel_well_founded wf_r)
{ "file_name": "ulib/FStar.WellFounded.Util.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 66, "start_col": 0, "start_line": 64 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy *) module FStar.WellFounded.Util open FStar.WellFounded (** Provides some utilities related to well-founded relations *) (* 1. Given a well-founded relation `r:binrel a` turn it into a well-founded relation on `binrel top`, by construction a relation that only relates `top` elements in `a` by `r` This is useful when writing type-polymorphic recursive functions whose termination depends on some custom well-founded order See tests/micro-benchmarks/TestWellFoundedRecursion.rel_poly2 *) let top = (b:Type & b) let lift_binrel (#a:Type) (r:binrel a) : binrel top = fun (t0 t1:top) -> (_:(dfst t0==a /\ dfst t1==a) & r (dsnd t0) (dsnd t1)) val intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) val elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) val lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) val lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.WellFounded.Util.fsti" }
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wf_r: FStar.WellFounded.well_founded r -> FStar.WellFounded.well_founded_relation FStar.WellFounded.Util.top
Prims.Tot
[ "total" ]
[]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.well_founded", "FStar.WellFounded.as_well_founded", "FStar.WellFounded.Util.top", "FStar.WellFounded.Util.lift_binrel", "FStar.WellFounded.Util.lift_binrel_well_founded", "FStar.WellFounded.well_founded_relation" ]
[]
false
false
false
false
false
let lift_binrel_as_well_founded_relation (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded r) : well_founded_relation u#(a + 1) u#r (top u#a) =
as_well_founded #top #(lift_binrel r) (lift_binrel_well_founded wf_r)
false
FStar.Int64.fsti
FStar.Int64.op_Greater_Greater_Greater_Hat
val op_Greater_Greater_Greater_Hat : a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
let op_Greater_Greater_Greater_Hat = shift_arithmetic_right
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 131, "start_col": 7, "start_line": 131 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
Prims.Pure
[]
[]
[ "FStar.Int64.shift_arithmetic_right" ]
[]
false
false
false
false
false
let op_Greater_Greater_Greater_Hat =
shift_arithmetic_right
false
C.Loops.fst
C.Loops.in_place_map2
val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) ))
val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) ))
let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer in1) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 81, "end_line": 357, "start_col": 0, "start_line": 340 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
in1: LowStar.Buffer.buffer a -> in2: LowStar.Buffer.buffer b {LowStar.Monotonic.Buffer.disjoint in1 in2} -> l: FStar.UInt32.t { FStar.UInt32.v l = LowStar.Monotonic.Buffer.length in1 /\ FStar.UInt32.v l = LowStar.Monotonic.Buffer.length in2 } -> f: (_: a -> _: b -> a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowStar.Buffer.buffer", "LowStar.Monotonic.Buffer.disjoint", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "LowStar.Monotonic.Buffer.as_seq", "Spec.Loops.seq_map2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "LowStar.BufferOps.op_Array_Assignment", "LowStar.BufferOps.op_Array_Access", "Prims.nat", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "LowStar.Monotonic.Buffer.get" ]
[]
false
true
false
false
false
let in_place_map2 #a #b in1 in2 l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer in1) h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j: nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
false
FStar.Int64.fsti
FStar.Int64.op_Less_Equals_Hat
val op_Less_Equals_Hat : a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
let op_Less_Equals_Hat = lte
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 136, "start_col": 7, "start_line": 136 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t -> b: FStar.Int64.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.lte" ]
[]
false
false
false
true
false
let op_Less_Equals_Hat =
lte
false
C.Loops.fst
C.Loops.map2
val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) ))
val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) ))
let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 84, "end_line": 281, "start_col": 0, "start_line": 264 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: LowStar.Buffer.buffer c -> in1: LowStar.Buffer.buffer a {LowStar.Monotonic.Buffer.disjoint output in1} -> in2: LowStar.Buffer.buffer b {LowStar.Monotonic.Buffer.disjoint output in2} -> l: FStar.UInt32.t { FStar.UInt32.v l = LowStar.Monotonic.Buffer.length output /\ FStar.UInt32.v l = LowStar.Monotonic.Buffer.length in1 /\ FStar.UInt32.v l = LowStar.Monotonic.Buffer.length in2 } -> f: (_: a -> _: b -> c) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowStar.Buffer.buffer", "LowStar.Monotonic.Buffer.disjoint", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "LowStar.Monotonic.Buffer.as_seq", "Spec.Loops.seq_map2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "LowStar.BufferOps.op_Array_Assignment", "LowStar.BufferOps.op_Array_Access", "Prims.nat", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "LowStar.Monotonic.Buffer.get" ]
[]
false
true
false
false
false
let map2 #a #b #c output in1 in2 l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j: nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2))
false
FStar.WellFounded.Util.fsti
FStar.WellFounded.Util.squash_binrel
val squash_binrel : r: FStar.WellFounded.binrel a -> x: a -> y: a -> Type0
let squash_binrel (#a:Type) (r:binrel u#a u#r a) (x y:a) = squash (r x y)
{ "file_name": "ulib/FStar.WellFounded.Util.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 93, "start_col": 0, "start_line": 93 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy *) module FStar.WellFounded.Util open FStar.WellFounded (** Provides some utilities related to well-founded relations *) (* 1. Given a well-founded relation `r:binrel a` turn it into a well-founded relation on `binrel top`, by construction a relation that only relates `top` elements in `a` by `r` This is useful when writing type-polymorphic recursive functions whose termination depends on some custom well-founded order See tests/micro-benchmarks/TestWellFoundedRecursion.rel_poly2 *) let top = (b:Type & b) let lift_binrel (#a:Type) (r:binrel a) : binrel top = fun (t0 t1:top) -> (_:(dfst t0==a /\ dfst t1==a) & r (dsnd t0) (dsnd t1)) val intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) val elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) val lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) val lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) let lift_binrel_as_well_founded_relation (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded_relation u#(a + 1) u#r (top u#a) = as_well_founded #top #(lift_binrel r) (lift_binrel_well_founded wf_r) (* 2. Given a well-founded relation `r:binrel a` turn it into a *squashed* well-founded relation on `binrel top`, by construction a relation that only relates `top` elements in `a` by `r` This is very similar to 1, but uses squashed types, which leads to slightly better SMT automation at use sites. See tests/micro-benchmarks/TestWellFoundedRecursion.rel_poly *) let lift_binrel_squashed (#a:Type u#a) (r:binrel u#a u#r a) : binrel top = fun (t0 t1:top) -> (dfst t0==a /\ dfst t1==a /\ squash (r (dsnd t0) (dsnd t1))) val lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.WellFounded.Util.fsti" }
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.WellFounded.binrel a -> x: a -> y: a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.WellFounded.binrel", "Prims.squash" ]
[]
false
false
false
true
true
let squash_binrel (#a: Type) (r: binrel u#a u#r a) (x y: a) =
squash (r x y)
false
FStar.WellFounded.Util.fsti
FStar.WellFounded.Util.lift_binrel_squashed_as_well_founded_relation
val lift_binrel_squashed_as_well_founded_relation (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded (squash_binrel r)) : well_founded_relation u#(a + 1) u#0 top
val lift_binrel_squashed_as_well_founded_relation (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded (squash_binrel r)) : well_founded_relation u#(a + 1) u#0 top
let lift_binrel_squashed_as_well_founded_relation (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded_relation u#(a + 1) u#0 top = as_well_founded #top #(lift_binrel_squashed r) (lift_binrel_squashed_well_founded wf_r)
{ "file_name": "ulib/FStar.WellFounded.Util.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 105, "start_col": 0, "start_line": 101 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy *) module FStar.WellFounded.Util open FStar.WellFounded (** Provides some utilities related to well-founded relations *) (* 1. Given a well-founded relation `r:binrel a` turn it into a well-founded relation on `binrel top`, by construction a relation that only relates `top` elements in `a` by `r` This is useful when writing type-polymorphic recursive functions whose termination depends on some custom well-founded order See tests/micro-benchmarks/TestWellFoundedRecursion.rel_poly2 *) let top = (b:Type & b) let lift_binrel (#a:Type) (r:binrel a) : binrel top = fun (t0 t1:top) -> (_:(dfst t0==a /\ dfst t1==a) & r (dsnd t0) (dsnd t1)) val intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) val elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) val lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) val lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) let lift_binrel_as_well_founded_relation (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded_relation u#(a + 1) u#r (top u#a) = as_well_founded #top #(lift_binrel r) (lift_binrel_well_founded wf_r) (* 2. Given a well-founded relation `r:binrel a` turn it into a *squashed* well-founded relation on `binrel top`, by construction a relation that only relates `top` elements in `a` by `r` This is very similar to 1, but uses squashed types, which leads to slightly better SMT automation at use sites. See tests/micro-benchmarks/TestWellFoundedRecursion.rel_poly *) let lift_binrel_squashed (#a:Type u#a) (r:binrel u#a u#r a) : binrel top = fun (t0 t1:top) -> (dfst t0==a /\ dfst t1==a /\ squash (r (dsnd t0) (dsnd t1))) val lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) let squash_binrel (#a:Type) (r:binrel u#a u#r a) (x y:a) = squash (r x y) val lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.WellFounded.Util.fsti" }
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wf_r: FStar.WellFounded.well_founded (FStar.WellFounded.Util.squash_binrel r) -> FStar.WellFounded.well_founded_relation FStar.WellFounded.Util.top
Prims.Tot
[ "total" ]
[]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.well_founded", "FStar.WellFounded.Util.squash_binrel", "FStar.WellFounded.as_well_founded", "FStar.WellFounded.Util.top", "FStar.WellFounded.Util.lift_binrel_squashed", "FStar.WellFounded.Util.lift_binrel_squashed_well_founded", "FStar.WellFounded.well_founded_relation" ]
[]
false
false
false
false
false
let lift_binrel_squashed_as_well_founded_relation (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded (squash_binrel r)) : well_founded_relation u#(a + 1) u#0 top =
as_well_founded #top #(lift_binrel_squashed r) (lift_binrel_squashed_well_founded wf_r)
false
C.Loops.fst
C.Loops.repeat_range
val repeat_range: #a:Type0 -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f: (Ghost.erased (repeat_range_body_spec a (UInt32.v max))) -> inv: (HS.mem -> GTot Type0) -> interp: repeat_range_body_interp a inv -> fc: repeat_range_body_impl min max f inv interp -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h_1 _ h_2 -> inv h_1 /\ inv h_2 /\ interp h_2 == Spec.Loops.repeat_range (UInt32.v min) (UInt32.v max) (Ghost.reveal f) (interp h_1) ))
val repeat_range: #a:Type0 -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f: (Ghost.erased (repeat_range_body_spec a (UInt32.v max))) -> inv: (HS.mem -> GTot Type0) -> interp: repeat_range_body_interp a inv -> fc: repeat_range_body_impl min max f inv interp -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h_1 _ h_2 -> inv h_1 /\ inv h_2 /\ interp h_2 == Spec.Loops.repeat_range (UInt32.v min) (UInt32.v max) (Ghost.reveal f) (interp h_1) ))
let repeat_range #a min max f inv interp fc = let h0 = HST.get() in let inv' (h1: HS.mem) (i: nat): Type0 = inv h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ interp h1 == Spec.Loops.repeat_range (UInt32.v min) i (Ghost.reveal f) (interp h0) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): HST.Stack unit (requires (fun h -> inv' h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv' h_2 (v i + 1)))) = fc i; Spec.Loops.repeat_range_induction (UInt32.v min) (UInt32.v i + 1) (Ghost.reveal f) (interp h0) in Spec.Loops.repeat_range_base (UInt32.v min) (Ghost.reveal f) (interp h0); for min max inv' f'
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 21, "end_line": 501, "start_col": 0, "start_line": 486 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) )) inline_for_extraction let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val map2: #a:Type0 -> #b:Type0 -> #c:Type0 -> output: buffer c -> in1: buffer a{disjoint output in1} -> in2: buffer b{disjoint output in2} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2 } -> f:(a -> b -> Tot c) -> Stack unit (requires (fun h -> live h in1 /\ live h in2 /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ live h_2 output /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 output in s == seq_map2 f s1 s2) )) inline_for_extraction let map2 #a #b #c output in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in output.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) (** Extracts as: * for (int i = 0; i < <l>; ++i) * b[i] = <f>(b[i]); *) inline_for_extraction val in_place_map: #a:Type0 -> b: buffer a -> l: UInt32.t{ UInt32.v l = Buffer.length b } -> f:(a -> Tot a) -> Stack unit (requires (fun h -> live h b)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_2 b /\ live h_1 b /\ (let s1 = as_seq h_1 b in let s2 = as_seq h_2 b in s2 == seq_map f s1) )) inline_for_extraction let in_place_map #a b l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 b j == get h0 b j) /\ (forall (j:nat). j < i ==> get h1 b j == f (get h0 b j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = b.(i) in b.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 b) (seq_map f (as_seq h0 b)) (** Extracts as (destination buffer comes first): * for (int i = 0; i < <l>; ++i) * in1[i] = <f>(in1[i], in2[i]); *) inline_for_extraction val in_place_map2: #a:Type0 -> #b:Type0 -> in1: buffer a -> in2: buffer b{disjoint in1 in2} -> l: UInt32.t{ UInt32.v l = Buffer.length in1 /\ UInt32.v l = Buffer.length in2} -> f:(a -> b -> Tot a) -> Stack unit (requires (fun h -> live h in1 /\ live h in2)) (ensures (fun h_1 r h_2 -> modifies (loc_buffer in1) h_1 h_2 /\ live h_2 in1 /\ live h_2 in2 /\ live h_1 in1 /\ live h_1 in2 /\ (let s1 = as_seq h_1 in1 in let s2 = as_seq h_1 in2 in let s = as_seq h_2 in1 in s == seq_map2 f s1 s2) )) inline_for_extraction let in_place_map2 #a #b in1 in2 l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 in1 /\ live h1 in2 /\ modifies (loc_buffer in1) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 in1 j == get h0 in1 j) /\ (forall (j:nat). j < i ==> get h1 in1 j == f (get h0 in1 j) (get h0 in2 j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = in1.(i) in let yi = in2.(i) in in1.(i) <- f xi yi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 in1) (seq_map2 f (as_seq h0 in1) (as_seq h0 in2)) #reset-options "--initial_fuel 2 --max_fuel 2 --z3rlimit 20" (* Repeating the same operation a number of times over a buffer ***************) #reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** To be extracted as: * for (int i = 0; i < n; ++i) * f(b); *) inline_for_extraction val repeat: #a:Type0 -> l: UInt32.t -> f:(s:Seq.seq a{Seq.length s = UInt32.v l} -> Tot (s':Seq.seq a{Seq.length s' = Seq.length s})) -> b: buffer a{Buffer.length b = UInt32.v l} -> max:UInt32.t -> fc:(b:buffer a{length b = UInt32.v l} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies (loc_buffer b) h0 h1 /\ ( let b0 = as_seq h0 b in let b1 = as_seq h1 b in b1 == f b0)))) -> Stack unit (requires (fun h -> live h b )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer b) h_1 h_2 /\ live h_1 b /\ live h_2 b /\ ( let s = as_seq h_1 b in let s' = as_seq h_2 b in s' == Spec.Loops.repeat (UInt32.v max) f s) )) inline_for_extraction let repeat #a l f b max fc = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 b /\ modifies (loc_buffer b) h0 h1 /\ i <= UInt32.v max /\ as_seq h1 b == Spec.Loops.repeat i f (as_seq h0 b) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v max ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = fc b; Spec.Loops.repeat_induction (UInt32.v i + 1) f (as_seq h0 b) in Spec.Loops.repeat_base 0 f (as_seq h0 b); for 0ul max inv f' (** Implementation of Spec.Loops.repeat_range *) (** The type of the specification of the loop body (the function f given to Spec.Loops.repeat_range *) inline_for_extraction let repeat_range_body_spec (a: Type0) (max: nat) : Tot Type = (a -> i:nat{i < max} -> Tot a) (** The type of the semantics (interpretation) of a memory state as a value of the type `a` of the high-level state on which the loop body specification operates *) inline_for_extraction let repeat_range_body_interp (a: Type0) (inv: (HS.mem -> GTot Type0)) : Tot Type = (h: HS.mem { inv h } ) -> GTot a (** The type of the implementation of the loop body, proven correct with respect to the corresponding specification `f` *) inline_for_extraction let repeat_range_body_impl (#a:Type0) (min:UInt32.t) (max:UInt32.t{UInt32.v min <= UInt32.v max}) (f: Ghost.erased (repeat_range_body_spec a (UInt32.v max))) (inv: (HS.mem -> GTot Type0)) (interp: repeat_range_body_interp a inv) : Tot Type = (i:UInt32.t{UInt32.v min <= UInt32.v i /\ UInt32.v i < UInt32.v max}) -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h0 _ h1 -> inv h0 /\ inv h1 /\ interp h1 == (Ghost.reveal f) (interp h0) (UInt32.v i) )) (** The implementation of the actual loop To be extracted as: for (int i = min; i < max; ++i) f(b, i); This combinator is generic. Typically, the interpretation reads the contents of a few objects (buffers, references, etc.), and the invariant contains a modifies clause that asserts that only those objects are modified, and that they are live. *) inline_for_extraction val repeat_range: #a:Type0 -> min:UInt32.t -> max:UInt32.t{UInt32.v min <= UInt32.v max} -> f: (Ghost.erased (repeat_range_body_spec a (UInt32.v max))) -> inv: (HS.mem -> GTot Type0) -> interp: repeat_range_body_interp a inv -> fc: repeat_range_body_impl min max f inv interp -> HST.Stack unit (requires (fun h -> inv h)) (ensures (fun h_1 _ h_2 -> inv h_1 /\ inv h_2 /\ interp h_2 == Spec.Loops.repeat_range (UInt32.v min) (UInt32.v max) (Ghost.reveal f) (interp h_1) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: FStar.UInt32.t -> max: FStar.UInt32.t{FStar.UInt32.v min <= FStar.UInt32.v max} -> f: FStar.Ghost.erased (C.Loops.repeat_range_body_spec a (FStar.UInt32.v max)) -> inv: (_: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0) -> interp: C.Loops.repeat_range_body_interp a inv -> fc: C.Loops.repeat_range_body_impl min max f inv interp -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Ghost.erased", "C.Loops.repeat_range_body_spec", "FStar.Monotonic.HyperStack.mem", "C.Loops.repeat_range_body_interp", "C.Loops.repeat_range_body_impl", "C.Loops.for", "Prims.unit", "Spec.Loops.repeat_range_base", "FStar.Ghost.reveal", "Prims.l_and", "Prims.op_LessThan", "Prims.op_Addition", "Spec.Loops.repeat_range_induction", "Prims.nat", "Prims.eq2", "Spec.Loops.repeat_range", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let repeat_range #a min max f inv interp fc =
let h0 = HST.get () in let inv' (h1: HS.mem) (i: nat) : Type0 = inv h1 /\ i <= UInt32.v max /\ UInt32.v min <= i /\ interp h1 == Spec.Loops.repeat_range (UInt32.v min) i (Ghost.reveal f) (interp h0) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v max}) : HST.Stack unit (requires (fun h -> inv' h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv' h_2 (v i + 1))) = fc i; Spec.Loops.repeat_range_induction (UInt32.v min) (UInt32.v i + 1) (Ghost.reveal f) (interp h0) in Spec.Loops.repeat_range_base (UInt32.v min) (Ghost.reveal f) (interp h0); for min max inv' f'
false
C.Loops.fst
C.Loops.map
val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) ))
val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) ))
let map #a #b output input l f = let h0 = HST.get() in let inv (h1: HS.mem) (i: nat): Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j:nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j:nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i:UInt32.t{ UInt32.( 0 <= v i /\ v i < v l ) }): Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_2 (v i + 1)))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get() in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input))
{ "file_name": "krmllib/C.Loops.fst", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 69, "end_line": 240, "start_col": 0, "start_line": 224 }
(* This module exposes a series of combinators; they are modeled using * higher-order functions and specifications, and extracted, using a * meta-theoretic argument, to actual C loops. *) module C.Loops open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module UInt32 = FStar.UInt32 module UInt64 = FStar.UInt64 include Spec.Loops module Buffer = LowStar.Buffer #set-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 20" (** The functions in this module use the following convention: * - the first arguments are buffers; * - the destination buffer comes first, followed by the input buffer (as in * C's memcpy) * - each buffer is followed by its length; if several buffers share the same * length, there is a single length argument after the buffers * - the function-specific arguments come next (e.g. the number of times one * may want to call the function in [repeat]) * - the second to last argument is the loop invariant (which may have * dependencies on all the parameters before) * - the last argument is the loop body (that will depend on the invariant, and * possibly all the other parameters before. *) (* Generic-purpose for-loop combinators ***************************************) (* These combinators enjoy first-class support in KaRaMeL. (See [combinators] in * src/Simplify.ml *) (* Currently extracting as: for (int i = <start>; i != <finish>; ++i) <f> i; *) val for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec for start finish inv f = if start = finish then () else begin f start; for (UInt32.(start +^ 1ul)) finish inv f end val for64: start:UInt64.t -> finish:UInt64.t{UInt64.v finish >= UInt64.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt64.t{UInt64.(v start <= v i /\ v i < v finish)} -> Stack unit (requires (fun h -> inv h (UInt64.v i))) (ensures (fun h_1 _ h_2 -> UInt64.(inv h_1 (v i) /\ inv h_2 (v i + 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt64.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt64.v finish))) let rec for64 start finish inv f = if start = finish then () else begin f start; for64 (UInt64.(start +^ 1UL)) finish inv f end (* To be extracted as: for (int i = <start>; i != <finish>; --i) <f> i; *) val reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> UInt32.(inv h_1 (v i) /\ inv h_2 (v i - 1)))) ) -> Stack unit (requires (fun h -> inv h (UInt32.v start))) (ensures (fun _ _ h_2 -> inv h_2 (UInt32.v finish))) let rec reverse_for start finish inv f = if start = finish then () else begin f start; reverse_for (UInt32.(start -^ 1ul)) finish inv f end (* To be extracted as: bool b = false; int i = <start>; for (; (!b) && (i != <end>); ++i) { b = <f> i; } (i, b) *) val interruptible_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish >= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start <= v i /\ v i < v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i + 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start +^ 1ul) in if f start then (start', true) else interruptible_for start' finish inv f (* To be extracted as: while (true) { bool b = <f> i; if (b) { break; } } *) val do_while: inv:(HS.mem -> bool -> GTot Type0) -> f:(unit -> Stack bool (requires (fun h -> inv h false)) (ensures (fun h_1 b h_2 -> inv h_1 false /\ inv h_2 b)) ) -> Stack unit (requires (fun h -> inv h false)) (ensures (fun _ _ h_2 -> inv h_2 true)) let rec do_while inv f = if not (f ()) then do_while inv f (* Extracted as: while (test ()) { body (); } *) val while: #test_pre: (HS.mem -> GTot Type0) -> #test_post: (bool -> HS.mem -> GTot Type0) -> $test: (unit -> Stack bool (requires (fun h -> test_pre h)) (ensures (fun h0 x h1 -> test_post x h1))) -> body: (unit -> Stack unit (requires (fun h -> test_post true h)) (ensures (fun h0 _ h1 -> test_pre h1))) -> Stack unit (requires (fun h -> test_pre h)) (ensures (fun h0 _ h1 -> test_post false h1)) let rec while #test_pre #test_post test body = if test () then begin body (); while #test_pre #test_post test body end (* To be extracted as: int i = <start>; bool b = false; for (; (!b) && (i != <end>); --i) { b = <f> i; } // i and b must be in scope after the loop *) val interruptible_reverse_for: start:UInt32.t -> finish:UInt32.t{UInt32.v finish <= UInt32.v start} -> inv:(HS.mem -> nat -> bool -> GTot Type0) -> f:(i:UInt32.t{UInt32.(v start >= v i /\ v i > v finish)} -> Stack bool (requires (fun h -> inv h (UInt32.v i) false)) (ensures (fun h_1 b h_2 -> inv h_1 (UInt32.v i) false /\ inv h_2 UInt32.(v i - 1) b)) ) -> Stack (UInt32.t * bool) (requires (fun h -> inv h (UInt32.v start) false)) (ensures (fun _ res h_2 -> let (i, b) = res in ((if b then True else i == finish) /\ inv h_2 (UInt32.v i) b))) let rec interruptible_reverse_for start finish inv f = if start = finish then (finish, false) else let start' = UInt32.(start -^ 1ul) in if f start then (start', true) else interruptible_reverse_for start' finish inv f (* Non-primitive combinators that can be expressed in terms of the above ******) (** Extracts as: * for (int i = 0; i < <l>; ++i) * out[i] = <f>(in[i]); *) inline_for_extraction val map: #a:Type0 -> #b:Type0 -> output: buffer b -> input: buffer a{disjoint input output} -> l: UInt32.t{ UInt32.v l = Buffer.length output /\ UInt32.v l = Buffer.length input } -> f:(a -> Tot b) -> Stack unit (requires (fun h -> live h input /\ live h output )) (ensures (fun h_1 r h_2 -> modifies (loc_buffer output) h_1 h_2 /\ live h_2 input /\ live h_1 input /\ live h_2 output /\ live h_2 output /\ (let s1 = as_seq h_1 input in let s2 = as_seq h_2 output in s2 == seq_map f s1) ))
{ "checked_file": "/", "dependencies": [ "Spec.Loops.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "C.Loops.fst" }
[ { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "Buffer" }, { "abbrev": false, "full_module": "Spec.Loops", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "UInt64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "UInt32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: LowStar.Buffer.buffer b -> input: LowStar.Buffer.buffer a {LowStar.Monotonic.Buffer.disjoint input output} -> l: FStar.UInt32.t { FStar.UInt32.v l = LowStar.Monotonic.Buffer.length output /\ FStar.UInt32.v l = LowStar.Monotonic.Buffer.length input } -> f: (_: a -> b) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowStar.Buffer.buffer", "LowStar.Monotonic.Buffer.disjoint", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "FStar.Seq.Base.lemma_eq_intro", "LowStar.Monotonic.Buffer.as_seq", "Spec.Loops.seq_map", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "LowStar.BufferOps.op_Array_Assignment", "LowStar.BufferOps.op_Array_Access", "Prims.nat", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "LowStar.Monotonic.Buffer.get" ]
[]
false
true
false
false
false
let map #a #b output input l f =
let h0 = HST.get () in let inv (h1: HS.mem) (i: nat) : Type0 = live h1 output /\ live h1 input /\ modifies (loc_buffer output) h0 h1 /\ i <= UInt32.v l /\ (forall (j: nat). (j >= i /\ j < UInt32.v l) ==> get h1 output j == get h0 output j) /\ (forall (j: nat). j < i ==> get h1 output j == f (get h0 input j)) in let f' (i: UInt32.t{let open UInt32 in 0 <= v i /\ v i < v l}) : Stack unit (requires (fun h -> inv h (UInt32.v i))) (ensures (fun h_1 _ h_2 -> let open UInt32 in inv h_2 (v i + 1))) = let xi = input.(i) in output.(i) <- f xi in for 0ul l inv f'; let h1 = HST.get () in Seq.lemma_eq_intro (as_seq h1 output) (seq_map f (as_seq h0 input))
false
FStar.Int64.fsti
FStar.Int64.ct_abs
val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)})
val ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)})
let ct_abs (a:t{min_int n < v a}) : Tot (b:t{v b = abs (v a)}) = let mask = a >>>^ UInt32.uint_to_t (n - 1) in if 0 <= v a then begin sign_bit_positive (v a); nth_lemma (v mask) (FStar.Int.zero _); logxor_lemma_1 (v a) end else begin sign_bit_negative (v a); nth_lemma (v mask) (ones _); logxor_lemma_2 (v a); lognot_negative (v a); UInt.lemma_lognot_value #n (to_uint (v a)) end; (a ^^ mask) -^ mask
{ "file_name": "ulib/FStar.Int64.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 155, "start_col": 0, "start_line": 139 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 64 open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) new val t : eqtype val v (x:t) : Tot (int_t n) val int_to_t: x:int_t n -> Pure t (requires True) (ensures (fun y -> v y = x)) val uv_inv (x : t) : Lemma (ensures (int_to_t (v x) == x)) [SMTPat (v x)] val vu_inv (x : int_t n) : Lemma (ensures (v (int_to_t x) == x)) [SMTPat (int_to_t x)] val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) val zero : x:t{v x = 0} val one : x:t{v x = 1} val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (* Subtraction primitives *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (* Multiplication primitives *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (* Division primitives *) val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) (* Modulo primitives *) (* If a/b is not representable the result of a%b is undefind *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) (* Bitwise operators *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (* Shift operators *) (** If a is negative the result is implementation-defined *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_right (v a) (UInt32.v s) = v c)) (** If a is negative or a * pow2 s is not representable the result is undefined *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) (* Comparison operators *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (* Infix notations *) unfold let op_Plus_Hat = add unfold let op_Subtraction_Hat = sub unfold let op_Star_Hat = mul unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Greater_Greater_Greater_Hat = shift_arithmetic_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte unfold let op_Less_Hat = lt unfold let op_Less_Equals_Hat = lte
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": false, "source_file": "FStar.Int64.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int64.t{FStar.Int.min_int FStar.Int64.n < FStar.Int64.v a} -> b: FStar.Int64.t{FStar.Int64.v b = Prims.abs (FStar.Int64.v a)}
Prims.Tot
[ "total" ]
[]
[ "FStar.Int64.t", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.min_int", "FStar.Int64.n", "FStar.Int64.v", "FStar.Int64.op_Subtraction_Hat", "FStar.Int64.op_Hat_Hat", "Prims.unit", "Prims.op_LessThanOrEqual", "FStar.Int.logxor_lemma_1", "FStar.Int.nth_lemma", "FStar.Int.zero", "FStar.Int.sign_bit_positive", "Prims.bool", "FStar.UInt.lemma_lognot_value", "FStar.Int.to_uint", "FStar.Int.lognot_negative", "FStar.Int.logxor_lemma_2", "FStar.Int.ones", "FStar.Int.sign_bit_negative", "FStar.Int64.op_Greater_Greater_Greater_Hat", "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.int", "Prims.abs" ]
[]
false
false
false
false
false
let ct_abs (a: t{min_int n < v a}) : Tot (b: t{v b = abs (v a)}) =
let mask = a >>>^ UInt32.uint_to_t (n - 1) in if 0 <= v a then (sign_bit_positive (v a); nth_lemma (v mask) (FStar.Int.zero _); logxor_lemma_1 (v a)) else (sign_bit_negative (v a); nth_lemma (v mask) (ones _); logxor_lemma_2 (v a); lognot_negative (v a); UInt.lemma_lognot_value #n (to_uint (v a))); (a ^^ mask) -^ mask
false
Hacl.SHA3.fst
Hacl.SHA3.shake128_hacl
val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen))
val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen))
let shake128_hacl inputByteLen input outputByteLen output = keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output
{ "file_name": "code/sha3/Hacl.SHA3.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 34, "start_col": 0, "start_line": 33 }
module Hacl.SHA3 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.SHA3 module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Spec.SHA3 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'" val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output ==
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA3.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.SHA3.fst" }
[ { "abbrev": true, "full_module": "Spec.SHA3", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.SHA3", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
inputByteLen: Lib.IntTypes.size_t -> input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 inputByteLen -> outputByteLen: Lib.IntTypes.size_t -> output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 outputByteLen -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Impl.SHA3.keccak", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.byte", "Prims.unit" ]
[]
false
true
false
false
false
let shake128_hacl inputByteLen input outputByteLen output =
keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output
false
Hacl.SHA3.fst
Hacl.SHA3.shake256_hacl
val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake256 (v inputByteLen) (as_seq h0 input) (v outputByteLen))
val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake256 (v inputByteLen) (as_seq h0 input) (v outputByteLen))
let shake256_hacl inputByteLen input outputByteLen output = keccak 1088ul 512ul inputByteLen input (byte 0x1F) outputByteLen output
{ "file_name": "code/sha3/Hacl.SHA3.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 49, "start_col": 0, "start_line": 48 }
module Hacl.SHA3 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.SHA3 module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Spec.SHA3 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'" val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake128_hacl inputByteLen input outputByteLen output = keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output ==
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA3.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.SHA3.fst" }
[ { "abbrev": true, "full_module": "Spec.SHA3", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.SHA3", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
inputByteLen: Lib.IntTypes.size_t -> input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 inputByteLen -> outputByteLen: Lib.IntTypes.size_t -> output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 outputByteLen -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Impl.SHA3.keccak", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.byte", "Prims.unit" ]
[]
false
true
false
false
false
let shake256_hacl inputByteLen input outputByteLen output =
keccak 1088ul 512ul inputByteLen input (byte 0x1F) outputByteLen output
false
Hacl.SHA3.fst
Hacl.SHA3.sha3_384
val sha3_384: output:lbuffer uint8 48ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_384 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
val sha3_384: output:lbuffer uint8 48ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_384 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
let sha3_384 output input input_len = keccak 832ul 768ul input_len input (byte 0x06) 48ul output
{ "file_name": "code/sha3/Hacl.SHA3.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 91, "start_col": 0, "start_line": 90 }
module Hacl.SHA3 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.SHA3 module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Spec.SHA3 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'" val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake128_hacl inputByteLen input outputByteLen output = keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake256 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake256_hacl inputByteLen input outputByteLen output = keccak 1088ul 512ul inputByteLen input (byte 0x1F) outputByteLen output val sha3_224: output:lbuffer uint8 28ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_224 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len))) let sha3_224 output input input_len = keccak 1152ul 448ul input_len input (byte 0x06) 28ul output val sha3_256: output:lbuffer uint8 32ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_256 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len))) let sha3_256 output input input_len = keccak 1088ul 512ul input_len input (byte 0x06) 32ul output val sha3_384: output:lbuffer uint8 48ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output ==
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA3.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.SHA3.fst" }
[ { "abbrev": true, "full_module": "Spec.SHA3", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.SHA3", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 48ul -> input: Lib.Buffer.buffer_t Lib.Buffer.MUT Lib.IntTypes.uint8 -> input_len: Lib.IntTypes.size_t{Lib.IntTypes.v input_len == Lib.Buffer.length input} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.size_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Lib.Buffer.length", "Hacl.Impl.SHA3.keccak", "Lib.IntTypes.byte", "Prims.unit" ]
[]
false
true
false
false
false
let sha3_384 output input input_len =
keccak 832ul 768ul input_len input (byte 0x06) 48ul output
false
Hacl.SHA3.fst
Hacl.SHA3.sha3_224
val sha3_224: output:lbuffer uint8 28ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_224 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
val sha3_224: output:lbuffer uint8 28ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_224 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
let sha3_224 output input input_len = keccak 1152ul 448ul input_len input (byte 0x06) 28ul output
{ "file_name": "code/sha3/Hacl.SHA3.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 63, "start_col": 0, "start_line": 62 }
module Hacl.SHA3 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.SHA3 module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Spec.SHA3 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'" val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake128_hacl inputByteLen input outputByteLen output = keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake256 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake256_hacl inputByteLen input outputByteLen output = keccak 1088ul 512ul inputByteLen input (byte 0x1F) outputByteLen output val sha3_224: output:lbuffer uint8 28ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output ==
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA3.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.SHA3.fst" }
[ { "abbrev": true, "full_module": "Spec.SHA3", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.SHA3", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 28ul -> input: Lib.Buffer.buffer_t Lib.Buffer.MUT Lib.IntTypes.uint8 -> input_len: Lib.IntTypes.size_t{Lib.IntTypes.v input_len == Lib.Buffer.length input} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.size_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Lib.Buffer.length", "Hacl.Impl.SHA3.keccak", "Lib.IntTypes.byte", "Prims.unit" ]
[]
false
true
false
false
false
let sha3_224 output input input_len =
keccak 1152ul 448ul input_len input (byte 0x06) 28ul output
false
Hacl.SHA3.fst
Hacl.SHA3.sha3_512
val sha3_512: output:lbuffer uint8 64ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_512 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
val sha3_512: output:lbuffer uint8 64ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_512 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
let sha3_512 output input input_len = keccak 576ul 1024ul input_len input (byte 0x06) 64ul output
{ "file_name": "code/sha3/Hacl.SHA3.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 105, "start_col": 0, "start_line": 104 }
module Hacl.SHA3 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.SHA3 module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Spec.SHA3 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'" val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake128_hacl inputByteLen input outputByteLen output = keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake256 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake256_hacl inputByteLen input outputByteLen output = keccak 1088ul 512ul inputByteLen input (byte 0x1F) outputByteLen output val sha3_224: output:lbuffer uint8 28ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_224 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len))) let sha3_224 output input input_len = keccak 1152ul 448ul input_len input (byte 0x06) 28ul output val sha3_256: output:lbuffer uint8 32ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_256 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len))) let sha3_256 output input input_len = keccak 1088ul 512ul input_len input (byte 0x06) 32ul output val sha3_384: output:lbuffer uint8 48ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_384 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len))) let sha3_384 output input input_len = keccak 832ul 768ul input_len input (byte 0x06) 48ul output val sha3_512: output:lbuffer uint8 64ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output ==
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA3.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.SHA3.fst" }
[ { "abbrev": true, "full_module": "Spec.SHA3", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.SHA3", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> input: Lib.Buffer.buffer_t Lib.Buffer.MUT Lib.IntTypes.uint8 -> input_len: Lib.IntTypes.size_t{Lib.IntTypes.v input_len == Lib.Buffer.length input} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.size_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Lib.Buffer.length", "Hacl.Impl.SHA3.keccak", "Lib.IntTypes.byte", "Prims.unit" ]
[]
false
true
false
false
false
let sha3_512 output input input_len =
keccak 576ul 1024ul input_len input (byte 0x06) 64ul output
false
Hacl.Hash.MD.fst
Hacl.Hash.MD.mk_update_multi
val mk_update_multi: a:legacy_alg -> update:update_st (|a, ()|) -> update_multi_st (|a, ()|)
val mk_update_multi: a:legacy_alg -> update:update_st (|a, ()|) -> update_multi_st (|a, ()|)
let mk_update_multi a update s () blocks n_blocks = let h0 = ST.get () in let inv (h: HS.mem) (i: nat) = let i_block = i * block_length a in i <= U32.v n_blocks /\ B.live h s /\ B.live h blocks /\ B.(modifies (loc_buffer s) h0 h) /\ as_seq h s == Spec.Agile.Hash.update_multi a (as_seq h0 s) () (S.slice (B.as_seq h0 blocks) 0 i_block) in let f (i:U32.t { U32.(0 <= v i /\ v i < v n_blocks)}): ST.Stack unit (requires (fun h -> inv h (U32.v i))) (ensures (fun h0 _ h1 -> inv h0 (U32.v i) /\ inv h1 (U32.v i + 1))) = let h1 = ST.get () in let sz = block_len a in let blocks0 = B.sub blocks 0ul U32.(sz *^ i) in let block = B.sub blocks U32.(sz *^ i) sz in update s block; (**) Spec.Hash.Lemmas.update_multi_update a (as_seq h1 s) (B.as_seq h0 block); (**) let h2 = ST.get () in (**) let blocks_v : Ghost.erased _ = B.as_seq h0 blocks in (**) let block_v : Ghost.erased _ = B.as_seq h0 block in (**) let blocks0_v : Ghost.erased _ = B.as_seq h0 blocks0 in assert ( let s1 = B.as_seq h1 s in let s2 = B.as_seq h2 s in let i = U32.v i in let n_blocks = U32.v n_blocks in block_length a * (i + 1) <= S.length blocks_v /\ (block_length a * (i + 1) - block_length a * i) % block_length a = 0 /\ S.equal block_v (S.slice blocks_v (block_length a * i) (block_length a * (i + 1))) /\ S.equal s2 (Spec.Agile.Hash.update_multi a s1 () block_v) ); (**) let i_block : Ghost.erased _ = block_length a * (U32.v i) in (**) Spec.Hash.Lemmas.update_multi_associative a (as_seq h0 s) (S.slice blocks_v 0 i_block) block_v in assert (B.length blocks = U32.v n_blocks * block_length a); Spec.Hash.Lemmas.update_multi_zero a (as_seq h0 s); C.Loops.for 0ul n_blocks inv f
{ "file_name": "code/hash/Hacl.Hash.MD.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 131, "start_col": 0, "start_line": 90 }
module Hacl.Hash.MD (** The Merkle-Damgård construction. *) module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module Int = Lib.IntTypes module Lemmas = FStar.Math.Lemmas module B = LowStar.Buffer module S = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open Hacl.Hash.Definitions open Hacl.Hash.Lemmas open Spec.Hash.Definitions open FStar.Mul module HI = Spec.Hash.Incremental module AH = Spec.Agile.Hash (** Auxiliary helpers *) #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" let padding_round (a: md_alg) (len: len_t a): Lemma ((len_v a len + pad_length a (len_v a len)) % block_length a = 0) = () private val mod_sub_add: a:int -> b:int -> c:int -> d:int -> p:pos -> Lemma (requires b % p = 0) (ensures (a - ((b + c) + d)) % p == (a - (c + d)) % p) let mod_sub_add a b c d p = calc (==) { (a - ((b + c) + d)) % p; == { Math.Lemmas.lemma_mod_sub_distr a ((b + c) + d) p } (a - ((b + c) + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l (b + c) d p } (a - ((b + c) % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l b c p } (a - ((b % p + c) % p + d) % p) % p; == { } (a - (c % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l c d p } (a - (c + d) % p) % p; == { Math.Lemmas.lemma_mod_sub_distr a (c + d) p } (a - (c + d)) % p; } let pad0_length_mod (a: hash_alg{is_md a}) (base_len: nat) (len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad0_length a (base_len + len) = pad0_length a len) = mod_sub_add (block_length a) base_len len (len_length a + 1) (block_length a) let pad_length_mod (a: hash_alg{is_md a}) (base_len len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad_length a (base_len + len) = pad_length a len) = pad0_length_mod a base_len len val pad_len_bound : a : md_alg -> prev_len:len_t a { len_v a prev_len % block_length a = 0 } -> input_len:U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a} -> Lemma( (U32.v input_len % block_length a) + pad_length a (len_v a prev_len + U32.v input_len) <= 2 * block_length a) let pad_len_bound a prev_len input_len = () (* Avoiding an ill-formed pattern error... *) noextract inline_for_extraction let len_add32 a prev_len input_len = let open FStar.Int.Cast.Full in match a with | SHA2_224 | SHA2_256 | MD5 | SHA1 | Blake2S -> assert_norm (pow2 61 < pow2 64); U64.(prev_len +^ uint32_to_uint64 input_len) | SHA2_384 | SHA2_512 | Blake2B -> assert_norm (pow2 125 < pow2 128); U128.(prev_len +^ uint64_to_uint128 (uint32_to_uint64 input_len)) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" (** Iterated compression function. *)
{ "checked_file": "/", "dependencies": [ "Spec.Hash.MD.fst.checked", "Spec.Hash.Lemmas.fsti.checked", "Spec.Hash.Incremental.fsti.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Hash.PadFinish.fsti.checked", "Hacl.Hash.Lemmas.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked", "C.Loops.fst.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "AH" }, { "abbrev": true, "full_module": "Spec.Hash.Incremental", "short_module": "HI" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "Int" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Hash.MD.legacy_alg -> update: Hacl.Hash.Definitions.update_st (| a, () |) -> Hacl.Hash.Definitions.update_multi_st (| a, () |)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Hash.MD.legacy_alg", "Hacl.Hash.Definitions.update_st", "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Hacl.Hash.Definitions.state", "Prims.unit", "Hacl.Hash.Definitions.blocks_t", "Hacl.Hash.Definitions.get_alg", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "LowStar.Monotonic.Buffer.length", "Lib.IntTypes.uint8", "LowStar.Buffer.trivial_preorder", "FStar.Mul.op_Star", "Spec.Hash.Definitions.block_length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "C.Loops.for", "FStar.UInt32.__uint_to_t", "Spec.Hash.Lemmas.update_multi_zero", "Hacl.Hash.Definitions.as_seq", "Prims._assert", "FStar.UInt32.v", "FStar.UInt32.t", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Monotonic.HyperStack.mem", "Prims.op_Addition", "Spec.Hash.Lemmas.update_multi_associative", "FStar.Seq.Base.slice", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims.nat", "Prims.op_AmpAmp", "FStar.Seq.Base.length", "Prims.op_Modulus", "FStar.Ghost.erased", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Ghost.hide", "Prims.op_Subtraction", "FStar.Seq.Base.equal", "Hacl.Hash.Definitions.impl_word", "Spec.Agile.Hash.update_multi", "FStar.UInt.uint_t", "LowStar.Monotonic.Buffer.as_seq", "FStar.HyperStack.ST.get", "Spec.Hash.Lemmas.update_multi_update", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.sub", "FStar.UInt32.op_Star_Hat", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_disEquality", "Hacl.Hash.Definitions.block_len", "Prims.logical", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.eq2", "Spec.Hash.Definitions.words_state" ]
[]
false
false
false
false
false
let mk_update_multi a update s () blocks n_blocks =
let h0 = ST.get () in let inv (h: HS.mem) (i: nat) = let i_block = i * block_length a in i <= U32.v n_blocks /\ B.live h s /\ B.live h blocks /\ B.(modifies (loc_buffer s) h0 h) /\ as_seq h s == Spec.Agile.Hash.update_multi a (as_seq h0 s) () (S.slice (B.as_seq h0 blocks) 0 i_block) in let f (i: U32.t{let open U32 in 0 <= v i /\ v i < v n_blocks}) : ST.Stack unit (requires (fun h -> inv h (U32.v i))) (ensures (fun h0 _ h1 -> inv h0 (U32.v i) /\ inv h1 (U32.v i + 1))) = let h1 = ST.get () in let sz = block_len a in let blocks0 = B.sub blocks 0ul U32.(sz *^ i) in let block = B.sub blocks U32.(sz *^ i) sz in update s block; Spec.Hash.Lemmas.update_multi_update a (as_seq h1 s) (B.as_seq h0 block); let h2 = ST.get () in let blocks_v:Ghost.erased _ = B.as_seq h0 blocks in let block_v:Ghost.erased _ = B.as_seq h0 block in let blocks0_v:Ghost.erased _ = B.as_seq h0 blocks0 in assert (let s1 = B.as_seq h1 s in let s2 = B.as_seq h2 s in let i = U32.v i in let n_blocks = U32.v n_blocks in block_length a * (i + 1) <= S.length blocks_v /\ (block_length a * (i + 1) - block_length a * i) % block_length a = 0 /\ S.equal block_v (S.slice blocks_v (block_length a * i) (block_length a * (i + 1))) /\ S.equal s2 (Spec.Agile.Hash.update_multi a s1 () block_v)); let i_block:Ghost.erased _ = block_length a * (U32.v i) in Spec.Hash.Lemmas.update_multi_associative a (as_seq h0 s) (S.slice blocks_v 0 i_block) block_v in assert (B.length blocks = U32.v n_blocks * block_length a); Spec.Hash.Lemmas.update_multi_zero a (as_seq h0 s); C.Loops.for 0ul n_blocks inv f
false
Hacl.SHA3.fst
Hacl.SHA3.sha3_256
val sha3_256: output:lbuffer uint8 32ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_256 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
val sha3_256: output:lbuffer uint8 32ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_256 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len)))
let sha3_256 output input input_len = keccak 1088ul 512ul input_len input (byte 0x06) 32ul output
{ "file_name": "code/sha3/Hacl.SHA3.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 77, "start_col": 0, "start_line": 76 }
module Hacl.SHA3 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.SHA3 module ST = FStar.HyperStack.ST module B = LowStar.Buffer module S = Spec.SHA3 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'" val shake128_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake128 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake128_hacl inputByteLen input outputByteLen output = keccak 1344ul 256ul inputByteLen input (byte 0x1F) outputByteLen output val shake256_hacl: inputByteLen:size_t -> input:lbuffer uint8 inputByteLen -> outputByteLen:size_t -> output:lbuffer uint8 outputByteLen -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.shake256 (v inputByteLen) (as_seq h0 input) (v outputByteLen)) let shake256_hacl inputByteLen input outputByteLen output = keccak 1088ul 512ul inputByteLen input (byte 0x1F) outputByteLen output val sha3_224: output:lbuffer uint8 28ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output == S.sha3_224 (v input_len) (as_seq h0 (input <: lbuffer uint8 input_len))) let sha3_224 output input input_len = keccak 1152ul 448ul input_len input (byte 0x06) 28ul output val sha3_256: output:lbuffer uint8 32ul -> input:buffer_t MUT uint8 -> input_len:size_t{v input_len == length input} -> Stack unit (requires fun h -> live h input /\ live h output /\ disjoint input output) (ensures fun h0 _ h1 -> modifies (loc output) h0 h1 /\ as_seq h1 output ==
{ "checked_file": "/", "dependencies": [ "Spec.SHA3.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.SHA3.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.SHA3.fst" }
[ { "abbrev": true, "full_module": "Spec.SHA3", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.SHA3", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> input: Lib.Buffer.buffer_t Lib.Buffer.MUT Lib.IntTypes.uint8 -> input_len: Lib.IntTypes.size_t{Lib.IntTypes.v input_len == Lib.Buffer.length input} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.size_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Lib.Buffer.length", "Hacl.Impl.SHA3.keccak", "Lib.IntTypes.byte", "Prims.unit" ]
[]
false
true
false
false
false
let sha3_256 output input input_len =
keccak 1088ul 512ul input_len input (byte 0x06) 32ul output
false
Hacl.Hash.MD.fst
Hacl.Hash.MD.split_blocks
val split_blocks (a : hash_alg) (input:B.buffer Int.uint8) (input_len : Int.size_t { B.length input = U32.v input_len }) : ST.Stack (Int.size_t & Int.size_t & B.buffer Int.uint8 & Int.size_t & B.buffer Int.uint8) (requires fun h -> B.live h input /\ B.length input `less_than_max_input_length` a) (ensures fun h0 (blocks_n, blocks_len, blocks, rest_len, rest) h1 -> h0 == h1 /\ U32.v blocks_len + U32.v rest_len == U32.v input_len /\ B.length blocks == U32.v blocks_len /\ B.length rest == U32.v rest_len /\ B.as_seq h0 input `S.equal` S.append (B.as_seq h0 blocks) (B.as_seq h0 rest) /\ blocks == Ghost.reveal(B.gsub input 0ul blocks_len) /\ rest == B.gsub input blocks_len rest_len /\ (B.as_seq h0 blocks, B.as_seq h0 rest) == Spec.Hash.Incremental.split_blocks a (B.as_seq h0 input) /\ U32.v blocks_len == U32.v blocks_n * block_length a)
val split_blocks (a : hash_alg) (input:B.buffer Int.uint8) (input_len : Int.size_t { B.length input = U32.v input_len }) : ST.Stack (Int.size_t & Int.size_t & B.buffer Int.uint8 & Int.size_t & B.buffer Int.uint8) (requires fun h -> B.live h input /\ B.length input `less_than_max_input_length` a) (ensures fun h0 (blocks_n, blocks_len, blocks, rest_len, rest) h1 -> h0 == h1 /\ U32.v blocks_len + U32.v rest_len == U32.v input_len /\ B.length blocks == U32.v blocks_len /\ B.length rest == U32.v rest_len /\ B.as_seq h0 input `S.equal` S.append (B.as_seq h0 blocks) (B.as_seq h0 rest) /\ blocks == Ghost.reveal(B.gsub input 0ul blocks_len) /\ rest == B.gsub input blocks_len rest_len /\ (B.as_seq h0 blocks, B.as_seq h0 rest) == Spec.Hash.Incremental.split_blocks a (B.as_seq h0 input) /\ U32.v blocks_len == U32.v blocks_n * block_length a)
let split_blocks a input input_len = let blocks_n = U32.(input_len /^ block_len a) in let blocks_n = if U32.(input_len %^ block_len a =^ uint_to_t 0) && U32.(blocks_n >^ uint_to_t 0) then U32.(blocks_n -^ uint_to_t 1) else blocks_n in let blocks_len = U32.(blocks_n *^ block_len a) in let blocks = B.sub input 0ul blocks_len in let rest_len = U32.(input_len -^ blocks_len) in let rest = B.sub input blocks_len rest_len in (blocks_n, blocks_len, blocks, rest_len, rest)
{ "file_name": "code/hash/Hacl.Hash.MD.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 261, "start_col": 0, "start_line": 253 }
module Hacl.Hash.MD (** The Merkle-Damgård construction. *) module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module Int = Lib.IntTypes module Lemmas = FStar.Math.Lemmas module B = LowStar.Buffer module S = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open Hacl.Hash.Definitions open Hacl.Hash.Lemmas open Spec.Hash.Definitions open FStar.Mul module HI = Spec.Hash.Incremental module AH = Spec.Agile.Hash (** Auxiliary helpers *) #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" let padding_round (a: md_alg) (len: len_t a): Lemma ((len_v a len + pad_length a (len_v a len)) % block_length a = 0) = () private val mod_sub_add: a:int -> b:int -> c:int -> d:int -> p:pos -> Lemma (requires b % p = 0) (ensures (a - ((b + c) + d)) % p == (a - (c + d)) % p) let mod_sub_add a b c d p = calc (==) { (a - ((b + c) + d)) % p; == { Math.Lemmas.lemma_mod_sub_distr a ((b + c) + d) p } (a - ((b + c) + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l (b + c) d p } (a - ((b + c) % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l b c p } (a - ((b % p + c) % p + d) % p) % p; == { } (a - (c % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l c d p } (a - (c + d) % p) % p; == { Math.Lemmas.lemma_mod_sub_distr a (c + d) p } (a - (c + d)) % p; } let pad0_length_mod (a: hash_alg{is_md a}) (base_len: nat) (len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad0_length a (base_len + len) = pad0_length a len) = mod_sub_add (block_length a) base_len len (len_length a + 1) (block_length a) let pad_length_mod (a: hash_alg{is_md a}) (base_len len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad_length a (base_len + len) = pad_length a len) = pad0_length_mod a base_len len val pad_len_bound : a : md_alg -> prev_len:len_t a { len_v a prev_len % block_length a = 0 } -> input_len:U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a} -> Lemma( (U32.v input_len % block_length a) + pad_length a (len_v a prev_len + U32.v input_len) <= 2 * block_length a) let pad_len_bound a prev_len input_len = () (* Avoiding an ill-formed pattern error... *) noextract inline_for_extraction let len_add32 a prev_len input_len = let open FStar.Int.Cast.Full in match a with | SHA2_224 | SHA2_256 | MD5 | SHA1 | Blake2S -> assert_norm (pow2 61 < pow2 64); U64.(prev_len +^ uint32_to_uint64 input_len) | SHA2_384 | SHA2_512 | Blake2B -> assert_norm (pow2 125 < pow2 128); U128.(prev_len +^ uint64_to_uint128 (uint32_to_uint64 input_len)) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" (** Iterated compression function. *) noextract inline_for_extraction let mk_update_multi a update s () blocks n_blocks = let h0 = ST.get () in let inv (h: HS.mem) (i: nat) = let i_block = i * block_length a in i <= U32.v n_blocks /\ B.live h s /\ B.live h blocks /\ B.(modifies (loc_buffer s) h0 h) /\ as_seq h s == Spec.Agile.Hash.update_multi a (as_seq h0 s) () (S.slice (B.as_seq h0 blocks) 0 i_block) in let f (i:U32.t { U32.(0 <= v i /\ v i < v n_blocks)}): ST.Stack unit (requires (fun h -> inv h (U32.v i))) (ensures (fun h0 _ h1 -> inv h0 (U32.v i) /\ inv h1 (U32.v i + 1))) = let h1 = ST.get () in let sz = block_len a in let blocks0 = B.sub blocks 0ul U32.(sz *^ i) in let block = B.sub blocks U32.(sz *^ i) sz in update s block; (**) Spec.Hash.Lemmas.update_multi_update a (as_seq h1 s) (B.as_seq h0 block); (**) let h2 = ST.get () in (**) let blocks_v : Ghost.erased _ = B.as_seq h0 blocks in (**) let block_v : Ghost.erased _ = B.as_seq h0 block in (**) let blocks0_v : Ghost.erased _ = B.as_seq h0 blocks0 in assert ( let s1 = B.as_seq h1 s in let s2 = B.as_seq h2 s in let i = U32.v i in let n_blocks = U32.v n_blocks in block_length a * (i + 1) <= S.length blocks_v /\ (block_length a * (i + 1) - block_length a * i) % block_length a = 0 /\ S.equal block_v (S.slice blocks_v (block_length a * i) (block_length a * (i + 1))) /\ S.equal s2 (Spec.Agile.Hash.update_multi a s1 () block_v) ); (**) let i_block : Ghost.erased _ = block_length a * (U32.v i) in (**) Spec.Hash.Lemmas.update_multi_associative a (as_seq h0 s) (S.slice blocks_v 0 i_block) block_v in assert (B.length blocks = U32.v n_blocks * block_length a); Spec.Hash.Lemmas.update_multi_zero a (as_seq h0 s); C.Loops.for 0ul n_blocks inv f #pop-options #push-options "--fuel 0 --ifuel 0 --z3rlimit 400" (** An arbitrary number of bytes, then padding. *) noextract inline_for_extraction let mk_update_last a update_multi = assert_norm(block_length a > 0); fun pad s prev_len input input_len -> ST.push_frame (); let h0 = ST.get () in (* Get a series of complete blocks. *) let blocks_n = U32.(input_len /^ block_len a) in Math.Lemmas.nat_times_nat_is_nat (UInt32.v blocks_n) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v input_len) (block_length a); let blocks_len = U32.(blocks_n *^ block_len a) in Math.Lemmas.cancel_mul_mod (U32.v blocks_n) (block_length a); assert (U32.v blocks_len % block_length a = 0); let blocks = B.sub input 0ul blocks_len in (* The rest that doesn't make up a complete block *) let rest_len = U32.(input_len -^ blocks_len) in assert (U32.v rest_len < block_length a); let rest = B.sub input blocks_len rest_len in assert(B.length blocks = U32.v blocks_len); assert(block_length a * U32.v blocks_n = U32.v blocks_n * block_length a); update_multi s () blocks blocks_n; let h1 = ST.get () in assert (S.equal (B.as_seq h0 input) (S.append (B.as_seq h1 blocks) (B.as_seq h1 rest))); assert (S.equal (as_seq h1 s) (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h0 blocks))); (* Compute the total number of bytes fed. *) let total_input_len: len_t a = len_add32 a prev_len input_len in (* Blit the remaining data and the padding together *) let pad_len = Hacl.Hash.PadFinish.pad_len a total_input_len in let tmp_len = U32.( rest_len +^ pad_len ) in assert (len_v a total_input_len = len_v a prev_len + U32.v blocks_len + U32.v rest_len); Lemmas.modulo_distributivity (len_v a prev_len) (U32.v blocks_len) (block_length a); Math.Lemmas.lemma_mod_plus_distr_r (len_v a prev_len) (U32.v blocks_len) (block_length a); assert ((len_v a prev_len + U32.v blocks_len) % block_length a = 0); pad_length_mod a (len_v a prev_len + U32.v blocks_len) (U32.v rest_len); padding_round a total_input_len; assert(FStar.UInt32.v tmp_len % Spec.Hash.Definitions.block_length a = 0); assert (U32.v tmp_len % block_length a = 0); pad_len_bound a prev_len input_len; assert (U32.v tmp_len <= 2 * block_length a); let tmp_twoblocks = B.alloca (Lib.IntTypes.u8 0) U32.(2ul *^ block_len a) in let tmp = B.sub tmp_twoblocks 0ul tmp_len in let tmp_rest = B.sub tmp 0ul rest_len in let tmp_pad = B.sub tmp rest_len pad_len in B.blit rest 0ul tmp_rest 0ul rest_len; pad total_input_len tmp_pad; let h2 = ST.get () in assert (S.equal (B.as_seq h2 tmp) (S.append (B.as_seq h2 tmp_rest) (B.as_seq h2 tmp_pad))); assert (S.equal (B.as_seq h2 tmp_rest) (B.as_seq h1 rest)); assert (S.equal (B.as_seq h2 tmp_pad) (Spec.Hash.MD.pad a (len_v a total_input_len))); (* Update multi those last few blocks *) Math.Lemmas.cancel_mul_mod (U32.v tmp_len) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v tmp_len) (block_length a); Math.Lemmas.swap_mul (block_length a) (U32.v U32.(tmp_len /^ block_len a)); assert(B.length tmp = block_length a * U32.v U32.(tmp_len /^ block_len a)); update_multi s () tmp U32.(tmp_len /^ block_len a); let h3 = ST.get () in assert (S.equal (B.as_seq h3 s) (Spec.Agile.Hash.update_multi a (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h1 blocks)) () (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))))); assert ( let s1 = B.as_seq h1 blocks in let s2 = B.as_seq h2 rest in let s3 = Spec.Hash.MD.pad a (len_v a total_input_len) in S.equal (S.append s1 (S.append s2 s3)) (S.append (S.append s1 s2) s3)); Spec.Hash.Lemmas.update_multi_associative a (B.as_seq h0 s) (B.as_seq h1 blocks) (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))); ST.pop_frame () #pop-options #push-options "--ifuel 1" noextract inline_for_extraction let u32_to_len (a: hash_alg{is_md a}) (l: U32.t): l':len_t a { len_v a l' = U32.v l } = match a with | SHA2_384 | SHA2_512 -> FStar.Int.Cast.Full.(uint64_to_uint128 (uint32_to_uint64 l)) | _ -> FStar.Int.Cast.Full.uint32_to_uint64 l #pop-options (** split blocks: utility for the complete hash *) noextract inline_for_extraction val split_blocks (a : hash_alg) (input:B.buffer Int.uint8) (input_len : Int.size_t { B.length input = U32.v input_len }) : ST.Stack (Int.size_t & Int.size_t & B.buffer Int.uint8 & Int.size_t & B.buffer Int.uint8) (requires fun h -> B.live h input /\ B.length input `less_than_max_input_length` a) (ensures fun h0 (blocks_n, blocks_len, blocks, rest_len, rest) h1 -> h0 == h1 /\ U32.v blocks_len + U32.v rest_len == U32.v input_len /\ B.length blocks == U32.v blocks_len /\ B.length rest == U32.v rest_len /\ B.as_seq h0 input `S.equal` S.append (B.as_seq h0 blocks) (B.as_seq h0 rest) /\ blocks == Ghost.reveal(B.gsub input 0ul blocks_len) /\ rest == B.gsub input blocks_len rest_len /\ (B.as_seq h0 blocks, B.as_seq h0 rest) == Spec.Hash.Incremental.split_blocks a (B.as_seq h0 input) /\ U32.v blocks_len == U32.v blocks_n * block_length a)
{ "checked_file": "/", "dependencies": [ "Spec.Hash.MD.fst.checked", "Spec.Hash.Lemmas.fsti.checked", "Spec.Hash.Incremental.fsti.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Hash.PadFinish.fsti.checked", "Hacl.Hash.Lemmas.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked", "C.Loops.fst.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "AH" }, { "abbrev": true, "full_module": "Spec.Hash.Incremental", "short_module": "HI" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "Int" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg -> input: LowStar.Buffer.buffer Lib.IntTypes.uint8 -> input_len: Lib.IntTypes.size_t{LowStar.Monotonic.Buffer.length input = FStar.UInt32.v input_len} -> FStar.HyperStack.ST.Stack ((((Lib.IntTypes.size_t * Lib.IntTypes.size_t) * LowStar.Buffer.buffer Lib.IntTypes.uint8) * Lib.IntTypes.size_t) * LowStar.Buffer.buffer Lib.IntTypes.uint8)
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Hash.Definitions.hash_alg", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.v", "FStar.Pervasives.Native.Mktuple5", "FStar.Pervasives.Native.tuple5", "LowStar.Monotonic.Buffer.mbuffer", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "LowStar.Buffer.sub", "FStar.Ghost.hide", "FStar.UInt32.t", "FStar.UInt32.op_Subtraction_Hat", "FStar.UInt32.__uint_to_t", "FStar.UInt32.op_Star_Hat", "Hacl.Hash.Definitions.block_len", "Prims.op_AmpAmp", "FStar.UInt32.op_Equals_Hat", "FStar.UInt32.op_Percent_Hat", "FStar.UInt32.uint_to_t", "FStar.UInt32.op_Greater_Hat", "Prims.bool", "FStar.UInt32.op_Slash_Hat" ]
[]
false
true
false
false
false
let split_blocks a input input_len =
let blocks_n = let open U32 in input_len /^ block_len a in let blocks_n = if U32.(input_len %^ block_len a =^ uint_to_t 0) && U32.(blocks_n >^ uint_to_t 0) then let open U32 in blocks_n -^ uint_to_t 1 else blocks_n in let blocks_len = let open U32 in blocks_n *^ block_len a in let blocks = B.sub input 0ul blocks_len in let rest_len = let open U32 in input_len -^ blocks_len in let rest = B.sub input blocks_len rest_len in (blocks_n, blocks_len, blocks, rest_len, rest)
false
Hacl.Hash.MD.fst
Hacl.Hash.MD.mk_hash
val mk_hash: a:md_alg -> alloca:alloca_st (|a, ()|) -> update_multi:update_multi_st (|a, ()|) -> update_last:update_last_st (|a, ()|) -> finish:finish_st (|a, ()|) -> hash_st a
val mk_hash: a:md_alg -> alloca:alloca_st (|a, ()|) -> update_multi:update_multi_st (|a, ()|) -> update_last:update_last_st (|a, ()|) -> finish:finish_st (|a, ()|) -> hash_st a
let mk_hash a alloca update_multi update_last finish output input input_len = (**) let h0 = ST.get () in ST.push_frame (); let s = alloca () in let (blocks_n, blocks_len, blocks, rest_len, rest) = split_blocks a input input_len in (**) let blocks_v0 : Ghost.erased _ = B.as_seq h0 blocks in (**) let rest_v0 : Ghost.erased _ = B.as_seq h0 rest in (**) let input_v0 : Ghost.erased _ = B.as_seq h0 input in (**) assert(input_v0 `S.equal` S.append blocks_v0 rest_v0); update_multi s () blocks blocks_n; // AF: Most of these assertions are not needed, but they are good to document // the current state of the proof (**) let h01 = ST.get () in (**) assert (as_seq h01 s == Spec.Agile.Hash.(update_multi a (init a) () blocks_v0)); update_last s (u32_to_len a blocks_len) rest rest_len; (**) let h02 = ST.get () in (**) assert (as_seq h02 s == Spec.Agile.Hash.(Spec.Hash.Incremental.update_last a (update_multi a (init a) () blocks_v0) (S.length blocks_v0) rest_v0)); (**) let padding: Ghost.erased _ = Spec.Hash.MD.pad a (S.length input_v0) in // We need to prove that rest_v0 @| padding is a block. We do this using the calc below calc (==) { S.(length (rest_v0 @| padding)) % block_length a; (==) { } S.(length rest_v0 + S.length padding) % block_length a; (==) { Math.Lemmas.lemma_mod_add_distr (S.length padding) (S.length rest_v0) (block_length a) } S.(length rest_v0 % block_length a + S.length padding) % block_length a; (==) { } S.(length input_v0 % block_length a + S.length padding) % block_length a; (==) { Math.Lemmas.lemma_mod_add_distr (S.length padding) (S.length input_v0) (block_length a) } S.(length input_v0 + S.length padding) % block_length a; (==) { } 0; }; (**) assert (as_seq h02 s == Spec.Agile.Hash.(update_multi a (update_multi a (init a) () blocks_v0) () (rest_v0 `S.append` padding))); (**) assert ((blocks_v0 `S.append` (rest_v0 `S.append` padding)) `S.equal` (input_v0 `S.append` padding)); (**) Spec.Hash.Lemmas.update_multi_associative a (Spec.Agile.Hash.init a) (blocks_v0) (rest_v0 `S.append` padding); (**) assert (as_seq h02 s == Spec.Agile.Hash.(update_multi a (init a) () (input_v0 `S.append` padding))); finish s output; (**) let h03 = ST.get () in (**) assert (B.as_seq h03 output == Spec.Agile.Hash.hash a input_v0); ST.pop_frame ()
{ "file_name": "code/hash/Hacl.Hash.MD.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 317, "start_col": 0, "start_line": 271 }
module Hacl.Hash.MD (** The Merkle-Damgård construction. *) module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module Int = Lib.IntTypes module Lemmas = FStar.Math.Lemmas module B = LowStar.Buffer module S = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open Hacl.Hash.Definitions open Hacl.Hash.Lemmas open Spec.Hash.Definitions open FStar.Mul module HI = Spec.Hash.Incremental module AH = Spec.Agile.Hash (** Auxiliary helpers *) #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" let padding_round (a: md_alg) (len: len_t a): Lemma ((len_v a len + pad_length a (len_v a len)) % block_length a = 0) = () private val mod_sub_add: a:int -> b:int -> c:int -> d:int -> p:pos -> Lemma (requires b % p = 0) (ensures (a - ((b + c) + d)) % p == (a - (c + d)) % p) let mod_sub_add a b c d p = calc (==) { (a - ((b + c) + d)) % p; == { Math.Lemmas.lemma_mod_sub_distr a ((b + c) + d) p } (a - ((b + c) + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l (b + c) d p } (a - ((b + c) % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l b c p } (a - ((b % p + c) % p + d) % p) % p; == { } (a - (c % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l c d p } (a - (c + d) % p) % p; == { Math.Lemmas.lemma_mod_sub_distr a (c + d) p } (a - (c + d)) % p; } let pad0_length_mod (a: hash_alg{is_md a}) (base_len: nat) (len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad0_length a (base_len + len) = pad0_length a len) = mod_sub_add (block_length a) base_len len (len_length a + 1) (block_length a) let pad_length_mod (a: hash_alg{is_md a}) (base_len len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad_length a (base_len + len) = pad_length a len) = pad0_length_mod a base_len len val pad_len_bound : a : md_alg -> prev_len:len_t a { len_v a prev_len % block_length a = 0 } -> input_len:U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a} -> Lemma( (U32.v input_len % block_length a) + pad_length a (len_v a prev_len + U32.v input_len) <= 2 * block_length a) let pad_len_bound a prev_len input_len = () (* Avoiding an ill-formed pattern error... *) noextract inline_for_extraction let len_add32 a prev_len input_len = let open FStar.Int.Cast.Full in match a with | SHA2_224 | SHA2_256 | MD5 | SHA1 | Blake2S -> assert_norm (pow2 61 < pow2 64); U64.(prev_len +^ uint32_to_uint64 input_len) | SHA2_384 | SHA2_512 | Blake2B -> assert_norm (pow2 125 < pow2 128); U128.(prev_len +^ uint64_to_uint128 (uint32_to_uint64 input_len)) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" (** Iterated compression function. *) noextract inline_for_extraction let mk_update_multi a update s () blocks n_blocks = let h0 = ST.get () in let inv (h: HS.mem) (i: nat) = let i_block = i * block_length a in i <= U32.v n_blocks /\ B.live h s /\ B.live h blocks /\ B.(modifies (loc_buffer s) h0 h) /\ as_seq h s == Spec.Agile.Hash.update_multi a (as_seq h0 s) () (S.slice (B.as_seq h0 blocks) 0 i_block) in let f (i:U32.t { U32.(0 <= v i /\ v i < v n_blocks)}): ST.Stack unit (requires (fun h -> inv h (U32.v i))) (ensures (fun h0 _ h1 -> inv h0 (U32.v i) /\ inv h1 (U32.v i + 1))) = let h1 = ST.get () in let sz = block_len a in let blocks0 = B.sub blocks 0ul U32.(sz *^ i) in let block = B.sub blocks U32.(sz *^ i) sz in update s block; (**) Spec.Hash.Lemmas.update_multi_update a (as_seq h1 s) (B.as_seq h0 block); (**) let h2 = ST.get () in (**) let blocks_v : Ghost.erased _ = B.as_seq h0 blocks in (**) let block_v : Ghost.erased _ = B.as_seq h0 block in (**) let blocks0_v : Ghost.erased _ = B.as_seq h0 blocks0 in assert ( let s1 = B.as_seq h1 s in let s2 = B.as_seq h2 s in let i = U32.v i in let n_blocks = U32.v n_blocks in block_length a * (i + 1) <= S.length blocks_v /\ (block_length a * (i + 1) - block_length a * i) % block_length a = 0 /\ S.equal block_v (S.slice blocks_v (block_length a * i) (block_length a * (i + 1))) /\ S.equal s2 (Spec.Agile.Hash.update_multi a s1 () block_v) ); (**) let i_block : Ghost.erased _ = block_length a * (U32.v i) in (**) Spec.Hash.Lemmas.update_multi_associative a (as_seq h0 s) (S.slice blocks_v 0 i_block) block_v in assert (B.length blocks = U32.v n_blocks * block_length a); Spec.Hash.Lemmas.update_multi_zero a (as_seq h0 s); C.Loops.for 0ul n_blocks inv f #pop-options #push-options "--fuel 0 --ifuel 0 --z3rlimit 400" (** An arbitrary number of bytes, then padding. *) noextract inline_for_extraction let mk_update_last a update_multi = assert_norm(block_length a > 0); fun pad s prev_len input input_len -> ST.push_frame (); let h0 = ST.get () in (* Get a series of complete blocks. *) let blocks_n = U32.(input_len /^ block_len a) in Math.Lemmas.nat_times_nat_is_nat (UInt32.v blocks_n) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v input_len) (block_length a); let blocks_len = U32.(blocks_n *^ block_len a) in Math.Lemmas.cancel_mul_mod (U32.v blocks_n) (block_length a); assert (U32.v blocks_len % block_length a = 0); let blocks = B.sub input 0ul blocks_len in (* The rest that doesn't make up a complete block *) let rest_len = U32.(input_len -^ blocks_len) in assert (U32.v rest_len < block_length a); let rest = B.sub input blocks_len rest_len in assert(B.length blocks = U32.v blocks_len); assert(block_length a * U32.v blocks_n = U32.v blocks_n * block_length a); update_multi s () blocks blocks_n; let h1 = ST.get () in assert (S.equal (B.as_seq h0 input) (S.append (B.as_seq h1 blocks) (B.as_seq h1 rest))); assert (S.equal (as_seq h1 s) (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h0 blocks))); (* Compute the total number of bytes fed. *) let total_input_len: len_t a = len_add32 a prev_len input_len in (* Blit the remaining data and the padding together *) let pad_len = Hacl.Hash.PadFinish.pad_len a total_input_len in let tmp_len = U32.( rest_len +^ pad_len ) in assert (len_v a total_input_len = len_v a prev_len + U32.v blocks_len + U32.v rest_len); Lemmas.modulo_distributivity (len_v a prev_len) (U32.v blocks_len) (block_length a); Math.Lemmas.lemma_mod_plus_distr_r (len_v a prev_len) (U32.v blocks_len) (block_length a); assert ((len_v a prev_len + U32.v blocks_len) % block_length a = 0); pad_length_mod a (len_v a prev_len + U32.v blocks_len) (U32.v rest_len); padding_round a total_input_len; assert(FStar.UInt32.v tmp_len % Spec.Hash.Definitions.block_length a = 0); assert (U32.v tmp_len % block_length a = 0); pad_len_bound a prev_len input_len; assert (U32.v tmp_len <= 2 * block_length a); let tmp_twoblocks = B.alloca (Lib.IntTypes.u8 0) U32.(2ul *^ block_len a) in let tmp = B.sub tmp_twoblocks 0ul tmp_len in let tmp_rest = B.sub tmp 0ul rest_len in let tmp_pad = B.sub tmp rest_len pad_len in B.blit rest 0ul tmp_rest 0ul rest_len; pad total_input_len tmp_pad; let h2 = ST.get () in assert (S.equal (B.as_seq h2 tmp) (S.append (B.as_seq h2 tmp_rest) (B.as_seq h2 tmp_pad))); assert (S.equal (B.as_seq h2 tmp_rest) (B.as_seq h1 rest)); assert (S.equal (B.as_seq h2 tmp_pad) (Spec.Hash.MD.pad a (len_v a total_input_len))); (* Update multi those last few blocks *) Math.Lemmas.cancel_mul_mod (U32.v tmp_len) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v tmp_len) (block_length a); Math.Lemmas.swap_mul (block_length a) (U32.v U32.(tmp_len /^ block_len a)); assert(B.length tmp = block_length a * U32.v U32.(tmp_len /^ block_len a)); update_multi s () tmp U32.(tmp_len /^ block_len a); let h3 = ST.get () in assert (S.equal (B.as_seq h3 s) (Spec.Agile.Hash.update_multi a (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h1 blocks)) () (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))))); assert ( let s1 = B.as_seq h1 blocks in let s2 = B.as_seq h2 rest in let s3 = Spec.Hash.MD.pad a (len_v a total_input_len) in S.equal (S.append s1 (S.append s2 s3)) (S.append (S.append s1 s2) s3)); Spec.Hash.Lemmas.update_multi_associative a (B.as_seq h0 s) (B.as_seq h1 blocks) (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))); ST.pop_frame () #pop-options #push-options "--ifuel 1" noextract inline_for_extraction let u32_to_len (a: hash_alg{is_md a}) (l: U32.t): l':len_t a { len_v a l' = U32.v l } = match a with | SHA2_384 | SHA2_512 -> FStar.Int.Cast.Full.(uint64_to_uint128 (uint32_to_uint64 l)) | _ -> FStar.Int.Cast.Full.uint32_to_uint64 l #pop-options (** split blocks: utility for the complete hash *) noextract inline_for_extraction val split_blocks (a : hash_alg) (input:B.buffer Int.uint8) (input_len : Int.size_t { B.length input = U32.v input_len }) : ST.Stack (Int.size_t & Int.size_t & B.buffer Int.uint8 & Int.size_t & B.buffer Int.uint8) (requires fun h -> B.live h input /\ B.length input `less_than_max_input_length` a) (ensures fun h0 (blocks_n, blocks_len, blocks, rest_len, rest) h1 -> h0 == h1 /\ U32.v blocks_len + U32.v rest_len == U32.v input_len /\ B.length blocks == U32.v blocks_len /\ B.length rest == U32.v rest_len /\ B.as_seq h0 input `S.equal` S.append (B.as_seq h0 blocks) (B.as_seq h0 rest) /\ blocks == Ghost.reveal(B.gsub input 0ul blocks_len) /\ rest == B.gsub input blocks_len rest_len /\ (B.as_seq h0 blocks, B.as_seq h0 rest) == Spec.Hash.Incremental.split_blocks a (B.as_seq h0 input) /\ U32.v blocks_len == U32.v blocks_n * block_length a) #push-options "--ifuel 1" let split_blocks a input input_len = let blocks_n = U32.(input_len /^ block_len a) in let blocks_n = if U32.(input_len %^ block_len a =^ uint_to_t 0) && U32.(blocks_n >^ uint_to_t 0) then U32.(blocks_n -^ uint_to_t 1) else blocks_n in let blocks_len = U32.(blocks_n *^ block_len a) in let blocks = B.sub input 0ul blocks_len in let rest_len = U32.(input_len -^ blocks_len) in let rest = B.sub input blocks_len rest_len in (blocks_n, blocks_len, blocks, rest_len, rest) #pop-options (** Complete hash. *) /// We need to friend Spec.Agile.Hash to expose the definition of hash friend Spec.Agile.Hash #push-options "--ifuel 0 --fuel 0 --z3rlimit 200"
{ "checked_file": "/", "dependencies": [ "Spec.Hash.MD.fst.checked", "Spec.Hash.Lemmas.fsti.checked", "Spec.Hash.Incremental.fsti.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Hash.PadFinish.fsti.checked", "Hacl.Hash.Lemmas.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked", "C.Loops.fst.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "AH" }, { "abbrev": true, "full_module": "Spec.Hash.Incremental", "short_module": "HI" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "Int" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.md_alg -> alloca: Hacl.Hash.Definitions.alloca_st (| a, () |) -> update_multi: Hacl.Hash.Definitions.update_multi_st (| a, () |) -> update_last: Hacl.Hash.Definitions.update_last_st (| a, () |) -> finish: Hacl.Hash.Definitions.finish_st (| a, () |) -> Hacl.Hash.Definitions.hash_st a
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.md_alg", "Hacl.Hash.Definitions.alloca_st", "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Hacl.Hash.Definitions.update_multi_st", "Hacl.Hash.Definitions.update_last_st", "Hacl.Hash.Definitions.finish_st", "Hacl.Hash.Definitions.hash_t", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.U32", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "LowStar.Monotonic.Buffer.as_seq", "Spec.Agile.Hash.hash", "FStar.Ghost.reveal", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Spec.Hash.Definitions.words_state", "Hacl.Hash.Definitions.get_alg", "Hacl.Hash.Definitions.as_seq", "Spec.Agile.Hash.update_multi", "Spec.Agile.Hash.init", "FStar.Seq.Base.append", "Spec.Hash.Lemmas.update_multi_associative", "Prims.l_and", "Prims.op_Modulus", "FStar.Seq.Base.length", "Spec.Hash.Definitions.block_length", "FStar.Seq.Base.equal", "FStar.Calc.calc_finish", "FStar.Seq.Base.op_At_Bar", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_add_distr", "FStar.Ghost.erased", "Lib.IntTypes.int_t", "FStar.Ghost.hide", "Spec.Hash.MD.pad", "Spec.Hash.Incremental.Definitions.update_last", "Hacl.Hash.MD.u32_to_len", "FStar.Pervasives.Native.tuple5", "Hacl.Hash.MD.split_blocks", "Hacl.Hash.Definitions.state", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let mk_hash a alloca update_multi update_last finish output input input_len =
let h0 = ST.get () in ST.push_frame (); let s = alloca () in let blocks_n, blocks_len, blocks, rest_len, rest = split_blocks a input input_len in let blocks_v0:Ghost.erased _ = B.as_seq h0 blocks in let rest_v0:Ghost.erased _ = B.as_seq h0 rest in let input_v0:Ghost.erased _ = B.as_seq h0 input in assert (input_v0 `S.equal` (S.append blocks_v0 rest_v0)); update_multi s () blocks blocks_n; let h01 = ST.get () in assert (as_seq h01 s == Spec.Agile.Hash.(update_multi a (init a) () blocks_v0)); update_last s (u32_to_len a blocks_len) rest rest_len; let h02 = ST.get () in assert (as_seq h02 s == Spec.Agile.Hash.(Spec.Hash.Incremental.update_last a (update_multi a (init a) () blocks_v0) (S.length blocks_v0) rest_v0)); let padding:Ghost.erased _ = Spec.Hash.MD.pad a (S.length input_v0) in calc ( == ) { S.(length (rest_v0 @| padding)) % block_length a; ( == ) { () } S.(length rest_v0 + S.length padding) % block_length a; ( == ) { Math.Lemmas.lemma_mod_add_distr (S.length padding) (S.length rest_v0) (block_length a) } S.(length rest_v0 % block_length a + S.length padding) % block_length a; ( == ) { () } S.(length input_v0 % block_length a + S.length padding) % block_length a; ( == ) { Math.Lemmas.lemma_mod_add_distr (S.length padding) (S.length input_v0) (block_length a) } S.(length input_v0 + S.length padding) % block_length a; ( == ) { () } 0; }; assert (as_seq h02 s == Spec.Agile.Hash.(update_multi a (update_multi a (init a) () blocks_v0) () (rest_v0 `S.append` padding))); assert ((blocks_v0 `S.append` (rest_v0 `S.append` padding)) `S.equal` (input_v0 `S.append` padding)); Spec.Hash.Lemmas.update_multi_associative a (Spec.Agile.Hash.init a) (blocks_v0) (rest_v0 `S.append` padding); assert (as_seq h02 s == Spec.Agile.Hash.(update_multi a (init a) () (input_v0 `S.append` padding))); finish s output; let h03 = ST.get () in assert (B.as_seq h03 output == Spec.Agile.Hash.hash a input_v0); ST.pop_frame ()
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_fits_lemma
val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1))
val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1))
let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 119, "start_col": 0, "start_line": 112 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Lib.IntTypes.v f0 == Lib.IntTypes.v lo % Prims.pow2 26 /\ Lib.IntTypes.v f1 == Lib.IntTypes.v lo / Prims.pow2 26 % Prims.pow2 26 /\ Lib.IntTypes.v f2 == Lib.IntTypes.v lo / Prims.pow2 52 + (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 12 /\ Lib.IntTypes.v f3 == Lib.IntTypes.v hi / Prims.pow2 14 % Prims.pow2 26 /\ Lib.IntTypes.v f4 == Lib.IntTypes.v hi / Prims.pow2 40) <: Type0)) (ensures Hacl.Spec.Poly1305.Field32xN.tup64_fits5 f (1, 1, 1, 1, 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.lemma_div_lt_nat", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_mult_le", "Prims.op_Modulus", "Prims.op_Subtraction", "Prims.pos", "Hacl.Spec.Poly1305.Field32xN.pow26" ]
[]
false
false
true
false
false
let load_tup64_fits_lemma f lo hi =
let f0, f1, f2, f3, f4 = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact
val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5
val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5
let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 232, "start_col": 0, "start_line": 224 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> Hacl.Spec.Poly1305.Field32xN.tup64_5
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.u64", "Hacl.Spec.Poly1305.Field32xN.tup64_5" ]
[]
false
false
false
true
false
let load_tup64_4_compact lo hi =
let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lemma_tup64_pow2_128
val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128))
val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128))
let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 431, "start_col": 0, "start_line": 425 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.Poly1305.Field32xN.tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Lib.IntTypes.v f0 + Lib.IntTypes.v f1 * Hacl.Spec.Poly1305.Field32xN.pow26 + Lib.IntTypes.v f2 * Hacl.Spec.Poly1305.Field32xN.pow52 + Lib.IntTypes.v f3 * Hacl.Spec.Poly1305.Field32xN.pow78 + (Lib.IntTypes.v f4 % Prims.pow2 24) * Hacl.Spec.Poly1305.Field32xN.pow104 < Prims.pow2 128) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Spec.Poly1305.Field32xN.pow104", "Prims.unit", "Prims._assert", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.op_Addition", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Modulus" ]
[]
false
false
true
false
false
let lemma_tup64_pow2_128 f =
let f0, f1, f2, f3, f4 = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb)))
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb)))
let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 22, "start_col": 0, "start_line": 21 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ma: Prims.nat -> mb: Prims.nat -> mma: Prims.nat -> mmb: Prims.nat -> a: Lib.IntTypes.uint64 -> b: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= ma * mma /\ Lib.IntTypes.v b <= mb * mmb) (ensures (let r = Lib.IntTypes.mul64_wide a b in Lib.IntTypes.v r = Lib.IntTypes.v a * Lib.IntTypes.v b /\ Lib.IntTypes.v r <= (ma * mb) * (mma * mmb)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint64", "Hacl.Spec.K256.MathLemmas.lemma_bound_mul64_wide", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_bound_mul64_wide ma mb mma mmb a b =
ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48
val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52))
val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52))
let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 58, "start_col": 0, "start_line": 50 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.pos -> FStar.Pervasives.Lemma (ensures (a * 16) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max48) < a * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_lt_left", "FStar.Pervasives.assert_norm" ]
[]
false
false
true
false
false
let lemma_16_max52_max48 a =
assert_norm (16 * (max52 * max48) < max52 * max52); calc ( < ) { (a * 16) * (max52 * max48); ( == ) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); ( < ) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); }
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma_f2_mod
val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 90, "end_line": 247, "start_col": 0, "start_line": 236 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (Lib.IntTypes.v lo / Prims.pow2 52 + (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 12) % Prims.pow2 26 == Lib.IntTypes.v lo / Prims.pow2 52 + (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 12)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_modulo_lemma_1", "Prims.op_Addition", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_div_lt", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.distributivity_sub_left" ]
[]
false
false
true
false
false
let load_tup64_4_compact_lemma_f2_mod lo hi =
calc ( < ) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; ( < ) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; ( <= ) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; ( == ) { (Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12) } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lemma_store_felem_lo
val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64)
val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64)
let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 381, "start_col": 0, "start_line": 368 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 {Hacl.Spec.Poly1305.Field32xN.tup64_fits5 f (1, 1, 1, 1, 1)} -> lo: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 _ _ = _ in let lo = f0 |. f1 <<. 26ul |. f2 <<. 52ul in Lib.IntTypes.v lo == Lib.IntTypes.v f0 + Lib.IntTypes.v f1 * Prims.pow2 26 + Lib.IntTypes.v f2 * Prims.pow2 52 % Prims.pow2 64) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Hacl.Spec.Poly1305.Field32xN.tup64_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Prims.pow2", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "FStar.Math.Lemmas.modulo_lemma", "Lib.IntTypes.int_t", "Hacl.Spec.Poly1305.Field32xN.max26", "Prims.op_Subtraction" ]
[]
false
false
true
false
false
let lemma_store_felem_lo f lo =
let f0, f1, f2, f3, f4 = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma
val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi)
val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi)
let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 355, "start_col": 0, "start_line": 336 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact lo hi == Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma lo hi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma_f3", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.mod_mask_lemma", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma_f2", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma_f2", "Lib.IntTypes.range", "Prims.l_and", "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact" ]
[]
false
false
true
false
false
let load_tup64_4_compact_lemma lo hi =
let l0, l1, l2, l3, l4 = load_tup64_4_compact lo hi in let r0, r1, r2, r3, r4 = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26
val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26)
val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26)
let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 528, "start_col": 0, "start_line": 523 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat -> a: Prims.nat{a < Prims.pow2 (i % 26)} -> b: Prims.nat{b <= Prims.pow2 (i % 26)} -> FStar.Pervasives.Lemma (ensures a + b <= Hacl.Spec.Poly1305.Field32xN.max26)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Modulus", "Prims.op_LessThanOrEqual", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.pos", "Hacl.Spec.Poly1305.Field32xN.pow26", "Prims.unit", "FStar.Math.Lemmas.pow2_double_sum", "Prims._assert", "Prims.op_Addition", "FStar.Math.Lemmas.pow2_le_compat" ]
[]
true
false
true
false
false
let lemma_sum_lt_pow2_26 i a b =
assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_four_mul64_wide
val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52)))
val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52)))
let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 90, "end_line": 46, "start_col": 0, "start_line": 36 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64) (ensures (let d = Lib.IntTypes.mul64_wide a0 b3 +. Lib.IntTypes.mul64_wide a1 b2 +. Lib.IntTypes.mul64_wide a2 b1 +. Lib.IntTypes.mul64_wide a3 b0 in Lib.IntTypes.v d = Lib.IntTypes.v a0 * Lib.IntTypes.v b3 + Lib.IntTypes.v a1 * Lib.IntTypes.v b2 + Lib.IntTypes.v a2 * Lib.IntTypes.v b1 + Lib.IntTypes.v a3 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d <= 16384 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
true
false
true
false
false
let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 =
lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma
val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo)
val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo)
let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 205, "start_col": 0, "start_line": 175 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> Prims.Pure Hacl.Spec.Poly1305.Field32xN.tup64_5
Prims.Pure
[]
[]
[ "Lib.IntTypes.uint64", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "Hacl.Spec.Poly1305.Vec.prime", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "FStar.Math.Lemmas.small_modulo_lemma_1", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_fits_lemma", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma0", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Division", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma_f2", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.mod_mask_lemma", "Prims.op_Equality", "Prims.op_Subtraction", "Lib.IntTypes.range", "Hacl.Spec.Poly1305.Field32xN.tup64_5" ]
[]
false
false
false
false
false
let load_tup64_lemma lo hi =
let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_felem5_lemma_i
val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i])
val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i])
let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i])
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 220, "start_col": 0, "start_line": 219 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Hacl.Spec.Poly1305.Field32xN.uint64xN w -> hi: Hacl.Spec.Poly1305.Field32xN.uint64xN w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures (let f = Hacl.Spec.Poly1305.Field32xN.as_tup64_i (Hacl.Spec.Poly1305.Field32xN.load_felem5 lo hi) i in Hacl.Spec.Poly1305.Field32xN.tup64_fits5 f (1, 1, 1, 1, 1) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 f < Prims.pow2 128 /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 f % Hacl.Spec.Poly1305.Vec.prime == (Hacl.Spec.Poly1305.Field32xN.uint64xN_v hi).[ i ] * Prims.pow2 64 + (Hacl.Spec.Poly1305.Field32xN.uint64xN_v lo).[ i ]))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.lanes", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Hacl.Spec.Poly1305.Field32xN.as_tup64_i", "Hacl.Spec.Poly1305.Field32xN.load_felem5", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Prims.unit" ]
[]
true
false
true
false
false
let load_felem5_lemma_i #w lo hi i =
assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[ i ] (vec_v hi).[ i ])
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_r_rsh4
val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33)
val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33)
let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 296, "start_col": 0, "start_line": 293 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures (let rs = Lib.IntTypes.u64 0x1000003D10 >>. 4ul in Lib.IntTypes.v rs = 0x1000003D10 / Prims.pow2 4 /\ Lib.IntTypes.v rs < Prims.pow2 33))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Math.Lemmas.lemma_div_lt", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
true
false
true
false
false
let lemma_r_rsh4 () =
let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_c0
val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44)
val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44)
let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 443, "start_col": 0, "start_line": 440 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c0: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c0 <= 4096 * (Hacl.Spec.K256.Field52.Definitions.max48 * Hacl.Spec.K256.Field52.Definitions.max48) ) (ensures Lib.IntTypes.v c0 / Prims.pow2 64 <= Prims.pow2 44)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max48" ]
[]
true
false
true
false
false
let lemma_bound_c0 c0 =
lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux
val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26)))
val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26)))
let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 548, "start_col": 0, "start_line": 536 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fi: Lib.IntTypes.uint64 -> i: Lib.IntTypes.size_nat{i <= 128} -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v fi < Prims.pow2 (i % 26)) (ensures Lib.IntTypes.v (fi |. Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26)) == Lib.IntTypes.v fi + Prims.pow2 (i % 26))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims._assert", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.max26", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.pos", "Hacl.Spec.Poly1305.Field32xN.pow26", "Prims.pow2", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.logor_disjoint", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "FStar.Math.Lemmas.modulo_lemma", "FStar.Math.Lemmas.pow2_lt_compat", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
true
false
true
false
false
let lset_bit5_lemma_aux fi i =
let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.store_felem5_lemma
val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128))
val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128))
let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi))
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 517, "start_col": 0, "start_line": 515 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.felem5 w -> FStar.Pervasives.Lemma (requires Hacl.Spec.Poly1305.Field32xN.felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let _ = Hacl.Spec.Poly1305.Field32xN.store_felem5 f in (let FStar.Pervasives.Native.Mktuple2 #_ #_ lo hi = _ in Lib.IntTypes.v hi * Prims.pow2 64 + Lib.IntTypes.v lo == (Hacl.Spec.Poly1305.Field32xN.fas_nat5 f).[ 0 ] % Prims.pow2 128) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.lanes", "Hacl.Spec.Poly1305.Field32xN.felem5", "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Poly1305.Field32xN.Lemmas2.store_tup64_lemma", "Hacl.Spec.Poly1305.Field32xN.as_tup64_i", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.store_felem5" ]
[]
false
false
true
false
false
let store_felem5_lemma #w f =
let lo, hi = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi))
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_r_lsh12
val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49)
val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49)
let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 286, "start_col": 0, "start_line": 271 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures (let rs = Lib.IntTypes.u64 0x1000003D10 <<. 12ul in Lib.IntTypes.v rs = 0x1000003D10 * Prims.pow2 12 /\ Lib.IntTypes.v rs < Prims.pow2 49))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Math.Lemmas.small_mod", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Calc.calc_finish", "Prims.op_LessThan", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_lt_right", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Modulus", "FStar.Pervasives.assert_norm", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
false
false
true
false
false
let lemma_r_lsh12 () =
let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc ( < ) { 0x1000003D10 * pow2 12; ( < ) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; ( == ) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lemma_store_felem_hi
val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64))
val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64))
let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 66, "end_line": 415, "start_col": 0, "start_line": 392 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.Poly1305.Field32xN.tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ f2 f3 f4 = _ in let hi = f2 >>. 12ul |. f3 <<. 14ul |. f4 <<. 40ul in Lib.IntTypes.v hi == Lib.IntTypes.v f2 / Prims.pow2 12 + Lib.IntTypes.v f3 * Prims.pow2 14 + Lib.IntTypes.v f4 * Prims.pow2 40 % Prims.pow2 64) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Less_Less_Dot", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Prims.pow2", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Division", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.op_Subtraction", "Prims.eq2", "FStar.Math.Lemmas.modulo_lemma", "FStar.Pervasives.assert_norm", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.int_t", "Hacl.Spec.Poly1305.Field32xN.max26" ]
[]
false
false
true
false
false
let lemma_store_felem_hi f hi =
let f0, f1, f2, f3, f4 = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max48
val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32)
val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32)
let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 416, "start_col": 0, "start_line": 406 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.pos -> a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= md * (Hacl.Spec.K256.Field52.Definitions.max48 * Hacl.Spec.K256.Field52.Definitions.max48)) (ensures Lib.IntTypes.v a / Prims.pow2 64 <= md * Prims.pow2 32)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Lib.IntTypes.uint128", "FStar.Math.Lemmas.multiple_division_lemma", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.lemma_div_le", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.lemma_mult_le_left", "Hacl.Spec.K256.Field52.Definitions.max48", "Hacl.Spec.K256.MathLemmas.lemma_ab_lt_cd", "FStar.Pervasives.assert_norm" ]
[]
true
false
true
false
false
let lemma_u128_div64_max48 md a =
assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_mul64_wide52
val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52)))
val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52)))
let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 233, "start_col": 0, "start_line": 218 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 4097 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 b1 +. Lib.IntTypes.mul64_wide a1 b0 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v b1 + Lib.IntTypes.v a1 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d1 <= 8193 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_LessThanOrEqual", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 =
lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc ( <= ) { md * max52 + 8192 * (max52 * max52); ( <= ) { (assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 8192 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_d10
val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50)
val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50)
let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 454, "start_col": 0, "start_line": 450 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d10: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d10 <= 513 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)) (ensures Lib.IntTypes.v d10 / Prims.pow2 64 < Prims.pow2 50)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max52" ]
[]
true
false
true
false
false
let lemma_bound_d10 d10 =
lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12
val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52)))
val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52)))
let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 347, "start_col": 0, "start_line": 343 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 12801 /\ Lib.IntTypes.v c <= Prims.pow2 44) (ensures (let r = d +. Lib.IntTypes.mul64_wide (Lib.IntTypes.u64 0x1000003D10 <<. 12ul) c in Lib.IntTypes.v r = Lib.IntTypes.v d + (0x1000003D10 * Prims.pow2 12) * Lib.IntTypes.v c /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "Hacl.Spec.K256.Field52.Lemmas5.lemma_r_lsh12", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
true
false
true
false
false
let lemma_bound_add_mul64_wide_r_lsh12 md d c =
let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma_f2
val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 164, "start_col": 0, "start_line": 126 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (lo >>. 52ul |. (hi &. Lib.IntTypes.u64 0x3fff) <<. 12ul) == Lib.IntTypes.v lo / Prims.pow2 52 + (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 12)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Addition", "Prims.op_Division", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.unit", "FStar.Math.Lemmas.small_modulo_lemma_1", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.u64", "Lib.IntTypes.mod_mask_lemma", "Prims.op_Equality", "Prims.op_Subtraction", "Lib.IntTypes.op_Amp_Dot", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Lib.IntTypes.shift_right_lemma", "Lib.IntTypes.shift_left_lemma", "Lib.IntTypes.logor_disjoint", "FStar.Math.Lemmas.lemma_div_lt", "FStar.Math.Lemmas.modulo_modulo_lemma", "FStar.Math.Lemmas.multiple_modulo_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot" ]
[]
false
false
true
false
false
let load_tup64_lemma_f2 lo hi =
let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc ( == ) { v (tmp <<. 12ul) % pow2 12; ( == ) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; ( == ) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; ( == ) { FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52) } v tmp * pow2 12 % pow2 12; ( == ) { FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12) } 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc ( == ) { v f2; ( == ) { () } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); ( == ) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); ( == ) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma0_lo
val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo)
val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo)
let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; }
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 35, "start_col": 0, "start_line": 24 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v lo % Prims.pow2 26 + (Lib.IntTypes.v lo / Prims.pow2 26 % Prims.pow2 26) * Hacl.Spec.Poly1305.Field32xN.pow26 + (Lib.IntTypes.v lo / Prims.pow2 52) * Hacl.Spec.Poly1305.Field32xN.pow52 == Lib.IntTypes.v lo)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Prims.op_Modulus", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Division", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "FStar.Math.Lemmas.euclidean_division_definition" ]
[]
false
false
true
false
false
let load_tup64_lemma0_lo lo =
calc ( == ) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + (v lo / pow2 52) * pow52; ( == ) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + (v lo / pow2 52) * pow2 52; ( == ) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + (v lo / pow2 52) * pow2 52; ( == ) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + (v lo / pow2 52) * pow2 52; ( == ) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; }
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div52
val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52)
val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52)
let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 399, "start_col": 0, "start_line": 396 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.pos -> a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= (md * Hacl.Spec.K256.Field52.Definitions.max52) * Hacl.Spec.K256.Field52.Definitions.max52) (ensures Lib.IntTypes.v a / Prims.pow2 52 <= md * Hacl.Spec.K256.Field52.Definitions.max52)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Lib.IntTypes.uint128", "FStar.Math.Lemmas.multiple_division_lemma", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.lemma_div_le", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Math.Lemmas.lemma_mult_lt_left" ]
[]
true
false
true
false
false
let lemma_u128_div52 md a =
Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) ((md * max52) * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_five_mul64_wide
val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52)))
val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52)))
let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 110, "end_line": 100, "start_col": 0, "start_line": 75 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 16385 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 b4 +. Lib.IntTypes.mul64_wide a1 b3 +. Lib.IntTypes.mul64_wide a2 b2 +. Lib.IntTypes.mul64_wide a3 b1 +. Lib.IntTypes.mul64_wide a4 b0 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v b4 + Lib.IntTypes.v a1 * Lib.IntTypes.v b3 + Lib.IntTypes.v a2 * Lib.IntTypes.v b2 + Lib.IntTypes.v a3 * Lib.IntTypes.v b1 + Lib.IntTypes.v a4 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d1 <= 12801 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 =
lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); ( < ) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); ( <= ) { (assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 12800 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r
val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52)))
val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52)))
let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 335, "start_col": 0, "start_line": 333 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 16384) (ensures (let r = d +. Lib.IntTypes.mul64_wide (Lib.IntTypes.u64 0x1000003D10) (Lib.IntTypes.to_u64 c) in Lib.IntTypes.v r = Lib.IntTypes.v d + 0x1000003D10 * (Lib.IntTypes.v c % Prims.pow2 64) /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Lib.IntTypes.u64", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2" ]
[]
true
false
true
false
false
let lemma_bound_add_mul64_wide_r md d c =
assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_to_u64_mask52
val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1)
val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1)
let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 475, "start_col": 0, "start_line": 471 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (ensures (let r = Lib.IntTypes.to_u64 d &. Hacl.Spec.K256.Field52.Definitions.mask52 in Lib.IntTypes.v r = Lib.IntTypes.v d % Prims.pow2 52 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 r 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.U64", "Prims.op_Modulus", "Prims.pow2", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_mask52", "Lib.IntTypes.to_u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52" ]
[]
true
false
true
false
false
let lemma_u128_to_u64_mask52 d =
let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_mul64_wide
val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52)))
val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52)))
let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 264, "start_col": 0, "start_line": 246 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8193 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a3 b4 +. Lib.IntTypes.mul64_wide a4 b3 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a3 * Lib.IntTypes.v b4 + Lib.IntTypes.v a4 * Lib.IntTypes.v b3 /\ Lib.IntTypes.v d1 <= 513 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_two_mul64_wide md d a3 a4 b3 b4 =
lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc ( < ) { md * max52 + 8192 * (max52 * max48); ( < ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); ( <= ) { (assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 512 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max52
val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40)
val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40)
let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 433, "start_col": 0, "start_line": 423 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.pos -> a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)) (ensures Lib.IntTypes.v a / Prims.pow2 64 <= md * Prims.pow2 40)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Lib.IntTypes.uint128", "FStar.Math.Lemmas.multiple_division_lemma", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.lemma_div_le", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.lemma_mult_le_left", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.MathLemmas.lemma_ab_lt_cd", "FStar.Pervasives.assert_norm" ]
[]
true
false
true
false
false
let lemma_u128_div64_max52 md a =
assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_mul64_wide
val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52)))
val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52)))
let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 205, "start_col": 0, "start_line": 184 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8705 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a2 b4 +. Lib.IntTypes.mul64_wide a3 b3 +. Lib.IntTypes.mul64_wide a4 b2 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a2 * Lib.IntTypes.v b4 + Lib.IntTypes.v a3 * Lib.IntTypes.v b3 + Lib.IntTypes.v a4 * Lib.IntTypes.v b2 /\ Lib.IntTypes.v d1 <= 4609 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 =
lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); ( < ) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); ( <= ) { (assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 4608 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide
val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52)))
val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52)))
let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 325, "start_col": 0, "start_line": 306 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pa: Prims.nat -> pb: Prims.nat -> md: Prims.nat -> d: Lib.IntTypes.uint128 -> a: Lib.IntTypes.uint64 -> b: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a < Prims.pow2 pa /\ Lib.IntTypes.v b < Prims.pow2 pb /\ md + 1 <= 16385 /\ Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ pa + pb <= 103) (ensures (let r = d +. Lib.IntTypes.mul64_wide a b in Lib.IntTypes.v r = Lib.IntTypes.v d + Lib.IntTypes.v a * Lib.IntTypes.v b /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_plus", "Prims.squash", "FStar.Math.Lemmas.pow2_le_compat", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_mul64_wide pa pb md d a b =
let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc ( < ) { md * (max52 * max52) + pow2 pa * pow2 pb; ( == ) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); ( <= ) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; ( < ) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; ( == ) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_rsh4
val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52)))
val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52)))
let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 358, "start_col": 0, "start_line": 355 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 4096 /\ Lib.IntTypes.v c < Prims.pow2 56) (ensures (let r = d +. Lib.IntTypes.mul64_wide c (Lib.IntTypes.u64 0x1000003D10 >>. 4ul) in Lib.IntTypes.v r = Lib.IntTypes.v d + Lib.IntTypes.v c * (0x1000003D10 / Prims.pow2 4) /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas5.lemma_r_rsh4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
true
false
true
false
false
let lemma_bound_add_mul64_wide_r_rsh4 md d c =
let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_
val lset_bit5_: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
val lset_bit5_: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
let lset_bit5_ f i = let ind = i / 26 in let j = i % 26 in FStar.Math.Lemmas.euclidean_division_definition i 26; assert (i == ind * 26 + j); match ind with | 0 -> lset_bit5_lemma0 f i | 1 -> lset_bit5_lemma1 f i | 2 -> lset_bit5_lemma2 f i | 3 -> lset_bit5_lemma3 f i | 4 -> lset_bit5_lemma4 f i
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 780, "start_col": 0, "start_line": 769 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma3 f i = let b = u64 1 <<. size (i % 26) in let out = f.[3] <- f.[3] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[3] < pow2 (i % 26)); lset_bit5_lemma_aux f.[3] i; assert (v out.[3] == v f.[3] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[3]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma4 f i = let b = u64 1 <<. size (i % 26) in let out = f.[4] <- f.[4] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[4] < pow2 (i % 26)); lset_bit5_lemma_aux f.[4] i; assert (v out.[4] == v f.[4] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[4]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma0", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma1", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma2", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma3", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma4", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.op_Modulus", "Prims.op_Division" ]
[]
false
false
true
false
false
let lset_bit5_ f i =
let ind = i / 26 in let j = i % 26 in FStar.Math.Lemmas.euclidean_division_definition i 26; assert (i == ind * 26 + j); match ind with | 0 -> lset_bit5_lemma0 f i | 1 -> lset_bit5_lemma1 f i | 2 -> lset_bit5_lemma2 f i | 3 -> lset_bit5_lemma3 f i | 4 -> lset_bit5_lemma4 f i
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_four_mul64_wide
val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52)))
val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52)))
let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 138, "start_col": 0, "start_line": 116 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 12802 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a1 b4 +. Lib.IntTypes.mul64_wide a2 b3 +. Lib.IntTypes.mul64_wide a3 b2 +. Lib.IntTypes.mul64_wide a4 b1 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a1 * Lib.IntTypes.v b4 + Lib.IntTypes.v a2 * Lib.IntTypes.v b3 + Lib.IntTypes.v a3 * Lib.IntTypes.v b2 + Lib.IntTypes.v a4 * Lib.IntTypes.v b1 /\ Lib.IntTypes.v d1 <= 8705 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 =
lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); ( < ) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); ( <= ) { (assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 8704 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask48_rsh48
val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4))
val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4))
let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 510, "start_col": 0, "start_line": 508 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. Hacl.Spec.K256.Field52.Definitions.mask48 in Lib.IntTypes.v tx = Lib.IntTypes.v t4 / Prims.pow2 48 /\ Lib.IntTypes.v r = Lib.IntTypes.v t4 % Prims.pow2 48 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 r 1 /\ Lib.IntTypes.v tx < Prims.pow2 4))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.unit", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_mask48" ]
[]
true
false
true
false
false
let lemma_bound_mask48_rsh48 t4 =
LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_mul64_wide52
val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52)))
val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52)))
let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 170, "start_col": 0, "start_line": 152 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8194 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 b2 +. Lib.IntTypes.mul64_wide a1 b1 +. Lib.IntTypes.mul64_wide a2 b0 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v b2 + Lib.IntTypes.v a1 * Lib.IntTypes.v b1 + Lib.IntTypes.v a2 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d1 <= 12289 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_LessThanOrEqual", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
false
false
true
false
false
let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 =
lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc ( <= ) { md * max52 + 12288 * (max52 * max52); ( <= ) { (assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 12288 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_rsh64_to
val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64)
val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64)
let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 464, "start_col": 0, "start_line": 460 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.to_u64 (a >>. 64ul)) = Lib.IntTypes.v a / Prims.pow2 64)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.small_mod", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.lemma_div_lt", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.U64", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.to_u64", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t" ]
[]
true
false
true
false
false
let lemma_bound_rsh64_to a =
let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma_f3
val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26)
val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26)
let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 331, "start_col": 0, "start_line": 301 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (let t3 = lo >>. 48ul |. hi <<. 16ul in Lib.IntTypes.v (t3 >>. 30ul &. Lib.IntTypes.u64 0x3ffffff) == Lib.IntTypes.v hi / Prims.pow2 14 % Prims.pow2 26))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.u64", "Lib.IntTypes.mod_mask_lemma", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.op_Subtraction", "FStar.Calc.calc_finish", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "Prims.squash", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.division_addition_lemma", "FStar.Math.Lemmas.small_div", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.op_Less_Less_Dot", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Bar_Dot" ]
[]
false
false
true
false
false
let load_tup64_4_compact_lemma_f3 lo hi =
let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc ( == ) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; ( == ) { (Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14)) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; ( == ) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; ( == ) { (Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16) } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; ( == ) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5
val lset_bit5: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) % prime == (pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) % prime) % prime))
val lset_bit5: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) % prime == (pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) % prime) % prime))
let lset_bit5 f i = let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in lset_bit5_ f i; let out = (out.[0], out.[1], out.[2], out.[3], out.[4]) in let f = (f.[0], f.[1], f.[2], f.[3], f.[4]) in assert (as_nat5 out % prime == (pow2 i + as_nat5 f) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (pow2 i) (as_nat5 f) prime
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 803, "start_col": 0, "start_line": 796 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma3 f i = let b = u64 1 <<. size (i % 26) in let out = f.[3] <- f.[3] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[3] < pow2 (i % 26)); lset_bit5_lemma_aux f.[3] i; assert (v out.[3] == v f.[3] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[3]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma4 f i = let b = u64 1 <<. size (i % 26) in let out = f.[4] <- f.[4] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[4] < pow2 (i % 26)); lset_bit5_lemma_aux f.[4] i; assert (v out.[4] == v f.[4] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[4]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_ f i = let ind = i / 26 in let j = i % 26 in FStar.Math.Lemmas.euclidean_division_definition i 26; assert (i == ind * 26 + j); match ind with | 0 -> lset_bit5_lemma0 f i | 1 -> lset_bit5_lemma1 f i | 2 -> lset_bit5_lemma2 f i | 3 -> lset_bit5_lemma3 f i | 4 -> lset_bit5_lemma4 f i val lset_bit5: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) % prime == (pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) % prime) % prime))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) % Hacl.Spec.Poly1305.Vec.prime == (Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) % Hacl.Spec.Poly1305.Vec.prime) % Hacl.Spec.Poly1305.Vec.prime))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.pow2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "Hacl.Spec.Poly1305.Vec.prime", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple5", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Prims.op_Division", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.op_Subtraction", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
true
false
true
false
false
let lset_bit5 f i =
let b = u64 1 <<. size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in lset_bit5_ f i; let out = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in let f = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in assert (as_nat5 out % prime == (pow2 i + as_nat5 f) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (pow2 i) (as_nat5 f) prime
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.serialize_bitfield64
val serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l))
val serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l))
let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 43, "end_line": 158, "start_col": 0, "start_line": 157 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 64 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield64 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt64.t", "LowParse.Spec.Int.parse_u64_kind", "LowParse.Spec.Int.parse_u64", "LowParse.Spec.Int.serialize_u64", "LowParse.BitFields.uint64", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield64" ]
[]
false
false
false
false
false
let serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l)) =
serialize_bitfield serialize_u64 uint64 l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.serialize_bitfield32
val serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l))
val serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l))
let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 43, "end_line": 164, "start_col": 0, "start_line": 163 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 32 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield32 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt32.t", "LowParse.Spec.Int.parse_u32_kind", "LowParse.Spec.Int.parse_u32", "LowParse.Spec.Int.serialize_u32", "LowParse.BitFields.uint32", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield32" ]
[]
false
false
false
false
false
let serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l)) =
serialize_bitfield serialize_u32 uint32 l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.parse_bitfield64
val parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l))
val parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l))
let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 155, "start_col": 0, "start_line": 154 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 64 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u64_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint64 0 64 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt64.t", "LowParse.Spec.Int.parse_u64_kind", "LowParse.Spec.Int.parse_u64", "LowParse.BitFields.uint64", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
false
false
false
false
false
let parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) =
parse_bitfield parse_u64 uint64 l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.parse_bitfield16
val parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l))
val parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l))
let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 167, "start_col": 0, "start_line": 166 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 16 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u16_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint16 0 16 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt16.t", "LowParse.Spec.Int.parse_u16_kind", "LowParse.Spec.Int.parse_u16", "LowParse.BitFields.uint16", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
false
false
false
false
false
let parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) =
parse_bitfield parse_u16 uint16 l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.parse_bitfield32
val parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l))
val parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l))
let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 161, "start_col": 0, "start_line": 160 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 32 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u32_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint32 0 32 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt32.t", "LowParse.Spec.Int.parse_u32_kind", "LowParse.Spec.Int.parse_u32", "LowParse.BitFields.uint32", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
false
false
false
false
false
let parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) =
parse_bitfield parse_u32 uint32 l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.serialize_bitfield8
val serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l))
val serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l))
let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 41, "end_line": 176, "start_col": 0, "start_line": 175 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 8 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield8 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.Int.serialize_u8", "LowParse.BitFields.uint8", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield8" ]
[]
false
false
false
false
false
let serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l)) =
serialize_bitfield serialize_u8 uint8 l
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_mod_add_last
val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2))
val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2))
let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4')
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 573, "start_col": 0, "start_line": 566 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c12: Lib.IntTypes.uint64 -> t4': Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c12 < Prims.pow2 48 /\ Lib.IntTypes.v t4' < Prims.pow2 48) (ensures (let r4 = c12 +. t4' in Lib.IntTypes.v r4 = Lib.IntTypes.v c12 + Lib.IntTypes.v t4' /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 r4 2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Addition", "Prims.unit", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.op_LessThan", "FStar.Math.Lemmas.pow2_double_sum", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot" ]
[]
true
false
true
false
false
let lemma_mod_add_last c12 t4' =
let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4')
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lemma_tup64_mod_pow2_128
val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104))
val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104))
let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 456, "start_col": 0, "start_line": 441 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.Poly1305.Field32xN.tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Hacl.Spec.Poly1305.Field32xN.as_nat5 f % Prims.pow2 128 == Lib.IntTypes.v f0 + Lib.IntTypes.v f1 * Hacl.Spec.Poly1305.Field32xN.pow26 + Lib.IntTypes.v f2 * Hacl.Spec.Poly1305.Field32xN.pow52 + Lib.IntTypes.v f3 * Hacl.Spec.Poly1305.Field32xN.pow78 + (Lib.IntTypes.v f4 % Prims.pow2 24) * Hacl.Spec.Poly1305.Field32xN.pow104) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "Prims.pow2", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow104", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "FStar.Math.Lemmas.modulo_lemma", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_tup64_pow2_128" ]
[]
false
false
true
false
false
let lemma_tup64_mod_pow2_128 f =
let f0, f1, f2, f3, f4 = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc ( == ) { (as_nat5 f) % pow2 128; ( == ) { () } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; ( == ) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; ( == ) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; ( == ) { (lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128)) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma0
val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo)
val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo)
let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 95, "start_col": 0, "start_line": 78 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Lib.IntTypes.v f0 == Lib.IntTypes.v lo % Prims.pow2 26 /\ Lib.IntTypes.v f1 == Lib.IntTypes.v lo / Prims.pow2 26 % Prims.pow2 26 /\ Lib.IntTypes.v f2 == Lib.IntTypes.v lo / Prims.pow2 52 + (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 12 /\ Lib.IntTypes.v f3 == Lib.IntTypes.v hi / Prims.pow2 14 % Prims.pow2 26 /\ Lib.IntTypes.v f4 == Lib.IntTypes.v hi / Prims.pow2 40) <: Type0)) (ensures Hacl.Spec.Poly1305.Field32xN.as_nat5 f == Lib.IntTypes.v hi * Prims.pow2 64 + Lib.IntTypes.v lo)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "Prims.op_Division", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow26", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma0_lo", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma0_hi" ]
[]
false
false
true
false
false
let load_tup64_lemma0 f lo hi =
let f0, f1, f2, f3, f4 = f in calc ( == ) { as_nat5 f; ( == ) { () } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; ( == ) { () } v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + (v lo / pow2 52) * pow52 + ((v hi % pow2 14) * pow2 12) * pow52 + ((v hi / pow2 14) % pow2 26) * pow78 + (v hi / pow2 40) * pow104; ( == ) { load_tup64_lemma0_lo lo } v lo + ((v hi % pow2 14) * pow2 12) * pow52 + ((v hi / pow2 14) % pow2 26) * pow78 + (v hi / pow2 40) * pow104; ( == ) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + ((v hi / pow2 14) % pow2 26) * pow78 + (v hi / pow2 40) * pow104; ( == ) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_mask52
val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52)))
val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52)))
let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 499, "start_col": 0, "start_line": 495 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.pos -> d8: Lib.IntTypes.uint128 -> c5: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d8 <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ Lib.IntTypes.v c5 <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 8193) (ensures (let r = c5 +. Lib.IntTypes.mul64_wide (Lib.IntTypes.to_u64 d8 &. Hacl.Spec.K256.Field52.Definitions.mask52) (Lib.IntTypes.u64 0x1000003D10) in let d9 = d8 >>. 52ul in Lib.IntTypes.v d9 = Lib.IntTypes.v d8 / Prims.pow2 52 /\ Lib.IntTypes.v d9 <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ Lib.IntTypes.v r = Lib.IntTypes.v c5 + (Lib.IntTypes.v d8 % Prims.pow2 52) * 0x1000003D10 /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Lib.IntTypes.uint128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Lib.IntTypes.u64", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Hacl.Spec.K256.Field52.Definitions.mask52" ]
[]
true
false
true
false
false
let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 =
let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2
val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max))
val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max))
let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 598, "start_col": 0, "start_line": 583 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat -> max: Prims.nat -> a: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= m * max /\ 2 * m <= 4096 /\ max <= Hacl.Spec.K256.Field52.Definitions.max52) (ensures (let r = a *. Lib.IntTypes.u64 2 in Lib.IntTypes.v r = Lib.IntTypes.v a * 2 /\ Lib.IntTypes.v r <= (2 * m) * max))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.MathLemmas.lemma_ab_le_cd", "Prims._assert", "Prims.op_LessThanOrEqual", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.swap_mul", "FStar.Math.Lemmas.paren_mul_right", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
false
false
true
false
false
let lemma_mul_by2 m max a =
let r = a *. u64 2 in calc ( <= ) { v a * 2; ( <= ) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } (m * max) * 2; ( == ) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); ( == ) { Math.Lemmas.paren_mul_right 2 m max } (2 * m) * max; }; assert (v a * 2 <= (2 * m) * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52
val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52))
val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52))
let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 486, "start_col": 0, "start_line": 484 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.pos -> d: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 16385) (ensures (let r = Lib.IntTypes.to_u64 d &. Hacl.Spec.K256.Field52.Definitions.mask52 in let k = d >>. 52ul in Lib.IntTypes.v r = Lib.IntTypes.v d % Prims.pow2 52 /\ Lib.IntTypes.v k = Lib.IntTypes.v d / Prims.pow2 52 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 r 1 /\ Lib.IntTypes.v k <= md * Hacl.Spec.K256.Field52.Definitions.max52))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Lib.IntTypes.uint128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div52", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_to_u64_mask52" ]
[]
true
false
true
false
false
let lemma_bound_mask52_rsh52 md d =
lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.serialize_bitfield16
val serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l))
val serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l))
let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 43, "end_line": 170, "start_col": 0, "start_line": 169 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 16 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield16 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt16.t", "LowParse.Spec.Int.parse_u16_kind", "LowParse.Spec.Int.parse_u16", "LowParse.Spec.Int.serialize_u16", "LowParse.BitFields.uint16", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield16" ]
[]
false
false
false
false
false
let serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l)) =
serialize_bitfield serialize_u16 uint16 l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.parse_bitfield8
val parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l))
val parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l))
let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 33, "end_line": 173, "start_col": 0, "start_line": 172 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 8 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u8_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint8 0 8 l)
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.BitFields.uint8", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
false
false
false
false
false
let parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) =
parse_bitfield parse_u8 uint8 l
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12_add
val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100))
val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100))
let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 389, "start_col": 0, "start_line": 366 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> c: Lib.IntTypes.uint128 -> d: Lib.IntTypes.uint64 -> t3: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 12290 /\ Lib.IntTypes.v d < Prims.pow2 50 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 t3 1) (ensures (let r = c +. Lib.IntTypes.mul64_wide (Lib.IntTypes.u64 0x1000003D10 <<. 12ul) d +. Lib.IntTypes.to_u128 t3 in Lib.IntTypes.v r = Lib.IntTypes.v c + (0x1000003D10 * Prims.pow2 12) * Lib.IntTypes.v d + Lib.IntTypes.v t3 /\ Lib.IntTypes.v r < Prims.pow2 100))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims.Cons", "FStar.Preorder.relation", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_plus", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Pervasives.assert_norm", "Prims._assert", "Prims.l_and", "Prims.op_Equality", "Lib.IntTypes.mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.to_u128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_r_lsh12", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
false
false
true
false
false
let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 =
let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc ( < ) { md * max52 + pow2 49 * pow2 50 + max52; ( == ) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; ( == ) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; ( <= ) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; ( < ) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_recip
val synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t
val synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t
let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 231, "end_line": 103, "start_col": 0, "start_line": 103 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: LowParse.Spec.BitFields.bitfields cl lo hi l -> t
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield_recip'" ]
[]
false
false
false
false
false
let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t =
synth_bitfield_recip' cl lo hi l x
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52_sp
val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48))
val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48))
let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 527, "start_col": 0, "start_line": 519 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d < Prims.pow2 100) (ensures (let r = Lib.IntTypes.to_u64 d &. Hacl.Spec.K256.Field52.Definitions.mask52 in let k = Lib.IntTypes.to_u64 (d >>. 52ul) in Lib.IntTypes.v r = Lib.IntTypes.v d % Prims.pow2 52 /\ Lib.IntTypes.v k = Lib.IntTypes.v d / Prims.pow2 52 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 r 1 /\ Lib.IntTypes.v k < Prims.pow2 48))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.small_mod", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Math.Lemmas.lemma_div_lt", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.U64", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.to_u64", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_to_u64_mask52", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52" ]
[]
true
false
true
false
false
let lemma_bound_mask52_rsh52_sp d =
let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_tx_logor_u0_lsh4
val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56))
val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56))
let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 558, "start_col": 0, "start_line": 535 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tx: Lib.IntTypes.uint64 -> u0: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v tx < Prims.pow2 4 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 u0 1) (ensures (let u0' = tx |. u0 <<. 4ul in Lib.IntTypes.v u0' == Lib.IntTypes.v tx + Lib.IntTypes.v u0 * Prims.pow2 4 /\ Lib.IntTypes.v u0' < Prims.pow2 56))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.op_Less_Less_Dot", "FStar.UInt32.__uint_to_t", "FStar.Math.Lemmas.cancel_mul_mod", "FStar.Math.Lemmas.lemma_div_lt", "Prims.op_Equality", "FStar.Math.Lemmas.small_mod", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot" ]
[]
false
false
true
false
false
let lemma_tx_logor_u0_lsh4 tx u0 =
let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc ( <= ) { v u0 * pow2 4; ( <= ) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; ( == ) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; ( == ) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield
val synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l)
val synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l)
let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 221, "end_line": 45, "start_col": 0, "start_line": 45 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> LowParse.Spec.BitFields.bitfields cl lo hi l
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.synth_bitfield'", "LowParse.Spec.BitFields.bitfields" ]
[]
false
false
false
false
false
let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) =
synth_bitfield' cl lo hi l x
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.valid_bitfield_widths
val valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
val valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 68, "end_line": 19, "start_col": 0, "start_line": 16 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> l: Prims.list Prims.nat -> Prims.Tot Prims.bool
Prims.Tot
[ "total", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "Prims.op_Equality", "Prims.op_AmpAmp", "Prims.op_Addition", "LowParse.Spec.BitFields.valid_bitfield_widths", "Prims.bool" ]
[ "recursion" ]
false
false
false
false
false
let rec valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l) =
match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q
false