file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Steel.Effect.Common.fst
Steel.Effect.Common.star_congruence
val star_congruence (p1 p2 p3 p4:vprop) : Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4) (ensures (p1 `star` p2) `equiv` (p3 `star` p4))
val star_congruence (p1 p2 p3 p4:vprop) : Lemma (requires p1 `equiv` p3 /\ p2 `equiv` p4) (ensures (p1 `star` p2) `equiv` (p3 `star` p4))
let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4)
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 97, "end_line": 112, "start_col": 0, "start_line": 112 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: Steel.Effect.Common.vprop -> p2: Steel.Effect.Common.vprop -> p3: Steel.Effect.Common.vprop -> p4: Steel.Effect.Common.vprop -> FStar.Pervasives.Lemma (requires Steel.Effect.Common.equiv p1 p3 /\ Steel.Effect.Common.equiv p2 p4) (ensures Steel.Effect.Common.equiv (Steel.Effect.Common.star p1 p2) (Steel.Effect.Common.star p3 p4))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.star_congruence", "Steel.Effect.Common.hp_of", "Prims.unit" ]
[]
true
false
true
false
false
let star_congruence p1 p2 p3 p4 =
Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4)
false
Steel.Effect.Common.fst
Steel.Effect.Common.vrefine_sel
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
val vrefine_sel (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (selector (vrefine_t v p) (vrefine_hp v p))
let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 135, "start_col": 0, "start_line": 131 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.normal (Steel.Effect.Common.t_of v) -> Prims.prop) -> Steel.Effect.Common.selector (Steel.Effect.Common.vrefine_t v p) (Steel.Effect.Common.vrefine_hp v p)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Effect.Common.vrefine_sel'", "Prims.unit", "Prims._assert", "Steel.Effect.Common.sel_depends_only_on_core", "Steel.Effect.Common.vrefine_t", "Steel.Effect.Common.vrefine_hp", "Steel.Effect.Common.sel_depends_only_on", "Steel.Effect.Common.selector" ]
[]
false
false
false
false
false
let vrefine_sel v p =
assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p
false
Steel.Effect.Common.fst
Steel.Effect.Common.vrefine_hp
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
val vrefine_hp (v: vprop) (p: (normal (t_of v) -> Tot prop)) : Tot (slprop u#1)
let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p)
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 119, "start_col": 0, "start_line": 117 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.normal (Steel.Effect.Common.t_of v) -> Prims.prop) -> Steel.Memory.slprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.refine_slprop", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.vrefine_am", "Steel.Memory.slprop" ]
[]
false
false
false
false
false
let vrefine_hp v p =
refine_slprop (hp_of v) (vrefine_am v p)
false
Steel.Effect.Common.fst
Steel.Effect.Common.vdep_sel'
val vdep_sel' (v: vprop) (p: (t_of v -> Tot vprop)) : Tot (selector' (vdep_t v p) (vdep_hp v p))
val vdep_sel' (v: vprop) (p: (t_of v -> Tot vprop)) : Tot (selector' (vdep_t v p) (vdep_hp v p))
let vdep_sel' (v: vprop) (p: t_of v -> Tot vprop) : Tot (selector' (vdep_t v p) (vdep_hp v p)) = fun (m: Mem.hmem (vdep_hp v p)) -> interp_vdep_hp v p m; let x = sel_of v m in let y = sel_of (p (sel_of v m)) m in (| x, y |)
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 183, "start_col": 0, "start_line": 174 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p let vrefine_sel_eq v p m = () let vdep_hp_payload (v: vprop) (p: (t_of v -> Tot vprop)) (h: Mem.hmem (hp_of v)) : Tot slprop = hp_of (p (sel_of v h)) let vdep_hp v p = sdep (hp_of v) (vdep_hp_payload v p) let interp_vdep_hp v p m = interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> Steel.Effect.Common.selector' (Steel.Effect.Common.vdep_t v p) (Steel.Effect.Common.vdep_hp v p)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Memory.hmem", "Steel.Effect.Common.vdep_hp", "Prims.Mkdtuple2", "Steel.Effect.Common.vdep_payload", "Steel.Effect.Common.sel_of", "Prims.unit", "Steel.Effect.Common.interp_vdep_hp", "Steel.Effect.Common.vdep_t", "Steel.Effect.Common.selector'" ]
[]
false
false
false
false
false
let vdep_sel' (v: vprop) (p: (t_of v -> Tot vprop)) : Tot (selector' (vdep_t v p) (vdep_hp v p)) =
fun (m: Mem.hmem (vdep_hp v p)) -> interp_vdep_hp v p m; let x = sel_of v m in let y = sel_of (p (sel_of v m)) m in (| x, y |)
false
Steel.Effect.Common.fst
Steel.Effect.Common.cm_identity
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
val cm_identity (x:vprop) : Lemma ((emp `star` x) `equiv` x)
let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 109, "start_col": 0, "start_line": 107 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Steel.Effect.Common.vprop -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.equiv (Steel.Effect.Common.star Steel.Effect.Common.emp x) x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.star_commutative", "Steel.Effect.Common.hp_of", "Steel.Memory.emp", "Prims.unit", "Steel.Memory.emp_unit" ]
[]
true
false
true
false
false
let cm_identity x =
Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp
false
Steel.Effect.Common.fst
Steel.Effect.Common.vrefine_am
val vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v))
val vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v))
let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h)
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 25, "end_line": 115, "start_col": 0, "start_line": 114 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Prims.prop) -> Steel.Memory.a_mem_prop (Steel.Effect.Common.hp_of v)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.hmem", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.sel_of", "Steel.Memory.a_mem_prop" ]
[]
false
false
false
false
false
let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) =
fun h -> p (sel_of v h)
false
FStar.OrdMap.fst
FStar.OrdMap.map_t
val map_t : k: Prims.eqtype -> v: Type -> f: FStar.OrdSet.cmp k -> d: FStar.OrdSet.ordset k f -> Type
let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)}
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 23, "start_col": 0, "start_line": 22 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.eqtype -> v: Type -> f: FStar.OrdSet.cmp k -> d: FStar.OrdSet.ordset k f -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.FunctionalExtensionality.restricted_t", "FStar.Pervasives.Native.option", "Prims.l_Forall", "Prims.eq2", "Prims.bool", "FStar.OrdSet.mem", "FStar.Pervasives.Native.uu___is_Some" ]
[]
false
false
false
false
true
let map_t (k: eqtype) (v: Type) (f: cmp k) (d: ordset k f) =
g: F.restricted_t k (fun _ -> option v) {forall x. mem x d == Some? (g x)}
false
Steel.Effect.Common.fst
Steel.Effect.Common.vdep_sel
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
val vdep_sel (v: vprop) (p: ( (t_of v) -> Tot vprop)) : Tot (selector (vdep_t v p) (vdep_hp v p))
let vdep_sel v p = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); vdep_sel' v p
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 15, "end_line": 188, "start_col": 0, "start_line": 185 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p let vrefine_sel_eq v p m = () let vdep_hp_payload (v: vprop) (p: (t_of v -> Tot vprop)) (h: Mem.hmem (hp_of v)) : Tot slprop = hp_of (p (sel_of v h)) let vdep_hp v p = sdep (hp_of v) (vdep_hp_payload v p) let interp_vdep_hp v p m = interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g () let vdep_sel' (v: vprop) (p: t_of v -> Tot vprop) : Tot (selector' (vdep_t v p) (vdep_hp v p)) = fun (m: Mem.hmem (vdep_hp v p)) -> interp_vdep_hp v p m; let x = sel_of v m in let y = sel_of (p (sel_of v m)) m in (| x, y |)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> Steel.Effect.Common.selector (Steel.Effect.Common.vdep_t v p) (Steel.Effect.Common.vdep_hp v p)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.vdep_sel'", "Prims.unit", "FStar.Classical.forall_intro_2", "Steel.Memory.mem", "Prims.l_imp", "Steel.Memory.disjoint", "Prims.l_and", "Prims.eq2", "Steel.Memory.join", "FStar.Classical.move_requires_2", "Steel.Memory.join_commutative", "Steel.Effect.Common.selector", "Steel.Effect.Common.vdep_t", "Steel.Effect.Common.vdep_hp" ]
[]
false
false
false
false
false
let vdep_sel v p =
Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0: mem) (m1: mem) -> (join_commutative m0) m1)); vdep_sel' v p
false
FStar.OrdMap.fst
FStar.OrdMap.empty
val empty : #key:eqtype -> #value:Type -> #f:cmp key -> Tot (ordmap key value f)
val empty : #key:eqtype -> #value:Type -> #f:cmp key -> Tot (ordmap key value f)
let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 12, "end_line": 32, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.OrdMap.ordmap key value f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.Mk_map", "FStar.FunctionalExtensionality.restricted_t", "FStar.Pervasives.Native.option", "FStar.FunctionalExtensionality.on_dom", "FStar.Pervasives.Native.None", "FStar.OrdSet.ordset", "FStar.OrdSet.empty", "FStar.OrdMap.ordmap" ]
[]
false
false
false
false
false
let empty (#k: eqtype) (#v: Type) #f =
let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g
false
Steel.ST.Array.fst
Steel.ST.Array.ptrdiff
val ptrdiff (#t:_) (#p0 #p1:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (a0:array t) (a1:array t) : ST UP.t (pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (base (ptr_of a0) == base (ptr_of a1) /\ UP.fits (offset (ptr_of a0) - offset (ptr_of a1))) (fun r -> UP.v r == offset (ptr_of a0) - offset (ptr_of a1))
val ptrdiff (#t:_) (#p0 #p1:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (a0:array t) (a1:array t) : ST UP.t (pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (base (ptr_of a0) == base (ptr_of a1) /\ UP.fits (offset (ptr_of a0) - offset (ptr_of a1))) (fun r -> UP.v r == offset (ptr_of a0) - offset (ptr_of a1))
let ptrdiff #_ #p0 #p1 #s0 #s1 a0 a1 = rewrite (pts_to a0 _ _) (H.pts_to a0 p0 (seq_map raise s0)); rewrite (pts_to a1 _ _) (H.pts_to a1 p1 (seq_map raise s1)); let res = H.ptrdiff a0 a1 in rewrite (H.pts_to a1 _ _) (pts_to a1 _ _); rewrite (H.pts_to a0 _ _) (pts_to a0 _ _); return res
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 12, "end_line": 556, "start_col": 0, "start_line": 542 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x) let gather #_ #_ a #x1 p1 #x2 p2 = rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _) let index #_ #p a #s i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise s)); let res = H.index a i in rewrite (H.pts_to _ _ _) (pts_to _ _ _); return (lower res) let upd #_ a #s i v = rewrite (pts_to a _ _) (H.pts_to a P.full_perm (seq_map raise s)); H.upd a i (raise v); assert (seq_map raise (Seq.upd s (US.v i) v) `Seq.equal` Seq.upd (seq_map raise s) (US.v i) (raise v)); rewrite (H.pts_to _ _ _) (pts_to _ _ _) let ghost_join #_ #_ #x1 #x2 #p a1 a2 h = rewrite (pts_to a1 _ _) (H.pts_to a1 p (seq_map raise x1)); rewrite (pts_to a2 _ _) (H.pts_to a2 p (seq_map raise x2)); H.ghost_join a1 a2 h; assert (seq_map raise (x1 `Seq.append` x2) `Seq.equal` (seq_map raise x1 `Seq.append` seq_map raise x2)); rewrite (H.pts_to _ _ _) (H.pts_to (merge a1 a2) p (seq_map raise (x1 `Seq.append` x2))); rewrite (H.pts_to _ _ _) (pts_to (merge a1 a2) _ _) let ptr_shift p off = H.ptr_shift p off let ghost_split #_ #_ #x #p a i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); let _ = H.ghost_split a i in //H.ghost_split a i; assert (seq_map raise (Seq.slice x 0 (US.v i)) `Seq.equal` Seq.slice (seq_map raise x) 0 (US.v i)); rewrite (H.pts_to (H.split_l a i) _ _) (H.pts_to (split_l a i) p (seq_map raise (Seq.slice x 0 (US.v i)))); rewrite (H.pts_to (split_l a i) _ _) (pts_to (split_l a i) _ _); assert (seq_map raise (Seq.slice x (US.v i) (Seq.length x)) `Seq.equal` Seq.slice (seq_map raise x) (US.v i) (Seq.length (seq_map raise x))); Seq.lemma_split x (US.v i); rewrite (H.pts_to (H.split_r a i) _ _) (H.pts_to (split_r a i) p (seq_map raise (Seq.slice x (US.v i) (Seq.length x)))); rewrite (H.pts_to (split_r a i) _ _) (pts_to (split_r a i) _ _) let memcpy a0 a1 l = H.memcpy a0 a1 l //////////////////////////////////////////////////////////////////////////////// // compare //////////////////////////////////////////////////////////////////////////////// module R = Steel.ST.Reference #push-options "--fuel 0 --ifuel 1 --z3rlimit_factor 2" let equal_up_to #t (s0: Seq.seq t) (s1: Seq.seq t) (v : option US.t) : prop = Seq.length s0 = Seq.length s1 /\ (match v with | None -> Ghost.reveal s0 =!= Ghost.reveal s1 | Some v -> US.v v <= Seq.length s0 /\ Seq.slice s0 0 (US.v v) `Seq.equal` Seq.slice s1 0 (US.v v)) let within_bounds (x:option US.t) (l:US.t) (b:Ghost.erased bool) : prop = if b then Some? x /\ US.(Some?.v x <^ l) else None? x \/ US.(Some?.v x >=^ l) let compare_inv (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (s0: Seq.seq t) (s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (b: bool) = pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (x:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x) `star` pure (within_bounds x l b)) let elim_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (b: bool) : STGhostT (Ghost.erased (option US.t)) o (compare_inv a0 a1 s0 s1 l ctr b) (fun x -> let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x) `star` pure (within_bounds x l b)) = let open US in assert_spinoff ((compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr b) == (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l b)))); rewrite (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr b) (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l b))); let _v = elim_exists () in _v let intro_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (x: Ghost.erased (option US.t)) (b:bool { within_bounds x l b }) : STGhostT unit o (let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x)) (fun _ -> compare_inv a0 a1 s0 s1 l ctr (Ghost.hide b)) = let open US in intro_pure (within_bounds x l (Ghost.hide b)); intro_exists_erased x (fun (x:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x) `star` pure (within_bounds x l (Ghost.hide b))); assert_norm ((compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide b)) == (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l (Ghost.hide b))))); rewrite (pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` exists_ (fun (v:option US.t) -> R.pts_to ctr Steel.FractionalPermission.full_perm v `star` pure (equal_up_to s0 s1 v) `star` pure (within_bounds v l (Ghost.hide b)))) (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide b)) let intro_exists_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) (x: Ghost.erased (option US.t)) : STGhostT unit o (let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm x `star` pure (equal_up_to s0 s1 x)) (fun _ -> exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) = let b : bool = match Ghost.reveal x with | None -> false | Some x -> US.(x <^ l) in assert (within_bounds x l b); intro_compare_inv #_ #_ #p0 #p1 a0 a1 #s0 #s1 l ctr x b; intro_exists _ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr) let extend_equal_up_to_lemma (#t:Type0) (s0:Seq.seq t) (s1:Seq.seq t) (i:nat{ i < Seq.length s0 /\ Seq.length s0 == Seq.length s1 }) : Lemma (requires Seq.equal (Seq.slice s0 0 i) (Seq.slice s1 0 i) /\ Seq.index s0 i == Seq.index s1 i) (ensures Seq.equal (Seq.slice s0 0 (i + 1)) (Seq.slice s1 0 (i + 1))) = assert (forall k. k < i ==> Seq.index s0 k == Seq.index (Seq.slice s0 0 i) k /\ Seq.index s1 k == Seq.index (Seq.slice s1 0 i) k) let extend_equal_up_to (#o:_) (#t:Type0) (#s0:Seq.seq t) (#s1:Seq.seq t) (len:US.t) (i:US.t{ Seq.length s0 == Seq.length s1 /\ US.(i <^ len) /\ US.v len == Seq.length s0 } ) : STGhost unit o (pure (equal_up_to s0 s1 (Some i))) (fun _ -> pure (equal_up_to s0 s1 (Some US.(i +^ 1sz)))) (requires Seq.index s0 (US.v i) == Seq.index s1 (US.v i)) (ensures fun _ -> True) = elim_pure _; extend_equal_up_to_lemma s0 s1 (US.v i); intro_pure (equal_up_to s0 s1 (Some US.(i +^ 1sz))) let extend_equal_up_to_neg (#o:_) (#t:Type0) (#s0:Seq.seq t) (#s1:Seq.seq t) (len:US.t) (i:US.t{ Seq.length s0 == Seq.length s1 /\ US.(i <^ len) /\ US.v len == Seq.length s0 } ) : STGhost unit o (pure (equal_up_to s0 s1 (Some i))) (fun _ -> pure (equal_up_to s0 s1 None)) (requires Seq.index s0 (US.v i) =!= Seq.index s1 (US.v i)) (ensures fun _ -> True) = elim_pure _; intro_pure _ let init_compare_inv #o (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Seq.seq t) (#s1: Seq.seq t) (l:US.t) (ctr : R.ref (option US.t)) : STGhost unit o (let open US in pts_to a0 p0 s0 `star` pts_to a1 p1 s1 `star` R.pts_to ctr Steel.FractionalPermission.full_perm (Some 0sz)) (fun _ -> exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) (requires ( length a0 > 0 /\ length a0 == length a1 /\ US.v l == length a0 )) (ensures (fun _ -> True)) = pts_to_length a0 _; pts_to_length a1 _; intro_pure (equal_up_to s0 s1 (Ghost.hide (Some 0sz))); rewrite (R.pts_to ctr Steel.FractionalPermission.full_perm (Some 0sz)) (R.pts_to ctr Steel.FractionalPermission.full_perm (Ghost.hide (Some 0sz))); intro_exists_compare_inv a0 a1 l ctr (Ghost.hide (Some 0sz)) let compare_pts (#t:eqtype) (#p0 #p1:perm) (a0 a1:array t) (#s0: Ghost.erased (Seq.seq t)) (#s1: Ghost.erased (Seq.seq t)) (l:US.t) : ST bool (pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 p1 s1) (requires length a0 > 0 /\ length a0 == length a1 /\ US.v l == length a0 ) (ensures fun b -> b = (Ghost.reveal s0 = Ghost.reveal s1)) = pts_to_length a0 _; pts_to_length a1 _; let ctr = R.alloc (Some 0sz) in let cond () : STT bool (exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) (fun b -> compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide b)) = let _b = elim_exists () in let _ = elim_compare_inv _ _ _ _ _ in let x = R.read ctr in elim_pure (within_bounds _ _ _); match x with | None -> intro_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr _ false; return false | Some x -> let res = US.(x <^ l) in intro_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr _ res; return res in let body () : STT unit (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr (Ghost.hide true)) (fun _ -> exists_ (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr)) = let _i = elim_compare_inv _ _ _ _ _ in elim_pure (within_bounds _ _ _); let Some i = R.read ctr in assert_spinoff ((pure (equal_up_to s0 s1 _i)) == (pure (equal_up_to s0 s1 (Some i)))); rewrite (pure (equal_up_to s0 s1 _i)) (pure (equal_up_to s0 s1 (Some i))); let v0 = index a0 i in let v1 = index a1 i in if v0 = v1 then ( R.write ctr (Some US.(i +^ 1sz)); extend_equal_up_to l i; intro_exists_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr (Ghost.hide (Some (US.(i +^ 1sz)))) ) else ( R.write ctr None; extend_equal_up_to_neg l i; intro_exists_compare_inv #_ #_ #p0 #p1 a0 a1 l ctr (Ghost.hide None) ) in init_compare_inv a0 a1 l ctr; Steel.ST.Loops.while_loop (compare_inv #_ #p0 #p1 a0 a1 s0 s1 l ctr) cond body; let _ = elim_compare_inv _ _ _ _ _ in elim_pure (equal_up_to _ _ _); let v = R.read ctr in R.free ctr; elim_pure (within_bounds _ _ _); match v with | None -> return false | Some _ -> return true let compare #t #p0 #p1 a0 a1 #s0 #s1 l = pts_to_length a0 _; pts_to_length a1 _; if l = 0sz then ( assert (Seq.equal s0 s1); return true ) else ( compare_pts a0 a1 l ) #pop-options let intro_fits_u32 () = H.intro_fits_u32 () let intro_fits_u64 () = H.intro_fits_u64 () let intro_fits_ptrdiff32 () = H.intro_fits_ptrdiff32 () let intro_fits_ptrdiff64 () = H.intro_fits_ptrdiff64 ()
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.Reference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Steel.ST.Array.array t -> a1: Steel.ST.Array.array t -> Steel.ST.Effect.ST FStar.PtrdiffT.t
Steel.ST.Effect.ST
[]
[]
[ "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.Array.array", "Steel.ST.Util.return", "FStar.PtrdiffT.t", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.ST.Array.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.pts_to", "Steel.ST.Array.raise_t", "Steel.ST.Array.seq_map", "Steel.ST.Array.raise", "Steel.ST.HigherArray.ptrdiff" ]
[]
false
true
false
false
false
let ptrdiff #_ #p0 #p1 #s0 #s1 a0 a1 =
rewrite (pts_to a0 _ _) (H.pts_to a0 p0 (seq_map raise s0)); rewrite (pts_to a1 _ _) (H.pts_to a1 p1 (seq_map raise s1)); let res = H.ptrdiff a0 a1 in rewrite (H.pts_to a1 _ _) (pts_to a1 _ _); rewrite (H.pts_to a0 _ _) (pts_to a0 _ _); return res
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.op_String_Access
val op_String_Access : s: Lib.Sequence.lseq a len -> i: (n: Prims.nat{n <= Prims.pow2 32 - 1}){i < len} -> r: a{r == FStar.Seq.Base.index (Lib.Sequence.to_seq s) i}
let op_String_Access #a #len = LSeq.index #a #len
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 46, "start_col": 0, "start_line": 46 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s)
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Lib.Sequence.lseq a len -> i: (n: Prims.nat{n <= Prims.pow2 32 - 1}){i < len} -> r: a{r == FStar.Seq.Base.index (Lib.Sequence.to_seq s) i}
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Lib.Sequence.index", "Lib.Sequence.lseq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.to_seq" ]
[]
false
false
false
false
false
let ( .[] ) #a #len =
LSeq.index #a #len
false
FStar.OrdMap.fst
FStar.OrdMap.insert
val insert : x: a -> s: FStar.OrdSet.ordset a f -> FStar.OrdSet.ordset a f
let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 90, "end_line": 40, "start_col": 0, "start_line": 40 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.union", "FStar.OrdSet.singleton" ]
[]
false
false
false
false
false
let insert (#a: eqtype) (#f: cmp a) (x: a) (s: ordset a f) =
union #a #f (singleton #a #f x) s
false
FStar.OrdMap.fst
FStar.OrdMap.const_on
val const_on: #key:eqtype -> #value:Type -> #f:cmp key -> d:ordset key f -> x:value -> Tot (ordmap key value f)
val const_on: #key:eqtype -> #value:Type -> #f:cmp key -> d:ordset key f -> x:value -> Tot (ordmap key value f)
let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 12, "end_line": 36, "start_col": 0, "start_line": 34 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: FStar.OrdSet.ordset key f -> x: value -> FStar.OrdMap.ordmap key value f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdMap.Mk_map", "FStar.FunctionalExtensionality.restricted_t", "FStar.Pervasives.Native.option", "FStar.FunctionalExtensionality.on_dom", "FStar.OrdSet.mem", "FStar.Pervasives.Native.Some", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.OrdMap.ordmap" ]
[]
false
false
false
false
false
let const_on (#k: eqtype) (#v: Type) #f d x =
let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g
false
FStar.OrdMap.fst
FStar.OrdMap.contains
val contains: #key:eqtype -> #value:Type -> #f:cmp key -> key -> ordmap key value f -> Tot bool
val contains: #key:eqtype -> #value:Type -> #f:cmp key -> key -> ordmap key value f -> Tot bool
let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m)
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 47, "start_col": 0, "start_line": 47 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: key -> m: FStar.OrdMap.ordmap key value f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.mem", "FStar.OrdMap.__proj__Mk_map__item__d", "Prims.bool" ]
[]
false
false
false
false
false
let contains (#k: eqtype) (#v: Type) #f x m =
mem x (Mk_map?.d m)
false
Steel.Effect.Common.fst
Steel.Effect.Common.vrefine_sel'
val vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p))
val vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p))
let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 129, "start_col": 0, "start_line": 125 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Prims.prop) -> Steel.Effect.Common.selector' (Steel.Effect.Common.vrefine_t v p) (Steel.Effect.Common.vrefine_hp v p)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.hmem", "Steel.Effect.Common.vrefine_hp", "Steel.Effect.Common.sel_of", "Prims.unit", "Steel.Memory.interp_refine_slprop", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.vrefine_am", "Steel.Effect.Common.vrefine_t", "Steel.Effect.Common.selector'" ]
[]
false
false
false
false
false
let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) =
fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h
false
FStar.OrdMap.fst
FStar.OrdMap.select
val select : #key:eqtype -> #value:Type -> #f:cmp key -> k:key -> m:ordmap key value f -> Tot (option value)
val select : #key:eqtype -> #value:Type -> #f:cmp key -> k:key -> m:ordmap key value f -> Tot (option value)
let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 38, "start_col": 0, "start_line": 38 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: key -> m: FStar.OrdMap.ordmap key value f -> FStar.Pervasives.Native.option value
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdMap.__proj__Mk_map__item__m", "FStar.Pervasives.Native.option" ]
[]
false
false
false
false
false
let select (#k: eqtype) (#v: Type) #f x m =
(Mk_map?.m m) x
false
Steel.Effect.Common.fst
Steel.Effect.Common.interp_vdep_hp
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma (interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
val interp_vdep_hp (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: mem) : Lemma (interp (vdep_hp v p) m <==> (interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m))
let interp_vdep_hp v p m = interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g ()
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 30, "end_line": 172, "start_col": 0, "start_line": 153 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p let vrefine_sel_eq v p m = () let vdep_hp_payload (v: vprop) (p: (t_of v -> Tot vprop)) (h: Mem.hmem (hp_of v)) : Tot slprop = hp_of (p (sel_of v h)) let vdep_hp v p = sdep (hp_of v) (vdep_hp_payload v p)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (ensures Steel.Memory.interp (Steel.Effect.Common.vdep_hp v p) m <==> Steel.Memory.interp (Steel.Effect.Common.hp_of v) m /\ Steel.Memory.interp (Steel.Memory.star (Steel.Effect.Common.hp_of v) (Steel.Effect.Common.hp_of (p (Steel.Effect.Common.sel_of v m)))) m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "FStar.Classical.move_requires", "Prims.unit", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.interp_star", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.sel_of", "Prims.logical", "Prims.l_and", "Steel.Memory.interp", "Steel.Memory.star", "Prims.prop", "Steel.Effect.Common.vdep_hp", "Steel.Memory.interp_sdep", "Steel.Effect.Common.vdep_hp_payload" ]
[]
false
false
true
false
false
let interp_vdep_hp v p m =
interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp ((hp_of v) `Mem.star` (hp_of (p (sel_of v m)))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g ()
false
FStar.OrdMap.fst
FStar.OrdMap.dom
val dom : #key:eqtype -> #value:Type -> #f:cmp key -> m:ordmap key value f -> Tot (ordset key f)
val dom : #key:eqtype -> #value:Type -> #f:cmp key -> m:ordmap key value f -> Tot (ordset key f)
let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m)
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 49, "start_col": 0, "start_line": 49 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.OrdMap.ordmap key value f -> FStar.OrdSet.ordset key f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdMap.__proj__Mk_map__item__d", "FStar.OrdSet.ordset" ]
[]
false
false
false
false
false
let dom (#k: eqtype) (#v: Type) #f m =
(Mk_map?.d m)
false
Steel.Effect.Common.fst
Steel.Effect.Common.vrewrite_sel
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
val vrewrite_sel (v: vprop) (#t: Type) (f: (normal (t_of v) -> GTot t)) : Tot (selector t (normal (hp_of v)))
let vrewrite_sel v #t f = (fun (h: Mem.hmem (normal (hp_of v))) -> f ((normal (sel_of v) <: selector' _ _) h))
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 86, "end_line": 198, "start_col": 0, "start_line": 195 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p let vrefine_sel_eq v p m = () let vdep_hp_payload (v: vprop) (p: (t_of v -> Tot vprop)) (h: Mem.hmem (hp_of v)) : Tot slprop = hp_of (p (sel_of v h)) let vdep_hp v p = sdep (hp_of v) (vdep_hp_payload v p) let interp_vdep_hp v p m = interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g () let vdep_sel' (v: vprop) (p: t_of v -> Tot vprop) : Tot (selector' (vdep_t v p) (vdep_hp v p)) = fun (m: Mem.hmem (vdep_hp v p)) -> interp_vdep_hp v p m; let x = sel_of v m in let y = sel_of (p (sel_of v m)) m in (| x, y |) let vdep_sel v p = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); vdep_sel' v p let vdep_sel_eq v p m = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> f: (_: Steel.Effect.Common.normal (Steel.Effect.Common.t_of v) -> Prims.GTot t) -> Steel.Effect.Common.selector t (Steel.Effect.Common.normal (Steel.Effect.Common.hp_of v))
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Steel.Memory.hmem", "Steel.Memory.slprop", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.selector'", "Steel.Effect.Common.sel_of" ]
[]
false
false
false
false
false
let vrewrite_sel v #t f =
(fun (h: Mem.hmem (normal (hp_of v))) -> f ((normal (sel_of v) <: selector' _ _) h))
false
FStar.OrdMap.fst
FStar.OrdMap.remove
val remove : #key:eqtype -> #value:Type -> #f:cmp key -> key -> ordmap key value f -> Tot (ordmap key value f)
val remove : #key:eqtype -> #value:Type -> #f:cmp key -> key -> ordmap key value f -> Tot (ordmap key value f)
let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g'
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 54, "start_col": 0, "start_line": 51 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: key -> m: FStar.OrdMap.ordmap key value f -> FStar.OrdMap.ordmap key value f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdMap.Mk_map", "FStar.FunctionalExtensionality.restricted_t", "FStar.Pervasives.Native.option", "FStar.FunctionalExtensionality.on_dom", "Prims.op_Equality", "FStar.Pervasives.Native.None", "Prims.bool", "FStar.OrdMap.__proj__Mk_map__item__m", "FStar.OrdSet.ordset", "FStar.OrdSet.remove", "FStar.OrdMap.__proj__Mk_map__item__d" ]
[]
false
false
false
false
false
let remove (#k: eqtype) (#v: Type) #f x m =
let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g'
false
FStar.OrdMap.fst
FStar.OrdMap.update
val update : #key:eqtype -> #value:Type -> #f:cmp key -> key -> value -> m:ordmap key value f -> Tot (ordmap key value f)
val update : #key:eqtype -> #value:Type -> #f:cmp key -> key -> value -> m:ordmap key value f -> Tot (ordmap key value f)
let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g'
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 45, "start_col": 0, "start_line": 42 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: key -> y: value -> m: FStar.OrdMap.ordmap key value f -> FStar.OrdMap.ordmap key value f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdMap.Mk_map", "FStar.FunctionalExtensionality.restricted_t", "FStar.Pervasives.Native.option", "FStar.FunctionalExtensionality.on_dom", "Prims.op_Equality", "FStar.Pervasives.Native.Some", "Prims.bool", "FStar.OrdMap.__proj__Mk_map__item__m", "FStar.OrdSet.ordset", "FStar.OrdMap.insert", "FStar.OrdMap.__proj__Mk_map__item__d" ]
[]
false
false
false
false
false
let update (#k: eqtype) (#v: Type) #f x y m =
let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x': k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g'
false
Steel.Effect.Common.fst
Steel.Effect.Common.emp_unit_variant
val emp_unit_variant (p:vprop) : Lemma (ensures can_be_split p (p `star` emp))
val emp_unit_variant (p:vprop) : Lemma (ensures can_be_split p (p `star` emp))
let emp_unit_variant p = Mem.emp_unit (hp_of p)
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 47, "end_line": 207, "start_col": 0, "start_line": 207 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p let vrefine_sel_eq v p m = () let vdep_hp_payload (v: vprop) (p: (t_of v -> Tot vprop)) (h: Mem.hmem (hp_of v)) : Tot slprop = hp_of (p (sel_of v h)) let vdep_hp v p = sdep (hp_of v) (vdep_hp_payload v p) let interp_vdep_hp v p m = interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g () let vdep_sel' (v: vprop) (p: t_of v -> Tot vprop) : Tot (selector' (vdep_t v p) (vdep_hp v p)) = fun (m: Mem.hmem (vdep_hp v p)) -> interp_vdep_hp v p m; let x = sel_of v m in let y = sel_of (p (sel_of v m)) m in (| x, y |) let vdep_sel v p = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); vdep_sel' v p let vdep_sel_eq v p m = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); () let vrewrite_sel v #t f = (fun (h: Mem.hmem (normal (hp_of v))) -> f ((normal (sel_of v) <: selector' _ _) h)) let vrewrite_sel_eq v #t f h = () let solve_can_be_split_for _ = () let solve_can_be_split_lookup = ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived.Lemmas", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.can_be_split p (Steel.Effect.Common.star p Steel.Effect.Common.emp) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.emp_unit", "Steel.Effect.Common.hp_of", "Prims.unit" ]
[]
true
false
true
false
false
let emp_unit_variant p =
Mem.emp_unit (hp_of p)
false
Steel.Effect.Common.fst
Steel.Effect.Common.vdep_sel_eq
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma ( interp (hp_of v) m /\ begin let x = sel_of v m in interp (hp_of (p x)) m /\ vdep_sel v p m == (| x, sel_of (p x) m |) end )
val vdep_sel_eq (v: vprop) (p: ( (t_of v) -> Tot vprop)) (m: Mem.hmem (vdep_hp v p)) : Lemma ( interp (hp_of v) m /\ begin let x = sel_of v m in interp (hp_of (p x)) m /\ vdep_sel v p m == (| x, sel_of (p x) m |) end )
let vdep_sel_eq v p m = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); ()
{ "file_name": "lib/steel/Steel.Effect.Common.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 193, "start_col": 0, "start_line": 190 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Common module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality let h_exists #a f = VUnit ({hp = Mem.h_exists (fun x -> hp_of (f x)); t = unit; sel = fun _ -> ()}) let can_be_split (p q:vprop) : prop = Mem.slimp (hp_of p) (hp_of q) let reveal_can_be_split () = () let can_be_split_interp r r' h = () let can_be_split_trans p q r = () let can_be_split_star_l p q = () let can_be_split_star_r p q = () let can_be_split_refl p = () let can_be_split_congr_l p q r = Classical.forall_intro (interp_star (hp_of p) (hp_of r)); Classical.forall_intro (interp_star (hp_of q) (hp_of r)) let can_be_split_congr_r p q r = Classical.forall_intro (interp_star (hp_of r) (hp_of p)); Classical.forall_intro (interp_star (hp_of r) (hp_of q)) let equiv (p q:vprop) : prop = Mem.equiv (hp_of p) (hp_of q) /\ True let reveal_equiv p q = () let valid_rmem (#frame:vprop) (h:rmem' frame) : prop = forall (p p1 p2:vprop). can_be_split frame p /\ p == VStar p1 p2 ==> (h p1, h p2) == h (VStar p1 p2) let lemma_valid_mk_rmem (r:vprop) (h:hmem r) = () let reveal_mk_rmem (r:vprop) (h:hmem r) (r0:vprop{r `can_be_split` r0}) : Lemma ((mk_rmem r h) r0 == sel_of r0 h) = FExt.feq_on_domain_g (unrestricted_mk_rmem r h) let emp':vprop' = { hp = emp; t = unit; sel = fun _ -> ()} let emp = VUnit emp' let reveal_emp () = () let lemma_valid_focus_rmem #r h r0 = Classical.forall_intro (Classical.move_requires (can_be_split_trans r r0)) let rec lemma_frame_refl' (frame:vprop) (h0:rmem frame) (h1:rmem frame) : Lemma ((h0 frame == h1 frame) <==> frame_equalities' frame h0 h1) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h01 : rmem p1 = focus_rmem h0 p1 in let h11 : rmem p1 = focus_rmem h1 p1 in let h02 = focus_rmem h0 p2 in let h12 = focus_rmem h1 p2 in lemma_frame_refl' p1 h01 h11; lemma_frame_refl' p2 h02 h12 let lemma_frame_equalities frame h0 h1 p = let p1 : prop = h0 frame == h1 frame in let p2 : prop = frame_equalities' frame h0 h1 in lemma_frame_refl' frame h0 h1; FStar.PropositionalExtensionality.apply p1 p2 let lemma_frame_emp h0 h1 p = FStar.PropositionalExtensionality.apply True (h0 (VUnit emp') == h1 (VUnit emp')) let elim_conjunction p1 p1' p2 p2' = () let can_be_split_dep_refl p = () let equiv_can_be_split p1 p2 = () let intro_can_be_split_frame p q frame = () let can_be_split_post_elim t1 t2 = () let equiv_forall_refl t = () let equiv_forall_elim t1 t2 = () let equiv_refl x = () let equiv_sym x y = () let equiv_trans x y z = () let cm_identity x = Mem.emp_unit (hp_of x); Mem.star_commutative (hp_of x) Mem.emp let star_commutative p1 p2 = Mem.star_commutative (hp_of p1) (hp_of p2) let star_associative p1 p2 p3 = Mem.star_associative (hp_of p1) (hp_of p2) (hp_of p3) let star_congruence p1 p2 p3 p4 = Mem.star_congruence (hp_of p1) (hp_of p2) (hp_of p3) (hp_of p4) let vrefine_am (v: vprop) (p: (t_of v -> Tot prop)) : Tot (a_mem_prop (hp_of v)) = fun h -> p (sel_of v h) let vrefine_hp v p = refine_slprop (hp_of v) (vrefine_am v p) let interp_vrefine_hp v p m = () let vrefine_sel' (v: vprop) (p: (t_of v -> Tot prop)) : Tot (selector' (vrefine_t v p) (vrefine_hp v p)) = fun (h: Mem.hmem (vrefine_hp v p)) -> interp_refine_slprop (hp_of v) (vrefine_am v p) h; sel_of v h let vrefine_sel v p = assert (sel_depends_only_on (vrefine_sel' v p)); assert (sel_depends_only_on_core (vrefine_sel' v p)); vrefine_sel' v p let vrefine_sel_eq v p m = () let vdep_hp_payload (v: vprop) (p: (t_of v -> Tot vprop)) (h: Mem.hmem (hp_of v)) : Tot slprop = hp_of (p (sel_of v h)) let vdep_hp v p = sdep (hp_of v) (vdep_hp_payload v p) let interp_vdep_hp v p m = interp_sdep (hp_of v) (vdep_hp_payload v p) m; let left = interp (vdep_hp v p) m in let right = interp (hp_of v) m /\ interp (hp_of v `Mem.star` hp_of (p (sel_of v m))) m in let f () : Lemma (requires left) (ensures right) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in let g () : Lemma (requires right) (ensures left) = interp_star (hp_of v) (hp_of (p (sel_of v m))) m in Classical.move_requires f (); Classical.move_requires g () let vdep_sel' (v: vprop) (p: t_of v -> Tot vprop) : Tot (selector' (vdep_t v p) (vdep_hp v p)) = fun (m: Mem.hmem (vdep_hp v p)) -> interp_vdep_hp v p m; let x = sel_of v m in let y = sel_of (p (sel_of v m)) m in (| x, y |) let vdep_sel v p = Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0 m1: mem) -> (join_commutative m0) m1)); vdep_sel' v p
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Common.fst" }
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Tactics.CanonCommMonoidSimple.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> m: Steel.Memory.hmem (Steel.Effect.Common.vdep_hp v p) -> FStar.Pervasives.Lemma (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of v) m /\ (let x = Steel.Effect.Common.sel_of v m in Steel.Memory.interp (Steel.Effect.Common.hp_of (p x)) m /\ Steel.Effect.Common.vdep_sel v p m == (| x, Steel.Effect.Common.sel_of (p x) m |)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Memory.hmem", "Steel.Effect.Common.vdep_hp", "Prims.unit", "FStar.Classical.forall_intro_2", "Steel.Memory.mem", "Prims.l_imp", "Steel.Memory.disjoint", "Prims.l_and", "Prims.eq2", "Steel.Memory.join", "FStar.Classical.move_requires_2", "Steel.Memory.join_commutative" ]
[]
false
false
true
false
false
let vdep_sel_eq v p m =
Classical.forall_intro_2 (Classical.move_requires_2 (fun (m0: mem) (m1: mem) -> (join_commutative m0) m1)); ()
false
FStar.OrdMap.fst
FStar.OrdMap.choose
val choose : #key:eqtype -> #value:Type -> #f:cmp key -> ordmap key value f -> Tot (option (key * value))
val choose : #key:eqtype -> #value:Type -> #f:cmp key -> ordmap key value f -> Tot (option (key * value))
let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x))
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 59, "start_col": 0, "start_line": 56 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.OrdMap.ordmap key value f -> FStar.Pervasives.Native.option (key * value)
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.choose", "FStar.OrdMap.__proj__Mk_map__item__d", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.OrdMap.__proj__Mk_map__item__m", "FStar.Pervasives.Native.option" ]
[]
false
false
false
false
false
let choose (#k: eqtype) (#v: Type) #f m =
match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x))
false
FStar.OrdMap.fst
FStar.OrdMap.size
val size : #key:eqtype -> #value:Type -> #f:cmp key -> ordmap key value f -> Tot nat
val size : #key:eqtype -> #value:Type -> #f:cmp key -> ordmap key value f -> Tot nat
let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m)
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 61, "start_col": 0, "start_line": 61 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.OrdMap.ordmap key value f -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.size", "FStar.OrdMap.__proj__Mk_map__item__d", "Prims.nat" ]
[]
false
false
false
false
false
let size (#k: eqtype) (#v: Type) #f m =
OrdSet.size (Mk_map?.d m)
false
LList2.fst
LList2.pllist_get
val pllist_get (#l: Ghost.erased (list U32.t)) (p: ref (scalar (ptr cell))) : STT (ptr cell) (pllist p l) (fun pc -> (pts_to p (mk_scalar (Ghost.reveal pc))) `star` (llist pc l))
val pllist_get (#l: Ghost.erased (list U32.t)) (p: ref (scalar (ptr cell))) : STT (ptr cell) (pllist p l) (fun pc -> (pts_to p (mk_scalar (Ghost.reveal pc))) `star` (llist pc l))
let pllist_get (#l: Ghost.erased (list U32.t)) (p: ref (scalar (ptr cell))) : STT (ptr cell) (pllist p l) (fun pc -> pts_to p (mk_scalar (Ghost.reveal pc)) `star` llist pc l) = rewrite (pllist p l) (pllist0 p l); let _ = gen_elim () in let pc = read p in vpattern_rewrite (fun x -> llist x l) pc; return pc
{ "file_name": "share/steel/examples/steelc/LList2.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 11, "end_line": 116, "start_col": 0, "start_line": 106 }
module LList2 open Steel.ST.GenElim open Steel.ST.C.Types open Steel.ST.C.Types.Struct.Aux open Steel.ST.C.Types.UserStruct // hides Struct module U32 = FStar.UInt32 noeq type cell_t = { hd: scalar_t U32.t; tl: scalar_t (ptr_gen cell_t); } noextract inline_for_extraction [@@ norm_field_attr] let cell_struct_def : struct_def cell_t = let fields = FStar.Set.add "hd" (FStar.Set.singleton "tl") in let field_desc : field_description_gen_t (field_t fields) = { fd_nonempty = nonempty_set_nonempty_type "hd" fields; fd_type = (fun (n: field_t fields) -> match n with "hd" -> scalar_t U32.t | "tl" -> scalar_t (ptr_gen cell_t)); fd_typedef = (fun (n: field_t fields) -> match n with "hd" -> scalar U32.t | "tl" -> scalar (ptr_gen cell_t)); } in { fields = fields; field_desc = field_desc; mk = (fun f -> Mkcell_t (f "hd") (f "tl")); get = (fun x (f: field_t fields) -> match f with "hd" -> x.hd | "tl" -> x.tl); get_mk = (fun _ _ -> ()); extensionality = (fun s1 s2 phi -> phi "hd"; phi "tl"); } noextract inline_for_extraction [@@ norm_field_attr] let cell = struct_typedef cell_struct_def [@@__reduce__] let llist_nil (p: ptr cell) : Tot vprop = pure (p == null _) [@@__reduce__] let llist_cons (p: ptr cell) (a: U32.t) (q: Ghost.erased (list U32.t)) (llist: (ptr cell -> (l: Ghost.erased (list U32.t) { List.Tot.length l < List.Tot.length (a :: q) }) -> Tot vprop)) : Tot vprop = exists_ (fun (p1: ref cell) -> exists_ (fun (p2: ptr cell) -> pts_to p1 ({ hd = mk_scalar a; tl = mk_scalar p2 }) `star` llist p2 q `star` freeable p1 `star` pure (p == p1) )) let rec llist (p: ptr cell) (l: Ghost.erased (list U32.t)) : Tot vprop (decreases (List.Tot.length l)) = match Ghost.reveal l with | [] -> llist_nil p | a :: q -> llist_cons p a q llist let intro_llist_cons (#opened: _) (p1: ref cell) (#v1: Ghost.erased (typeof cell)) (p2: ptr cell) (a: U32.t) (q: Ghost.erased (list U32.t)) : STGhost unit opened (pts_to p1 v1 `star` llist p2 q `star` freeable p1 ) (fun _ -> llist p1 (a :: q)) (Ghost.reveal v1 == ({ hd = mk_scalar a; tl = mk_scalar p2 })) (fun _ -> True) = noop (); rewrite_with_tactic (llist_cons p1 a q llist) (llist p1 (a :: q)) let elim_llist_cons (#opened: _) (p1: ptr cell) (a: U32.t) (q: Ghost.erased (list U32.t)) : STGhostT (p2: Ghost.erased (ptr cell) { ~ (p1 == null _) }) opened (llist p1 (a :: q)) (fun p2 -> pts_to p1 ({ hd = mk_scalar a; tl = mk_scalar (Ghost.reveal p2) }) `star` llist p2 q `star` freeable p1 ) = rewrite_with_tactic (llist p1 (a :: q)) (llist_cons p1 a q llist); let _ = gen_elim () in let p2' = vpattern_erased (fun x -> llist x q) in let p2 : (p2: Ghost.erased (ptr cell) { ~ (p1 == null _) }) = p2' in vpattern_rewrite (fun x -> llist x q) p2; rewrite (pts_to _ _) (pts_to _ _); rewrite (freeable _) (freeable _); _ [@@__reduce__] let pllist0 (p: ref (scalar (ptr cell))) (l: Ghost.erased (list U32.t)) : Tot vprop = exists_ (fun (pc: ptr cell) -> pts_to p (mk_scalar pc) `star` llist pc l ) let pllist (p: ref (scalar (ptr cell))) (l: Ghost.erased (list U32.t)) : Tot vprop = pllist0 p l
{ "checked_file": "/", "dependencies": [ "Steel.ST.GenElim.fsti.checked", "Steel.ST.C.Types.UserStruct.fsti.checked", "Steel.ST.C.Types.Struct.Aux.fsti.checked", "Steel.ST.C.Types.fst.checked", "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LList2.fst" }
[ { "abbrev": false, "full_module": "Steel.ST.C.Types.UserStruct // hides Struct", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.ST.C.Types.UserStruct", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.C.Types.Struct.Aux", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.ST.C.Types.Base.ref (Steel.ST.C.Types.Scalar.scalar (Steel.ST.C.Types.Base.ptr LList2.cell )) -> Steel.ST.Effect.STT (Steel.ST.C.Types.Base.ptr LList2.cell)
Steel.ST.Effect.STT
[]
[]
[ "FStar.Ghost.erased", "Prims.list", "FStar.UInt32.t", "Steel.ST.C.Types.Base.ref", "Steel.ST.C.Types.Scalar.scalar_t", "Steel.ST.C.Types.Base.ptr", "LList2.cell_t", "LList2.cell", "Steel.ST.C.Types.Scalar.scalar", "Steel.ST.Util.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "LList2.llist", "Steel.ST.C.Types.Base.pts_to", "Steel.ST.C.Types.Scalar.mk_scalar", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.ST.Util.vpattern_rewrite", "FStar.Ghost.reveal", "Steel.ST.C.Types.Scalar.read", "Steel.ST.GenElim.gen_elim", "Steel.ST.Util.exists_", "Prims.l_True", "Prims.prop", "Steel.ST.Util.rewrite", "LList2.pllist", "LList2.pllist0", "Steel.Effect.Common.star" ]
[]
false
true
false
false
false
let pllist_get (#l: Ghost.erased (list U32.t)) (p: ref (scalar (ptr cell))) : STT (ptr cell) (pllist p l) (fun pc -> (pts_to p (mk_scalar (Ghost.reveal pc))) `star` (llist pc l)) =
rewrite (pllist p l) (pllist0 p l); let _ = gen_elim () in let pc = read p in vpattern_rewrite (fun x -> llist x l) pc; return pc
false
FStar.OrdMap.fst
FStar.OrdMap.eq_lemma
val eq_lemma: #k:eqtype -> #v:Type -> #f:cmp k -> m1:ordmap k v f -> m2:ordmap k v f -> Lemma (requires (equal m1 m2)) (ensures (m1 == m2)) [SMTPat (equal m1 m2)]
val eq_lemma: #k:eqtype -> #v:Type -> #f:cmp k -> m1:ordmap k v f -> m2:ordmap k v f -> Lemma (requires (equal m1 m2)) (ensures (m1 == m2)) [SMTPat (equal m1 m2)]
let eq_lemma (#k:eqtype) (#v:Type) #f m1 m2 = let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in ()
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 73, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m) let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2 let eq_intro (#k:eqtype) (#v:Type) #f m1 m2 = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m1: FStar.OrdMap.ordmap k v f -> m2: FStar.OrdMap.ordmap k v f -> FStar.Pervasives.Lemma (requires FStar.OrdMap.equal m1 m2) (ensures m1 == m2) [SMTPat (FStar.OrdMap.equal m1 m2)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.ordset", "FStar.OrdMap.map_t", "Prims.unit", "FStar.OrdSet.eq_lemma", "Prims.cut", "FStar.FunctionalExtensionality.feq", "FStar.Pervasives.Native.option" ]
[]
false
false
true
false
false
let eq_lemma (#k: eqtype) (#v: Type) #f m1 m2 =
let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in ()
false
FStar.OrdMap.fst
FStar.OrdMap.equal
val equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) : prop
val equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) : prop
let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 64, "start_col": 0, "start_line": 63 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m1: FStar.OrdMap.ordmap k v f -> m2: FStar.OrdMap.ordmap k v f -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "Prims.l_Forall", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.OrdMap.select", "Prims.prop" ]
[]
false
false
false
false
true
let equal (#k: eqtype) (#v: Type) (#f: cmp k) (m1 m2: ordmap k v f) =
forall x. select #k #v #f x m1 == select #k #v #f x m2
false
FStar.OrdMap.fst
FStar.OrdMap.upd_order
val upd_order: #k:eqtype -> #v:Type -> #f:cmp k -> x:k -> y:v -> x':k -> y':v -> m:ordmap k v f -> Lemma (requires (x =!= x')) (ensures (equal (update #k #v #f x y (update #k #v #f x' y' m)) (update #k #v #f x' y' (update #k #v #f x y m)))) [SMTPat (update #k #v #f x y (update #k #v #f x' y' m))]
val upd_order: #k:eqtype -> #v:Type -> #f:cmp k -> x:k -> y:v -> x':k -> y':v -> m:ordmap k v f -> Lemma (requires (x =!= x')) (ensures (equal (update #k #v #f x y (update #k #v #f x' y' m)) (update #k #v #f x' y' (update #k #v #f x y m)))) [SMTPat (update #k #v #f x y (update #k #v #f x' y' m))]
let upd_order (#k:eqtype) (#v:Type) #f x y x' y' m = let (Mk_map s1 g1) = update #k #v #f x' y' (update #k #v #f x y m) in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x' y' m) in cut (feq g1 g2)
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 78, "start_col": 0, "start_line": 75 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m) let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2 let eq_intro (#k:eqtype) (#v:Type) #f m1 m2 = () let eq_lemma (#k:eqtype) (#v:Type) #f m1 m2 = let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: k -> y: v -> x': k -> y': v -> m: FStar.OrdMap.ordmap k v f -> FStar.Pervasives.Lemma (requires ~(x == x')) (ensures FStar.OrdMap.equal (FStar.OrdMap.update x y (FStar.OrdMap.update x' y' m)) (FStar.OrdMap.update x' y' (FStar.OrdMap.update x y m))) [SMTPat (FStar.OrdMap.update x y (FStar.OrdMap.update x' y' m))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.ordset", "FStar.OrdMap.map_t", "Prims.cut", "FStar.FunctionalExtensionality.feq", "FStar.Pervasives.Native.option", "Prims.unit", "FStar.OrdMap.update" ]
[]
false
false
true
false
false
let upd_order (#k: eqtype) (#v: Type) #f x y x' y' m =
let Mk_map s1 g1 = update #k #v #f x' y' (update #k #v #f x y m) in let Mk_map s2 g2 = update #k #v #f x y (update #k #v #f x' y' m) in cut (feq g1 g2)
false
FStar.OrdMap.fst
FStar.OrdMap.dom_empty_helper
val dom_empty_helper: #k:eqtype -> #v:Type -> #f:cmp k -> m:ordmap k v f -> Lemma (requires (True)) (ensures ((dom #k #v #f m = OrdSet.empty) ==> (m == empty #k #v #f)))
val dom_empty_helper: #k:eqtype -> #v:Type -> #f:cmp k -> m:ordmap k v f -> Lemma (requires (True)) (ensures ((dom #k #v #f m = OrdSet.empty) ==> (m == empty #k #v #f)))
let dom_empty_helper (#k:eqtype) (#v:Type) #f m = let (Mk_map s g) = m in if (not (s = OrdSet.empty)) then () else let (Mk_map s' g') = empty #k #v #f in cut (feq g g')
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 119, "start_col": 0, "start_line": 114 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m) let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2 let eq_intro (#k:eqtype) (#v:Type) #f m1 m2 = () let eq_lemma (#k:eqtype) (#v:Type) #f m1 m2 = let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in () let upd_order (#k:eqtype) (#v:Type) #f x y x' y' m = let (Mk_map s1 g1) = update #k #v #f x' y' (update #k #v #f x y m) in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x' y' m) in cut (feq g1 g2) let upd_same_k (#k:eqtype) (#v:Type) #f x y y' m = let (Mk_map s1 g1) = update #k #v #f x y m in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x y' m) in cut (feq g1 g2) let sel_upd1 (#k:eqtype) (#v:Type) #f x y m = () let sel_upd2 (#k:eqtype) (#v:Type) #f x y x' m = () let sel_empty (#k:eqtype) (#v:Type) #f x = () let sel_contains (#k:eqtype) (#v:Type) #f x m = () let contains_upd1 (#k:eqtype) (#v:Type) #f x y x' m = () let contains_upd2 (#k:eqtype) (#v:Type) #f x y x' m = () let contains_empty (#k:eqtype) (#v:Type) #f x = () let contains_remove (#k:eqtype) (#v:Type) #f x y m = () let eq_remove (#k:eqtype) (#v:Type) #f x m = let (Mk_map s g) = m in let m' = remove #k #v #f x m in let (Mk_map s' g') = m' in let _ = cut (feq g g') in () let choose_empty (#k:eqtype) (#v:Type) #f = () private val dom_empty_helper: #k:eqtype -> #v:Type -> #f:cmp k -> m:ordmap k v f -> Lemma (requires (True)) (ensures ((dom #k #v #f m = OrdSet.empty) ==>
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.OrdMap.ordmap k v f -> FStar.Pervasives.Lemma (ensures FStar.OrdMap.dom m = FStar.OrdSet.empty ==> m == FStar.OrdMap.empty)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.ordset", "FStar.OrdMap.map_t", "Prims.op_Negation", "Prims.op_Equality", "FStar.OrdSet.empty", "Prims.bool", "Prims.cut", "FStar.FunctionalExtensionality.feq", "FStar.Pervasives.Native.option", "Prims.unit", "FStar.OrdMap.empty" ]
[]
false
false
true
false
false
let dom_empty_helper (#k: eqtype) (#v: Type) #f m =
let Mk_map s g = m in if (not (s = OrdSet.empty)) then () else let Mk_map s' g' = empty #k #v #f in cut (feq g g')
false
FStar.OrdMap.fst
FStar.OrdMap.eq_remove
val eq_remove: #k:eqtype -> #v:Type -> #f:cmp k -> x:k -> m:ordmap k v f -> Lemma (requires (not (contains #k #v #f x m))) (ensures (equal m (remove #k #v #f x m))) [SMTPat (remove #k #v #f x m)]
val eq_remove: #k:eqtype -> #v:Type -> #f:cmp k -> x:k -> m:ordmap k v f -> Lemma (requires (not (contains #k #v #f x m))) (ensures (equal m (remove #k #v #f x m))) [SMTPat (remove #k #v #f x m)]
let eq_remove (#k:eqtype) (#v:Type) #f x m = let (Mk_map s g) = m in let m' = remove #k #v #f x m in let (Mk_map s' g') = m' in let _ = cut (feq g g') in ()
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 106, "start_col": 0, "start_line": 101 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m) let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2 let eq_intro (#k:eqtype) (#v:Type) #f m1 m2 = () let eq_lemma (#k:eqtype) (#v:Type) #f m1 m2 = let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in () let upd_order (#k:eqtype) (#v:Type) #f x y x' y' m = let (Mk_map s1 g1) = update #k #v #f x' y' (update #k #v #f x y m) in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x' y' m) in cut (feq g1 g2) let upd_same_k (#k:eqtype) (#v:Type) #f x y y' m = let (Mk_map s1 g1) = update #k #v #f x y m in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x y' m) in cut (feq g1 g2) let sel_upd1 (#k:eqtype) (#v:Type) #f x y m = () let sel_upd2 (#k:eqtype) (#v:Type) #f x y x' m = () let sel_empty (#k:eqtype) (#v:Type) #f x = () let sel_contains (#k:eqtype) (#v:Type) #f x m = () let contains_upd1 (#k:eqtype) (#v:Type) #f x y x' m = () let contains_upd2 (#k:eqtype) (#v:Type) #f x y x' m = () let contains_empty (#k:eqtype) (#v:Type) #f x = () let contains_remove (#k:eqtype) (#v:Type) #f x y m = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: k -> m: FStar.OrdMap.ordmap k v f -> FStar.Pervasives.Lemma (requires Prims.op_Negation (FStar.OrdMap.contains x m)) (ensures FStar.OrdMap.equal m (FStar.OrdMap.remove x m)) [SMTPat (FStar.OrdMap.remove x m)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.ordset", "FStar.OrdMap.map_t", "Prims.unit", "Prims.cut", "FStar.FunctionalExtensionality.feq", "FStar.Pervasives.Native.option", "FStar.OrdMap.remove" ]
[]
false
false
true
false
false
let eq_remove (#k: eqtype) (#v: Type) #f x m =
let Mk_map s g = m in let m' = remove #k #v #f x m in let Mk_map s' g' = m' in let _ = cut (feq g g') in ()
false
FStar.OrdMap.fst
FStar.OrdMap.upd_same_k
val upd_same_k: #k:eqtype -> #v:Type -> #f:cmp k -> x:k -> y:v -> y':v -> m:ordmap k v f -> Lemma (requires (True)) (ensures (equal (update #k #v #f x y (update #k #v #f x y' m)) (update #k #v #f x y m))) [SMTPat (update #k #v #f x y (update #k #v #f x y' m))]
val upd_same_k: #k:eqtype -> #v:Type -> #f:cmp k -> x:k -> y:v -> y':v -> m:ordmap k v f -> Lemma (requires (True)) (ensures (equal (update #k #v #f x y (update #k #v #f x y' m)) (update #k #v #f x y m))) [SMTPat (update #k #v #f x y (update #k #v #f x y' m))]
let upd_same_k (#k:eqtype) (#v:Type) #f x y y' m = let (Mk_map s1 g1) = update #k #v #f x y m in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x y' m) in cut (feq g1 g2)
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 83, "start_col": 0, "start_line": 80 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m) let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2 let eq_intro (#k:eqtype) (#v:Type) #f m1 m2 = () let eq_lemma (#k:eqtype) (#v:Type) #f m1 m2 = let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in () let upd_order (#k:eqtype) (#v:Type) #f x y x' y' m = let (Mk_map s1 g1) = update #k #v #f x' y' (update #k #v #f x y m) in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x' y' m) in cut (feq g1 g2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: k -> y: v -> y': v -> m: FStar.OrdMap.ordmap k v f -> FStar.Pervasives.Lemma (ensures FStar.OrdMap.equal (FStar.OrdMap.update x y (FStar.OrdMap.update x y' m)) (FStar.OrdMap.update x y m)) [SMTPat (FStar.OrdMap.update x y (FStar.OrdMap.update x y' m))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.ordset", "FStar.OrdMap.map_t", "Prims.cut", "FStar.FunctionalExtensionality.feq", "FStar.Pervasives.Native.option", "Prims.unit", "FStar.OrdMap.update" ]
[]
false
false
true
false
false
let upd_same_k (#k: eqtype) (#v: Type) #f x y y' m =
let Mk_map s1 g1 = update #k #v #f x y m in let Mk_map s2 g2 = update #k #v #f x y (update #k #v #f x y' m) in cut (feq g1 g2)
false
FStar.OrdMap.fst
FStar.OrdMap.choose_m
val choose_m: #k:eqtype -> #v:Type -> #f:cmp k -> m:ordmap k v f -> Lemma (requires (~ (equal m (empty #k #v #f)))) (ensures (Some? (choose #k #v #f m) /\ (select #k #v #f (fst (Some?.v (choose #k #v #f m))) m == Some (snd (Some?.v (choose #k #v #f m)))) /\ (equal m (update #k #v #f (fst (Some?.v (choose #k #v #f m))) (snd (Some?.v (choose #k #v #f m))) (remove #k #v #f (fst (Some?.v (choose #k #v #f m))) m))))) [SMTPat (choose #k #v #f m)]
val choose_m: #k:eqtype -> #v:Type -> #f:cmp k -> m:ordmap k v f -> Lemma (requires (~ (equal m (empty #k #v #f)))) (ensures (Some? (choose #k #v #f m) /\ (select #k #v #f (fst (Some?.v (choose #k #v #f m))) m == Some (snd (Some?.v (choose #k #v #f m)))) /\ (equal m (update #k #v #f (fst (Some?.v (choose #k #v #f m))) (snd (Some?.v (choose #k #v #f m))) (remove #k #v #f (fst (Some?.v (choose #k #v #f m))) m))))) [SMTPat (choose #k #v #f m)]
let choose_m (#k:eqtype) (#v:Type) #f m = dom_empty_helper #k #v #f m; let c = choose #k #v #f m in match c with | None -> () | Some (x, y) -> let m' = remove #k #v #f x m in let (Mk_map s' g') = m' in let (Mk_map s'' g'') = update #k #v #f x y m' in cut (feq (Mk_map?.m m) g'')
{ "file_name": "ulib/experimental/FStar.OrdMap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 130, "start_col": 0, "start_line": 121 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdMap open FStar.OrdSet open FStar.FunctionalExtensionality module F = FStar.FunctionalExtensionality let map_t (k:eqtype) (v:Type) (f:cmp k) (d:ordset k f) = g:F.restricted_t k (fun _ -> option v){forall x. mem x d == Some? (g x)} noeq type ordmap (k:eqtype) (v:Type) (f:cmp k) = | Mk_map: d:ordset k f -> m:map_t k v f d -> ordmap k v f let empty (#k:eqtype) (#v:Type) #f = let d = OrdSet.empty in let g = F.on_dom k (fun x -> None) in Mk_map d g let const_on (#k:eqtype) (#v:Type) #f d x = let g = F.on_dom k (fun y -> if mem y d then Some x else None) in Mk_map d g let select (#k:eqtype) (#v:Type) #f x m = (Mk_map?.m m) x let insert (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) = union #a #f (singleton #a #f x) s let update (#k:eqtype) (#v:Type) #f x y m = let s' = insert x (Mk_map?.d m) in let g' = F.on_dom k (fun (x':k) -> if x' = x then Some y else (Mk_map?.m m) x') in Mk_map s' g' let contains (#k:eqtype) (#v:Type) #f x m = mem x (Mk_map?.d m) let dom (#k:eqtype) (#v:Type) #f m = (Mk_map?.d m) let remove (#k:eqtype) (#v:Type) #f x m = let s' = remove x (Mk_map?.d m) in let g' = F.on_dom k (fun x' -> if x' = x then None else (Mk_map?.m m) x') in Mk_map s' g' let choose (#k:eqtype) (#v:Type) #f m = match OrdSet.choose (Mk_map?.d m) with | None -> None | Some x -> Some (x, Some?.v ((Mk_map?.m m) x)) let size (#k:eqtype) (#v:Type) #f m = OrdSet.size (Mk_map?.d m) let equal (#k:eqtype) (#v:Type) (#f:cmp k) (m1:ordmap k v f) (m2:ordmap k v f) = forall x. select #k #v #f x m1 == select #k #v #f x m2 let eq_intro (#k:eqtype) (#v:Type) #f m1 m2 = () let eq_lemma (#k:eqtype) (#v:Type) #f m1 m2 = let Mk_map s1 g1 = m1 in let Mk_map s2 g2 = m2 in let _ = cut (feq g1 g2) in let _ = OrdSet.eq_lemma s1 s2 in () let upd_order (#k:eqtype) (#v:Type) #f x y x' y' m = let (Mk_map s1 g1) = update #k #v #f x' y' (update #k #v #f x y m) in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x' y' m) in cut (feq g1 g2) let upd_same_k (#k:eqtype) (#v:Type) #f x y y' m = let (Mk_map s1 g1) = update #k #v #f x y m in let (Mk_map s2 g2) = update #k #v #f x y (update #k #v #f x y' m) in cut (feq g1 g2) let sel_upd1 (#k:eqtype) (#v:Type) #f x y m = () let sel_upd2 (#k:eqtype) (#v:Type) #f x y x' m = () let sel_empty (#k:eqtype) (#v:Type) #f x = () let sel_contains (#k:eqtype) (#v:Type) #f x m = () let contains_upd1 (#k:eqtype) (#v:Type) #f x y x' m = () let contains_upd2 (#k:eqtype) (#v:Type) #f x y x' m = () let contains_empty (#k:eqtype) (#v:Type) #f x = () let contains_remove (#k:eqtype) (#v:Type) #f x y m = () let eq_remove (#k:eqtype) (#v:Type) #f x m = let (Mk_map s g) = m in let m' = remove #k #v #f x m in let (Mk_map s' g') = m' in let _ = cut (feq g g') in () let choose_empty (#k:eqtype) (#v:Type) #f = () private val dom_empty_helper: #k:eqtype -> #v:Type -> #f:cmp k -> m:ordmap k v f -> Lemma (requires (True)) (ensures ((dom #k #v #f m = OrdSet.empty) ==> (m == empty #k #v #f))) let dom_empty_helper (#k:eqtype) (#v:Type) #f m = let (Mk_map s g) = m in if (not (s = OrdSet.empty)) then () else let (Mk_map s' g') = empty #k #v #f in cut (feq g g')
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdMap.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.OrdMap.ordmap k v f -> FStar.Pervasives.Lemma (requires ~(FStar.OrdMap.equal m FStar.OrdMap.empty)) (ensures Some? (FStar.OrdMap.choose m) /\ FStar.OrdMap.select (FStar.Pervasives.Native.fst (Some?.v (FStar.OrdMap.choose m))) m == FStar.Pervasives.Native.Some (FStar.Pervasives.Native.snd (Some?.v (FStar.OrdMap.choose m))) /\ FStar.OrdMap.equal m (FStar.OrdMap.update (FStar.Pervasives.Native.fst (Some?.v (FStar.OrdMap.choose m))) (FStar.Pervasives.Native.snd (Some?.v (FStar.OrdMap.choose m))) (FStar.OrdMap.remove (FStar.Pervasives.Native.fst (Some?.v (FStar.OrdMap.choose m))) m ))) [SMTPat (FStar.OrdMap.choose m)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdMap.ordmap", "FStar.OrdSet.ordset", "FStar.OrdMap.map_t", "Prims.cut", "FStar.FunctionalExtensionality.feq", "FStar.Pervasives.Native.option", "FStar.OrdMap.__proj__Mk_map__item__m", "Prims.unit", "FStar.OrdMap.update", "FStar.OrdMap.remove", "FStar.Pervasives.Native.tuple2", "FStar.OrdMap.choose", "FStar.OrdMap.dom_empty_helper" ]
[]
false
false
true
false
false
let choose_m (#k: eqtype) (#v: Type) #f m =
dom_empty_helper #k #v #f m; let c = choose #k #v #f m in match c with | None -> () | Some (x, y) -> let m' = remove #k #v #f x m in let Mk_map s' g' = m' in let Mk_map s'' g'' = update #k #v #f x y m' in cut (feq (Mk_map?.m m) g'')
false
CQueue.fst
CQueue.queue_is_empty
val queue_is_empty (#a: Type) (x: t a) (l: Ghost.erased (v a)) : Steel bool (queue x l) (fun _ -> queue x l) (requires (fun _ -> True)) (ensures (fun _ res _ -> res == Nil? (datas l) ))
val queue_is_empty (#a: Type) (x: t a) (l: Ghost.erased (v a)) : Steel bool (queue x l) (fun _ -> queue x l) (requires (fun _ -> True)) (ensures (fun _ res _ -> res == Nil? (datas l) ))
let queue_is_empty #a x l = let head0 = elim_queue_head x l in let head = read (cllist_head x) in let res = ccell_ptrvalue_is_null head in llist_fragment_head_is_nil l (cllist_head x) head0; intro_queue_head x l head0; return res
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 12, "end_line": 1331, "start_col": 0, "start_line": 1325 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x) [@@__steel_reduce__; __reduce__] let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b let vbind_hp // necessary to hide the attribute on hp_of (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) = hp_of (vbind0 a t b) let vbind_sel // same for hp_sel (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot (selector t (vbind_hp a t b)) = sel_of (vbind0 a t b) [@@__steel_reduce__] let vbind' (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot vprop' = { hp = vbind_hp a t b; t = t; sel = vbind_sel a t b; } [@@__steel_reduce__] let vbind (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = VUnit (vbind' a t b) let intro_vbind (#opened: _) (a: vprop) (b' : vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost unit opened (a `star` b') (fun _ -> vbind a t b) (fun h -> t_of b' == t /\ b' == b (h a)) (fun h _ h' -> t_of b' == t /\ b' == b (h a) /\ h' (vbind a t b) == h b' ) = intro_vpure (t == t_of b'); intro_vdep a (vpure (t == t_of b') `star` b') (vbind0_payload a t b); intro_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); change_slprop_rel (vbind0 a t b) (vbind a t b) (fun x y -> x == y) (fun _ -> ()) let elim_vbind (#opened: _) (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost (Ghost.erased (t_of a)) opened (vbind a t b) (fun res -> a `star` b (Ghost.reveal res)) (fun h -> True) (fun h res h' -> h' a == Ghost.reveal res /\ t == t_of (b (Ghost.reveal res)) /\ h' (b (Ghost.reveal res)) == h (vbind a t b) ) = change_slprop_rel (vbind a t b) (vbind0 a t b) (fun x y -> x == y) (fun _ -> ()); elim_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); let res = elim_vdep a (vbind0_payload a t b) in change_equal_slprop (vbind0_payload a t b (Ghost.reveal res)) (vpure (t == t_of (b (Ghost.reveal res))) `star` b (Ghost.reveal res)); elim_vpure (t == t_of (b (Ghost.reveal res))); res let (==) (#a:_) (x y: a) : prop = x == y let snoc_inj (#a: Type) (hd1 hd2: list a) (tl1 tl2: a) : Lemma (requires (hd1 `L.append` [tl1] == hd2 `L.append` [tl2])) (ensures (hd1 == hd2 /\ tl1 == tl2)) [SMTPat (hd1 `L.append` [tl1]); SMTPat (hd2 `L.append` [tl2])] = L.lemma_snoc_unsnoc (hd1, tl1); L.lemma_snoc_unsnoc (hd2, tl2) [@"opaque_to_smt"] let unsnoc (#a: Type) (l: list a) : Pure (list a & a) (requires (Cons? l)) (ensures (fun (hd, tl) -> l == hd `L.append` [tl] /\ L.length hd < L.length l)) = L.lemma_unsnoc_snoc l; L.append_length (fst (L.unsnoc l)) [snd (L.unsnoc l)]; L.unsnoc l let unsnoc_hd (#a: Type) (l: list a) : Pure (list a) (requires (Cons? l)) (ensures (fun l' -> L.length l' < L.length l)) = fst (unsnoc l) let unsnoc_tl (#a: Type) (l: list a) : Pure (a) (requires (Cons? l)) (ensures (fun _ -> True)) = snd (unsnoc l) [@@"opaque_to_smt"] let snoc (#a: Type) (l: list a) (x: a) : Pure (list a) (requires True) (ensures (fun l' -> Cons? l' /\ unsnoc_hd l' == l /\ unsnoc_tl l' == x )) = let l' = L.snoc (l, x) in L.append_length l [x]; snoc_inj l (unsnoc_hd l') x (unsnoc_tl l'); l' let snoc_unsnoc (#a: Type) (l: list a) : Lemma (requires (Cons? l)) (ensures (snoc (unsnoc_hd l) (unsnoc_tl l) == l)) = () unfold let coerce (#a: Type) (x: a) (b: Type) : Pure b (requires (a == b)) (ensures (fun y -> a == b /\ x == y)) = x (* END library *) let t a = cllist_lvalue a let v (a: Type0) = list a let datas (#a: Type0) (l: v a) : Tot (list a) = l (* view from the tail *) let llist_fragment_tail_cons_data_refine (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (d: a) : Tot prop = d == unsnoc_tl (Ghost.reveal l) [@@ __steel_reduce__] let llist_fragment_tail_cons_lvalue_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (c: ccell_lvalue a) : Tot vprop = vptr (ccell_data c) `vrefine` llist_fragment_tail_cons_data_refine l let ccell_is_lvalue_refine (a: Type) (c: ccell_ptrvalue a) : Tot prop = ccell_ptrvalue_is_null c == false [@@ __steel_reduce__ ] let llist_fragment_tail_cons_next_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (ptail: ref (ccell_ptrvalue a)) : Tot vprop = vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l [@@ __steel_reduce__ ] let llist_fragment_tail_cons_rewrite (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (llist_fragment_tail: vprop { t_of llist_fragment_tail == ref (ccell_ptrvalue a) }) (x: normal (t_of (llist_fragment_tail `vdep` (llist_fragment_tail_cons_next_payload l)))) : Tot (ref (ccell_ptrvalue a)) = let (| _, (| c, _ |) |) = x in ccell_next c let rec llist_fragment_tail (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Pure vprop (requires True) (ensures (fun v -> t_of v == ref (ccell_ptrvalue a))) (decreases (Ghost.reveal (L.length l))) = if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) let llist_fragment_tail_eq (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) = assert_norm (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) let llist_fragment_tail_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (requires (Cons? l)) (ensures (Cons? l /\ llist_fragment_tail l phead == ( llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) ))) = llist_fragment_tail_eq l phead unfold let sel_llist_fragment_tail (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_tail l phead) /\ True) }) : GTot (ref (ccell_ptrvalue a)) = coerce (h (llist_fragment_tail l phead)) (ref (ccell_ptrvalue a)) val intro_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened emp (fun _ -> llist_fragment_tail l phead) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_tail l phead h' == phead) let intro_llist_fragment_tail_nil l phead = intro_vconst phead; change_equal_slprop (vconst phead) (llist_fragment_tail l phead) val elim_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l phead) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_tail l phead h == phead) let elim_llist_fragment_tail_nil l phead = change_equal_slprop (llist_fragment_tail l phead) (vconst phead); elim_vconst phead val intro_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: Ghost.erased (ref (ccell_ptrvalue a))) (tail: Ghost.erased (ccell_lvalue a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l phead `star` vptr ptail `star` vptr (ccell_data tail)) (fun res -> llist_fragment_tail res phead) (fun h -> sel_llist_fragment_tail l phead h == Ghost.reveal ptail /\ sel ptail h == Ghost.reveal tail ) (fun h res h' -> Ghost.reveal res == snoc (Ghost.reveal l) (sel (ccell_data tail) h) /\ sel_llist_fragment_tail res phead h' == ccell_next tail ) #push-options "--z3rlimit 16" let intro_llist_fragment_tail_snoc #_ #a l phead ptail tail = let d = gget (vptr (ccell_data tail)) in let l' : (l' : Ghost.erased (list a) { Cons? (Ghost.reveal l') }) = Ghost.hide (snoc (Ghost.reveal l) (Ghost.reveal d)) in intro_vrefine (vptr (ccell_data tail)) (llist_fragment_tail_cons_data_refine l'); intro_vrefine (vptr ptail) (ccell_is_lvalue_refine a); intro_vdep (vptr ptail `vrefine` ccell_is_lvalue_refine a) (vptr (ccell_data tail) `vrefine` llist_fragment_tail_cons_data_refine l') (llist_fragment_tail_cons_lvalue_payload l'); change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead); intro_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead) (vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l') (llist_fragment_tail_cons_next_payload l'); intro_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l') (llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)); llist_fragment_tail_eq_cons l' phead; change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l' `vrewrite` llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)) (llist_fragment_tail l' phead); let g' = gget (llist_fragment_tail l' phead) in assert (Ghost.reveal g' == ccell_next tail); noop (); l' #pop-options [@@erasable] noeq type ll_unsnoc_t (a: Type) = { ll_unsnoc_l: list a; ll_unsnoc_ptail: ref (ccell_ptrvalue a); ll_unsnoc_tail: ccell_lvalue a; } val elim_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost (ll_unsnoc_t a) opened (llist_fragment_tail l phead) (fun res -> llist_fragment_tail res.ll_unsnoc_l phead `star` vptr res.ll_unsnoc_ptail `star` vptr (ccell_data res.ll_unsnoc_tail)) (fun _ -> Cons? l) (fun h res h' -> Cons? l /\ Ghost.reveal res.ll_unsnoc_l == unsnoc_hd l /\ sel res.ll_unsnoc_ptail h' == res.ll_unsnoc_tail /\ sel (ccell_data res.ll_unsnoc_tail) h'== unsnoc_tl l /\ sel_llist_fragment_tail res.ll_unsnoc_l phead h' == res.ll_unsnoc_ptail /\ sel_llist_fragment_tail l phead h == (ccell_next res.ll_unsnoc_tail) ) #push-options "--z3rlimit 32" #restart-solver let elim_llist_fragment_tail_snoc #_ #a l phead = let l0 : (l0: Ghost.erased (list a) { Cons? l0 }) = Ghost.hide (Ghost.reveal l) in llist_fragment_tail_eq_cons l0 phead; change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0 `vrewrite` llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); elim_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0) (llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); let ptail = elim_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail_cons_next_payload l0) in let ptail0 : Ghost.erased (ref (ccell_ptrvalue a)) = ptail in change_equal_slprop (llist_fragment_tail_cons_next_payload l0 (Ghost.reveal ptail)) (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l0); let tail = elim_vdep (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a) (llist_fragment_tail_cons_lvalue_payload l0) in elim_vrefine (vptr (Ghost.reveal ptail0)) (ccell_is_lvalue_refine a); let res = { ll_unsnoc_l = unsnoc_hd l0; ll_unsnoc_ptail = Ghost.reveal ptail0; ll_unsnoc_tail = Ghost.reveal tail; } in change_equal_slprop (vptr (Ghost.reveal ptail0)) (vptr res.ll_unsnoc_ptail); change_equal_slprop (llist_fragment_tail_cons_lvalue_payload l0 (Ghost.reveal tail)) (vptr (ccell_data res.ll_unsnoc_tail) `vrefine` llist_fragment_tail_cons_data_refine l0); elim_vrefine (vptr (ccell_data res.ll_unsnoc_tail)) (llist_fragment_tail_cons_data_refine l0); change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail res.ll_unsnoc_l phead); res #pop-options let rec llist_fragment_tail_append (#opened: _) (#a: Type) (phead0: ref (ccell_ptrvalue a)) (l1: Ghost.erased (list a)) (phead1: Ghost.erased (ref (ccell_ptrvalue a))) (l2: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l1 phead0 `star` llist_fragment_tail l2 phead1) (fun res -> llist_fragment_tail res phead0) (fun h -> Ghost.reveal phead1 == (sel_llist_fragment_tail l1 phead0) h ) (fun h res h' -> Ghost.reveal res == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ (sel_llist_fragment_tail res phead0) h' == (sel_llist_fragment_tail l2 phead1) h ) (decreases (L.length (Ghost.reveal l2))) = let g1 = gget (llist_fragment_tail l1 phead0) in assert (Ghost.reveal phead1 == Ghost.reveal g1); if Nil? l2 then begin L.append_l_nil (Ghost.reveal l1); elim_llist_fragment_tail_nil l2 phead1; l1 end else begin let res = elim_llist_fragment_tail_snoc l2 (Ghost.reveal phead1) in let d = gget (vptr (ccell_data res.ll_unsnoc_tail)) in L.append_assoc (Ghost.reveal l1) (Ghost.reveal res.ll_unsnoc_l) [Ghost.reveal d]; let l3 = llist_fragment_tail_append phead0 l1 phead1 res.ll_unsnoc_l in intro_llist_fragment_tail_snoc l3 phead0 res.ll_unsnoc_ptail res.ll_unsnoc_tail end let queue_tail_refine (#a: Type) (tail1: ref (ccell_ptrvalue a)) (tail2: ref (ccell_ptrvalue a)) (tl: normal (t_of (vptr tail2))) : Tot prop = ccell_ptrvalue_is_null tl == true /\ tail1 == tail2 [@@__steel_reduce__] let queue_tail_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) (tail2: ref (ccell_ptrvalue a)) : Tot vprop = vptr tail2 `vrefine` queue_tail_refine tail1 tail2 [@@__steel_reduce__] let queue_tail_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) : Tot vprop = vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail1 [@@__steel_reduce__; __reduce__] let queue_tail (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = llist_fragment_tail l (cllist_head x) `vdep` queue_tail_dep1 x l val intro_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun _ -> queue_tail x l) (fun h -> sel_llist_fragment_tail l (cllist_head x) h == tail /\ sel (cllist_tail x) h == tail /\ ccell_ptrvalue_is_null (sel tail h) ) (fun _ _ _ -> True) let intro_queue_tail x l tail = intro_vrefine (vptr tail) (queue_tail_refine tail tail); intro_vdep2 (vptr (cllist_tail x)) (vptr tail `vrefine` queue_tail_refine tail tail) tail (queue_tail_dep2 x l tail); intro_vdep2 (llist_fragment_tail l (cllist_head x)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail) tail (queue_tail_dep1 x l) val elim_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (queue_tail x l) (fun tail -> llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun h -> True) (fun _ tail h -> sel_llist_fragment_tail l (cllist_head x) h == Ghost.reveal tail /\ sel (cllist_tail x) h == Ghost.reveal tail /\ ccell_ptrvalue_is_null (h (vptr tail)) ) let elim_queue_tail #_ #a x l = let tail0 = elim_vdep (llist_fragment_tail l (cllist_head x)) (queue_tail_dep1 x l) in let tail : Ghost.erased (ref (ccell_ptrvalue a)) = tail0 in change_equal_slprop (queue_tail_dep1 x l (Ghost.reveal tail0)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail0); let tail2 = elim_vdep (vptr (cllist_tail x)) (queue_tail_dep2 x l tail0) in let tail3 : Ghost.erased (ref (ccell_ptrvalue a)) = tail2 in change_equal_slprop (queue_tail_dep2 x l tail0 (Ghost.reveal tail2)) (vptr tail3 `vrefine` queue_tail_refine tail0 tail3); elim_vrefine (vptr tail3) (queue_tail_refine tail0 tail3); change_equal_slprop (vptr tail3) (vptr tail); tail (* view from the head *) let llist_fragment_head_data_refine (#a: Type) (d: a) (c: vcell a) : Tot prop = c.vcell_data == d let llist_fragment_head_payload (#a: Type) (head: ccell_ptrvalue a) (d: a) (llist_fragment_head: (ref (ccell_ptrvalue a) -> ccell_ptrvalue a -> Tot vprop)) (x: t_of (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine d))) : Tot vprop = llist_fragment_head (ccell_next (fst x)) (snd x).vcell_next let rec llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Tot vprop (decreases (Ghost.reveal l)) = if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) let t_of_llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (t_of (llist_fragment_head l phead head) == ref (ccell_ptrvalue a) & ccell_ptrvalue a) = () unfold let sel_llist_fragment_head (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_head l phead head) /\ True) }) : GTot (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = coerce (h (llist_fragment_head l phead head)) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) val intro_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened emp (fun _ -> llist_fragment_head l phead head) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_head l phead head h' == (phead, head)) let intro_llist_fragment_head_nil l phead head = intro_vconst (phead, head); change_equal_slprop (vconst (phead, head)) (llist_fragment_head l phead head) val elim_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_head l phead head h == (phead, head)) let elim_llist_fragment_head_nil l phead head = change_equal_slprop (llist_fragment_head l phead head) (vconst (phead, head)); elim_vconst (phead, head) let llist_fragment_head_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (requires (Cons? (Ghost.reveal l))) (ensures ( llist_fragment_head l phead head == vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) = assert_norm (llist_fragment_head l phead head == ( if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) val intro_llist_fragment_head_cons (#opened: _) (#a: Type) (phead: ref (ccell_ptrvalue a)) (head: ccell_lvalue a) (next: (ccell_ptrvalue a)) (tl: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (ccell head `star` llist_fragment_head tl (ccell_next head) next) (fun res -> llist_fragment_head res phead head) (fun h -> (h (ccell head)).vcell_next == next) (fun h res h' -> Ghost.reveal res == (h (ccell head)).vcell_data :: Ghost.reveal tl /\ h' (llist_fragment_head res phead head) == h (llist_fragment_head tl (ccell_next head) next) ) let intro_llist_fragment_head_cons #_ #a phead head next tl = let vc = gget (ccell head) in let l' : (l' : Ghost.erased (list a) { Cons? l' }) = Ghost.hide (vc.vcell_data :: tl) in intro_ccell_is_lvalue head; intro_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l')); intro_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (llist_fragment_head tl (ccell_next head) next) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l'))); llist_fragment_head_eq_cons l' phead head; change_equal_slprop (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l')))) (llist_fragment_head l' phead head); l' [@@erasable] noeq type ll_uncons_t (a: Type) = { ll_uncons_pnext: Ghost.erased (ref (ccell_ptrvalue a)); ll_uncons_next: Ghost.erased (ccell_ptrvalue a); ll_uncons_tl: Ghost.erased (list a); } val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) ) let elim_llist_fragment_head_cons #_ #a l0 phead head = let l : (l : Ghost.erased (list a) { Cons? l }) = l0 in change_equal_slprop (llist_fragment_head l0 phead head) (llist_fragment_head l phead head); llist_fragment_head_eq_cons l phead head; change_equal_slprop (llist_fragment_head l phead head) (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)))); let x = elim_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l))) in let head2 = gget (ccell_is_lvalue head) in elim_ccell_is_lvalue head; elim_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l)); let vhead2 = gget (ccell head) in let res = { ll_uncons_pnext = ccell_next head2; ll_uncons_next = vhead2.vcell_next; ll_uncons_tl = L.tl l; } in change_equal_slprop (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)) (Ghost.reveal x)) (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next); res let rec llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_head l1 phead1 head1 `star` llist_fragment_head l2 phead2 head2) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2) ) (decreases (Ghost.reveal l1)) = if Nil? l1 then begin elim_llist_fragment_head_nil l1 phead1 head1; change_equal_slprop (llist_fragment_head l2 phead2 head2) (llist_fragment_head l2 phead1 head1); l2 end else begin let u = elim_llist_fragment_head_cons l1 phead1 head1 in let head1' : Ghost.erased (ccell_lvalue a) = head1 in let l3 = llist_fragment_head_append u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next l2 phead2 head2 in change_equal_slprop (llist_fragment_head l3 u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head l3 (ccell_next head1') u.ll_uncons_next); change_equal_slprop (ccell head1) (ccell head1'); let l4 = intro_llist_fragment_head_cons phead1 head1' u.ll_uncons_next l3 in change_equal_slprop (llist_fragment_head l4 phead1 head1') (llist_fragment_head l4 phead1 head1); l4 end let rec llist_fragment_head_to_tail (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (vptr phead `star` llist_fragment_head l phead head) (fun res -> llist_fragment_tail l phead `star` vptr res) (fun h -> h (vptr phead) == head) (fun h res h' -> let v = sel_llist_fragment_head l phead head h in fst v == Ghost.reveal res /\ fst v == sel_llist_fragment_tail l phead h' /\ snd v == h' (vptr res) ) (decreases (L.length (Ghost.reveal l))) = if Nil? l then begin let ptail = Ghost.hide phead in let gh = gget (vptr phead) in assert (Ghost.reveal gh == head); elim_llist_fragment_head_nil l phead head; intro_llist_fragment_tail_nil l phead; change_equal_slprop (vptr phead) (vptr ptail); ptail end else begin intro_llist_fragment_tail_nil [] phead; change_equal_slprop (vptr phead) (vptr (Ghost.reveal (Ghost.hide phead))); let uc = elim_llist_fragment_head_cons l phead head in let head' = elim_ccell_ghost head in change_equal_slprop (vptr (ccell_next head')) (vptr uc.ll_uncons_pnext); let lc = intro_llist_fragment_tail_snoc [] phead phead head' in let ptail = llist_fragment_head_to_tail uc.ll_uncons_tl uc.ll_uncons_pnext uc.ll_uncons_next in let l' = llist_fragment_tail_append phead lc uc.ll_uncons_pnext uc.ll_uncons_tl in change_equal_slprop (llist_fragment_tail l' phead) (llist_fragment_tail l phead); ptail end #push-options "--z3rlimit 16" #restart-solver let rec llist_fragment_tail_to_head (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: ref (ccell_ptrvalue a)) : SteelGhost (Ghost.erased (ccell_ptrvalue a)) opened (llist_fragment_tail l phead `star` vptr ptail) (fun head -> vptr phead `star` llist_fragment_head l phead (Ghost.reveal head)) (fun h -> Ghost.reveal ptail == sel_llist_fragment_tail l phead h) (fun h head h' -> let v = sel_llist_fragment_head l phead head h' in fst v == ptail /\ snd v == h (vptr ptail) /\ h' (vptr phead) == Ghost.reveal head ) (decreases (L.length (Ghost.reveal l))) = if Nil? l then begin let g = gget (llist_fragment_tail l phead) in assert (Ghost.reveal g == ptail); elim_llist_fragment_tail_nil l phead; change_equal_slprop (vptr ptail) (vptr phead); let head = gget (vptr phead) in intro_llist_fragment_head_nil l phead head; head end else begin let us = elim_llist_fragment_tail_snoc l phead in let tail = gget (vptr ptail) in assert (ccell_next us.ll_unsnoc_tail == ptail); intro_llist_fragment_head_nil [] (ccell_next us.ll_unsnoc_tail) tail; change_equal_slprop (vptr ptail) (vptr (ccell_next us.ll_unsnoc_tail)); intro_ccell us.ll_unsnoc_tail; let lc = intro_llist_fragment_head_cons us.ll_unsnoc_ptail us.ll_unsnoc_tail tail [] in let head = llist_fragment_tail_to_head us.ll_unsnoc_l phead us.ll_unsnoc_ptail in let g = gget (llist_fragment_head us.ll_unsnoc_l phead head) in let g : Ghost.erased (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = Ghost.hide (Ghost.reveal g) in assert (Ghost.reveal g == (Ghost.reveal us.ll_unsnoc_ptail, Ghost.reveal us.ll_unsnoc_tail)); let l' = llist_fragment_head_append us.ll_unsnoc_l phead head lc us.ll_unsnoc_ptail us.ll_unsnoc_tail in change_equal_slprop (llist_fragment_head l' phead head) (llist_fragment_head l phead head); head end #pop-options val llist_fragment_head_is_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> llist_fragment_head l phead head) (fun h -> ccell_ptrvalue_is_null (snd (sel_llist_fragment_head l phead head h)) == true) (fun h _ h' -> Nil? l == ccell_ptrvalue_is_null head /\ h' (llist_fragment_head l phead head) == h (llist_fragment_head l phead head) ) let llist_fragment_head_is_nil l phead head = if Nil? l then begin elim_llist_fragment_head_nil l phead head; assert (ccell_ptrvalue_is_null head == true); intro_llist_fragment_head_nil l phead head end else begin let r = elim_llist_fragment_head_cons l phead head in let head2 : ccell_lvalue _ = head in change_equal_slprop (llist_fragment_head r.ll_uncons_tl r.ll_uncons_pnext r.ll_uncons_next) (llist_fragment_head r.ll_uncons_tl (ccell_next head2) r.ll_uncons_next); change_equal_slprop (ccell head) (ccell head2); let l' = intro_llist_fragment_head_cons phead head2 r.ll_uncons_next r.ll_uncons_tl in change_equal_slprop (llist_fragment_head l' phead head2) (llist_fragment_head l phead head) end val llist_fragment_head_cons_change_phead (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (phead' : ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> llist_fragment_head l phead' head) (fun _ -> Cons? l) (fun h _ h' -> h' (llist_fragment_head l phead' head) == h (llist_fragment_head l phead head)) let llist_fragment_head_cons_change_phead l phead head phead' = let u = elim_llist_fragment_head_cons l phead head in let head2 : ccell_lvalue _ = head in change_equal_slprop (ccell head) (ccell head2); change_equal_slprop (llist_fragment_head u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head u.ll_uncons_tl (ccell_next head2) u.ll_uncons_next); let l' = intro_llist_fragment_head_cons phead' head2 u.ll_uncons_next u.ll_uncons_tl in change_equal_slprop (llist_fragment_head l' phead' head2) (llist_fragment_head l phead' head) let queue_head_refine (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) (ptl: t_of (llist_fragment_head l (cllist_head x) hd)) (tl: ref (ccell_ptrvalue a)) : Tot prop = let ptl : (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = ptl in tl == fst ptl /\ ccell_ptrvalue_is_null (snd ptl) == true let queue_head_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) (ptl: t_of (llist_fragment_head l (cllist_head x) hd)) : Tot vprop = vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl let queue_head_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) : Tot vprop = llist_fragment_head l (cllist_head x) hd `vdep` queue_head_dep1 x l hd [@@__reduce__] let queue_head (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = vptr (cllist_head x) `vdep` queue_head_dep2 x l val intro_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: Ghost.erased (ccell_ptrvalue a)) : SteelGhost unit opened (vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> queue_head x l) (fun h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) (fun _ _ _ -> True) let intro_queue_head #_ #a x l hd = let ptl = gget (llist_fragment_head l (cllist_head x) hd) in intro_vrefine (vptr (cllist_tail x)) (queue_head_refine x l hd ptl); assert_norm (vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl == queue_head_dep1 x l hd ptl); intro_vdep (llist_fragment_head l (cllist_head x) hd) (vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl) (queue_head_dep1 x l hd); intro_vdep (vptr (cllist_head x)) (llist_fragment_head l (cllist_head x) hd `vdep` queue_head_dep1 x l hd) (queue_head_dep2 x l) val elim_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ccell_ptrvalue a)) opened (queue_head x l) (fun hd -> vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> True) (fun _ hd h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) let elim_queue_head #_ #a x l = let hd = elim_vdep (vptr (cllist_head x)) (queue_head_dep2 x l) in let ptl = elim_vdep (llist_fragment_head l (cllist_head x) hd) (queue_head_dep1 x l hd) in elim_vrefine (vptr (cllist_tail x)) (queue_head_refine x l hd ptl); hd let queue_head_to_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhostT unit opened (queue_head x l) (fun _ -> queue_tail x l) = let hd = elim_queue_head x l in let tl = llist_fragment_head_to_tail l (cllist_head x) hd in intro_queue_tail x l tl let queue_tail_to_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhostT unit opened (queue_tail x l) (fun _ -> queue_head x l) = let tl = elim_queue_tail x l in let hd = llist_fragment_tail_to_head l (cllist_head x) tl in intro_queue_head x l hd (* We choose the head representation, since queue_is_empty and dequeue need the head representation, but only enqueue needs the tail representation. *) [@@__reduce__] let queue x l = queue_head x l let create_queue a = let head = ccell_ptrvalue_null a in let tail : ref (ccell_ptrvalue a) = null in let l0 = alloc_llist head tail in let l = elim_cllist l0 in write (cllist_tail l) (cllist_head l); intro_llist_fragment_head_nil [] (cllist_head l) (Ghost.reveal (Ghost.hide head)); intro_queue_head l [] head; let res : (t a & Ghost.erased (v a)) = (l0, Ghost.hide []) in change_equal_slprop (queue_head l []) (queue (fst res) (snd res)); return res let enqueue #a x l w = queue_head_to_tail x l; let ptail0 = elim_queue_tail x l in let ptail = read (cllist_tail x) in let c = alloc_cell w (ccell_ptrvalue_null a) in let c0 = elim_ccell_ghost c in change_equal_slprop (vptr ptail0) (vptr ptail); write ptail c; change_equal_slprop (vptr ptail) (vptr ptail0); let l' = intro_llist_fragment_tail_snoc l (cllist_head x) ptail0 c0 in write (cllist_tail x) (ccell_next c); intro_queue_tail x l' (ccell_next c0); queue_tail_to_head x l'; return l'
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: CQueue.t a -> l: FStar.Ghost.erased (CQueue.v a) -> Steel.Effect.Steel Prims.bool
Steel.Effect.Steel
[]
[]
[ "CQueue.t", "FStar.Ghost.erased", "CQueue.v", "Steel.Effect.Atomic.return", "Prims.bool", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.vdep", "Steel.Reference.vptrp", "CQueue.Cell.ccell_ptrvalue", "CQueue.LList.cllist_head", "Steel.FractionalPermission.full_perm", "CQueue.queue_head_dep2", "Steel.Effect.Common.vprop", "Prims.unit", "CQueue.intro_queue_head", "CQueue.llist_fragment_head_is_nil", "FStar.Ghost.reveal", "CQueue.Cell.ccell_ptrvalue_is_null", "Steel.Reference.read", "CQueue.elim_queue_head" ]
[]
false
true
false
false
false
let queue_is_empty #a x l =
let head0 = elim_queue_head x l in let head = read (cllist_head x) in let res = ccell_ptrvalue_is_null head in llist_fragment_head_is_nil l (cllist_head x) head0; intro_queue_head x l head0; return res
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.state_inv_t
val state_inv_t: #s:field_spec -> h:mem -> ctx:poly1305_ctx s -> Type0
val state_inv_t: #s:field_spec -> h:mem -> ctx:poly1305_ctx s -> Type0
let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s))
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 54, "start_col": 0, "start_line": 52 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0]
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Poly1305.poly1305_ctx", "Prims.l_and", "Hacl.Impl.Poly1305.Fields.felem_fits", "Lib.Buffer.gsub", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen", "FStar.UInt32.__uint_to_t", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Hacl.Impl.Poly1305.Field32xN.load_precompute_r_post", "Hacl.Impl.Poly1305.Fields.width" ]
[]
false
false
false
false
true
let state_inv_t #s h ctx =
felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s))
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.as_get_r
val as_get_r: #s:field_spec -> h:mem -> ctx:poly1305_ctx s -> GTot S.felem
val as_get_r: #s:field_spec -> h:mem -> ctx:poly1305_ctx s -> GTot S.felem
let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0]
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 50, "start_col": 0, "start_line": 50 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0]
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> Prims.GTot Spec.Poly1305.felem
Prims.GTot
[ "sometrivial" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Poly1305.poly1305_ctx", "Hacl.Impl.Poly1305.op_String_Access", "Spec.Poly1305.felem", "Hacl.Impl.Poly1305.Fields.width", "Hacl.Impl.Poly1305.Fields.feval", "Lib.Buffer.gsub", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen" ]
[]
false
false
false
false
false
let as_get_r #s h ctx =
(feval h (gsub ctx (nlimb s) (nlimb s))).[ 0 ]
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_update
val poly1305_update: #s:field_spec -> poly1305_update_st s
val poly1305_update: #s:field_spec -> poly1305_update_st s
let poly1305_update #s = match s with | M32 -> poly1305_update32 | _ -> poly1305_update_128_256 #s
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 584, "start_col": 0, "start_line": 581 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b)) let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi [@ Meta.Attribute.specialize ] let poly1305_init #s ctx key = let acc = get_acc ctx in let pre = get_precomp_r ctx in let kr = sub key 0ul 16ul in set_zero acc; poly1305_encode_r #s pre kr inline_for_extraction noextract val update1: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16 (as_seq h0 b) (feval h0 acc).[0]) let update1 #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_block e b; fadd_mul_r acc e pre; pop_frame () let poly1305_update1 #s ctx text = let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc inline_for_extraction noextract val poly1305_update_last: #s:field_spec -> p:precomp_r s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] (v len) (as_seq h0 b) (feval h0 acc).[0]) #push-options "--z3rlimit 200" let poly1305_update_last #s pre len b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_last e len b; fadd_mul_r acc e pre; pop_frame () #pop-options inline_for_extraction noextract val poly1305_update_nblocks: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 (blocklen s) -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint acc p /\ disjoint acc b /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul)) (as_seq h0 b) (feval h0 acc)) let poly1305_update_nblocks #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_blocks e b; fmul_rn acc acc pre; fadd acc acc e; pop_frame () inline_for_extraction noextract val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0]) let poly1305_update1_f #s pre nb len text i acc= assert ((v i + 1) * 16 <= v nb * 16); let block = sub #_ #_ #len text (i *! 16ul) 16ul in update1 #s pre block acc #push-options "--z3rlimit 100 --max_fuel 1" inline_for_extraction noextract val poly1305_update_scalar: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_scalar #s len text pre acc = let nb = len /. 16ul in let rem = len %. 16ul in let h0 = ST.get () in LSeq.lemma_repeat_blocks #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (S.poly1305_update_last (feval h0 (gsub pre 0ul 5ul)).[0]) (feval h0 acc).[0]; [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre /\ (feval h acc).[0] == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc).[0] in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc).[0] (v i); poly1305_update1_f #s pre nb len text i acc); let h1 = ST.get () in assert ((feval h1 acc).[0] == Lib.LoopCombinators.repeati (v nb) (spec_fh h0) (feval h0 acc).[0]); if rem >. 0ul then ( let last = sub text (nb *! 16ul) rem in as_seq_gsub h1 text (nb *! 16ul) rem; assert (disjoint acc last); poly1305_update_last #s pre rem last acc) #pop-options inline_for_extraction noextract val poly1305_update_multi_f: #s:field_spec -> p:precomp_r s -> bs:size_t{v bs == width s * S.size_block} -> nb:size_t -> len:size_t{v nb == v len / v bs /\ v len % v bs == 0} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 p /\ feval h1 acc == LSeq.repeat_blocks_f #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul))) (v nb) (v i) (feval h0 acc)) let poly1305_update_multi_f #s pre bs nb len text i acc= assert ((v i + 1) * v bs <= v nb * v bs); let block = sub #_ #_ #len text (i *! bs) bs in let h1 = ST.get () in as_seq_gsub h1 text (i *! bs) bs; poly1305_update_nblocks #s pre block acc #push-options "--max_fuel 1" inline_for_extraction noextract val poly1305_update_multi_loop: #s:field_spec -> bs:size_t{v bs == width s * S.size_block} -> len:size_t{v len % v (blocklen s) == 0} -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h pre /\ live h acc /\ live h text /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 pre /\ feval h1 acc == LSeq.repeat_blocks_multi #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks (feval h0 (gsub pre 10ul 5ul))) (feval h0 acc)) let poly1305_update_multi_loop #s bs len text pre acc = let nb = len /. bs in let h0 = ST.get () in LSeq.lemma_repeat_blocks_multi #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub pre 10ul 5ul))) (feval h0 acc); [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub pre 10ul 5ul))) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h pre /\ feval h acc == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc) in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc) (v i); poly1305_update_multi_f #s pre bs nb len text i acc) #pop-options #push-options "--z3rlimit 350" inline_for_extraction noextract val poly1305_update_multi: #s:field_spec -> len:size_t{0 < v len /\ v len % v (blocklen s) == 0} -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h pre /\ live h acc /\ live h text /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == Vec.poly1305_update_multi #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_multi #s len text pre acc = let h0 = ST.get () in assert_norm (v 10ul + v 5ul <= v 20ul); assert (feval h0 (gsub pre 10ul 5ul) == Vec.compute_rw #(width s) ((feval h0 (gsub pre 0ul 5ul)).[0])); let bs = blocklen s in //assert (v bs == width s * S.size_block); let text0 = sub text 0ul bs in load_acc #s acc text0; let len1 = len -! bs in let text1 = sub text bs len1 in poly1305_update_multi_loop #s bs len1 text1 pre acc; fmul_rn_normalize acc pre #pop-options inline_for_extraction noextract val poly1305_update_vec: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == Vec.poly1305_update_vec #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_vec #s len text pre acc = let sz_block = blocklen s in FStar.Math.Lemmas.multiply_fractions (v len) (v sz_block); let len0 = (len /. sz_block) *! sz_block in let t0 = sub text 0ul len0 in FStar.Math.Lemmas.multiple_modulo_lemma (v (len /. sz_block)) (v (blocklen s)); if len0 >. 0ul then poly1305_update_multi len0 t0 pre acc; let len1 = len -! len0 in let t1 = sub text len0 len1 in poly1305_update_scalar #s len1 t1 pre acc inline_for_extraction noextract val poly1305_update32: poly1305_update_st M32 let poly1305_update32 ctx len text = let pre = get_precomp_r ctx in let acc = get_acc ctx in poly1305_update_scalar #M32 len text pre acc inline_for_extraction noextract val poly1305_update_128_256: #s:field_spec { s = M128 || s = M256 } -> poly1305_update_st s let poly1305_update_128_256 #s ctx len text = let pre = get_precomp_r ctx in let acc = get_acc ctx in let h0 = ST.get () in poly1305_update_vec #s len text pre acc; let h1 = ST.get () in Equiv.poly1305_update_vec_lemma #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0] inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Poly1305.poly1305_update_st s
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.poly1305_update32", "Hacl.Impl.Poly1305.poly1305_update_128_256", "Hacl.Impl.Poly1305.poly1305_update_st" ]
[]
false
false
false
false
false
let poly1305_update #s =
match s with | M32 -> poly1305_update32 | _ -> poly1305_update_128_256 #s
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.as_get_acc
val as_get_acc: #s:field_spec -> h:mem -> ctx:poly1305_ctx s -> GTot S.felem
val as_get_acc: #s:field_spec -> h:mem -> ctx:poly1305_ctx s -> GTot S.felem
let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0]
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 48, "start_col": 0, "start_line": 48 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> Prims.GTot Spec.Poly1305.felem
Prims.GTot
[ "sometrivial" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Poly1305.poly1305_ctx", "Hacl.Impl.Poly1305.op_String_Access", "Spec.Poly1305.felem", "Hacl.Impl.Poly1305.Fields.width", "Hacl.Impl.Poly1305.Fields.feval", "Lib.Buffer.gsub", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
false
false
let as_get_acc #s h ctx =
(feval h (gsub ctx 0ul (nlimb s))).[ 0 ]
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.get_precomp_r
val get_precomp_r (#s: _) (ctx: poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s))
val get_precomp_r (#s: _) (ctx: poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s))
let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s)
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 42, "start_col": 0, "start_line": 39 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s)
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> FStar.HyperStack.ST.Stack (Hacl.Impl.Poly1305.Fields.precomp_r s)
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.poly1305_ctx", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen", "Lib.Buffer.lbuffer_t", "Hacl.Impl.Poly1305.Fields.precomp_r", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.gsub" ]
[]
false
true
false
false
false
let get_precomp_r #s (ctx: poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) =
sub ctx (nlimb s) (precomplen s)
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_encode_block
val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b))
val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b))
let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 152, "start_col": 0, "start_line": 150 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Impl.Poly1305.Fields.felem s -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.Fields.felem", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Poly1305.Fields.set_bit128", "Prims.unit", "Hacl.Impl.Poly1305.Fields.load_felem_le" ]
[]
false
true
false
false
false
let poly1305_encode_block #s f b =
load_felem_le f b; set_bit128 f
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.get_acc
val get_acc (#s: _) (ctx: poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s))
val get_acc (#s: _) (ctx: poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s))
let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s)
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 35, "start_col": 0, "start_line": 32 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options"
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> FStar.HyperStack.ST.Stack (Hacl.Impl.Poly1305.Fields.felem s)
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.poly1305_ctx", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Impl.Poly1305.Fields.felem", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.gsub" ]
[]
false
true
false
false
false
let get_acc #s (ctx: poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) =
sub ctx 0ul (nlimb s)
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_encode_blocks
val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b))
val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b))
let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 170, "start_col": 0, "start_line": 168 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Impl.Poly1305.Fields.felem s -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 (Hacl.Impl.Poly1305.Fields.blocklen s) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.Fields.felem", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Impl.Poly1305.Fields.blocklen", "Hacl.Impl.Poly1305.Fields.set_bit128", "Prims.unit", "Hacl.Impl.Poly1305.Fields.load_felems_le" ]
[]
false
true
false
false
false
let poly1305_encode_blocks #s f b =
load_felems_le f b; set_bit128 f
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_encode_r
val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b))
val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b))
let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 223, "start_col": 0, "start_line": 216 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Impl.Poly1305.Fields.precomp_r s -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.Fields.precomp_r", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Poly1305.Fields.load_precompute_r", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Amp_Dot", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.u64", "Lib.ByteBuffer.uint_from_bytes_le", "Lib.IntTypes.uint_t", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.U8", "Lib.IntTypes.mk_int", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.sub" ]
[]
false
true
false
false
false
let poly1305_encode_r #s p b =
let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_update32
val poly1305_update32: poly1305_update_st M32
val poly1305_update32: poly1305_update_st M32
let poly1305_update32 ctx len text = let pre = get_precomp_r ctx in let acc = get_acc ctx in poly1305_update_scalar #M32 len text pre acc
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 565, "start_col": 0, "start_line": 562 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b)) let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi [@ Meta.Attribute.specialize ] let poly1305_init #s ctx key = let acc = get_acc ctx in let pre = get_precomp_r ctx in let kr = sub key 0ul 16ul in set_zero acc; poly1305_encode_r #s pre kr inline_for_extraction noextract val update1: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16 (as_seq h0 b) (feval h0 acc).[0]) let update1 #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_block e b; fadd_mul_r acc e pre; pop_frame () let poly1305_update1 #s ctx text = let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc inline_for_extraction noextract val poly1305_update_last: #s:field_spec -> p:precomp_r s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] (v len) (as_seq h0 b) (feval h0 acc).[0]) #push-options "--z3rlimit 200" let poly1305_update_last #s pre len b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_last e len b; fadd_mul_r acc e pre; pop_frame () #pop-options inline_for_extraction noextract val poly1305_update_nblocks: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 (blocklen s) -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint acc p /\ disjoint acc b /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul)) (as_seq h0 b) (feval h0 acc)) let poly1305_update_nblocks #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_blocks e b; fmul_rn acc acc pre; fadd acc acc e; pop_frame () inline_for_extraction noextract val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0]) let poly1305_update1_f #s pre nb len text i acc= assert ((v i + 1) * 16 <= v nb * 16); let block = sub #_ #_ #len text (i *! 16ul) 16ul in update1 #s pre block acc #push-options "--z3rlimit 100 --max_fuel 1" inline_for_extraction noextract val poly1305_update_scalar: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_scalar #s len text pre acc = let nb = len /. 16ul in let rem = len %. 16ul in let h0 = ST.get () in LSeq.lemma_repeat_blocks #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (S.poly1305_update_last (feval h0 (gsub pre 0ul 5ul)).[0]) (feval h0 acc).[0]; [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre /\ (feval h acc).[0] == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc).[0] in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc).[0] (v i); poly1305_update1_f #s pre nb len text i acc); let h1 = ST.get () in assert ((feval h1 acc).[0] == Lib.LoopCombinators.repeati (v nb) (spec_fh h0) (feval h0 acc).[0]); if rem >. 0ul then ( let last = sub text (nb *! 16ul) rem in as_seq_gsub h1 text (nb *! 16ul) rem; assert (disjoint acc last); poly1305_update_last #s pre rem last acc) #pop-options inline_for_extraction noextract val poly1305_update_multi_f: #s:field_spec -> p:precomp_r s -> bs:size_t{v bs == width s * S.size_block} -> nb:size_t -> len:size_t{v nb == v len / v bs /\ v len % v bs == 0} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 p /\ feval h1 acc == LSeq.repeat_blocks_f #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul))) (v nb) (v i) (feval h0 acc)) let poly1305_update_multi_f #s pre bs nb len text i acc= assert ((v i + 1) * v bs <= v nb * v bs); let block = sub #_ #_ #len text (i *! bs) bs in let h1 = ST.get () in as_seq_gsub h1 text (i *! bs) bs; poly1305_update_nblocks #s pre block acc #push-options "--max_fuel 1" inline_for_extraction noextract val poly1305_update_multi_loop: #s:field_spec -> bs:size_t{v bs == width s * S.size_block} -> len:size_t{v len % v (blocklen s) == 0} -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h pre /\ live h acc /\ live h text /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 pre /\ feval h1 acc == LSeq.repeat_blocks_multi #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks (feval h0 (gsub pre 10ul 5ul))) (feval h0 acc)) let poly1305_update_multi_loop #s bs len text pre acc = let nb = len /. bs in let h0 = ST.get () in LSeq.lemma_repeat_blocks_multi #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub pre 10ul 5ul))) (feval h0 acc); [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub pre 10ul 5ul))) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h pre /\ feval h acc == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc) in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc) (v i); poly1305_update_multi_f #s pre bs nb len text i acc) #pop-options #push-options "--z3rlimit 350" inline_for_extraction noextract val poly1305_update_multi: #s:field_spec -> len:size_t{0 < v len /\ v len % v (blocklen s) == 0} -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h pre /\ live h acc /\ live h text /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == Vec.poly1305_update_multi #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_multi #s len text pre acc = let h0 = ST.get () in assert_norm (v 10ul + v 5ul <= v 20ul); assert (feval h0 (gsub pre 10ul 5ul) == Vec.compute_rw #(width s) ((feval h0 (gsub pre 0ul 5ul)).[0])); let bs = blocklen s in //assert (v bs == width s * S.size_block); let text0 = sub text 0ul bs in load_acc #s acc text0; let len1 = len -! bs in let text1 = sub text bs len1 in poly1305_update_multi_loop #s bs len1 text1 pre acc; fmul_rn_normalize acc pre #pop-options inline_for_extraction noextract val poly1305_update_vec: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == Vec.poly1305_update_vec #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_vec #s len text pre acc = let sz_block = blocklen s in FStar.Math.Lemmas.multiply_fractions (v len) (v sz_block); let len0 = (len /. sz_block) *! sz_block in let t0 = sub text 0ul len0 in FStar.Math.Lemmas.multiple_modulo_lemma (v (len /. sz_block)) (v (blocklen s)); if len0 >. 0ul then poly1305_update_multi len0 t0 pre acc; let len1 = len -! len0 in let t1 = sub text len0 len1 in poly1305_update_scalar #s len1 t1 pre acc inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Poly1305.poly1305_update_st Hacl.Impl.Poly1305.Fields.M32
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.poly1305_ctx", "Hacl.Impl.Poly1305.Fields.M32", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Impl.Poly1305.poly1305_update_scalar", "Prims.unit", "Hacl.Impl.Poly1305.Fields.felem", "Hacl.Impl.Poly1305.get_acc", "Hacl.Impl.Poly1305.Fields.precomp_r", "Hacl.Impl.Poly1305.get_precomp_r" ]
[]
false
false
false
true
false
let poly1305_update32 ctx len text =
let pre = get_precomp_r ctx in let acc = get_acc ctx in poly1305_update_scalar #M32 len text pre acc
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.pow_one
val pow_one (k:nat) : Lemma (pow 1 k == 1)
val pow_one (k:nat) : Lemma (pow 1 k == 1)
let rec pow_one = function | 0 -> () | k -> pow_one (k - 1)
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 22, "start_col": 0, "start_line": 20 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow 1 k == 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.int", "FStar.Math.Fermat.pow_one", "Prims.op_Subtraction", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec pow_one =
function | 0 -> () | k -> pow_one (k - 1)
false
CQueue.fst
CQueue.intro_queue_head
val intro_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: Ghost.erased (ccell_ptrvalue a)) : SteelGhost unit opened (vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> queue_head x l) (fun h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) (fun _ _ _ -> True)
val intro_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: Ghost.erased (ccell_ptrvalue a)) : SteelGhost unit opened (vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> queue_head x l) (fun h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) (fun _ _ _ -> True)
let intro_queue_head #_ #a x l hd = let ptl = gget (llist_fragment_head l (cllist_head x) hd) in intro_vrefine (vptr (cllist_tail x)) (queue_head_refine x l hd ptl); assert_norm (vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl == queue_head_dep1 x l hd ptl); intro_vdep (llist_fragment_head l (cllist_head x) hd) (vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl) (queue_head_dep1 x l hd); intro_vdep (vptr (cllist_head x)) (llist_fragment_head l (cllist_head x) hd `vdep` queue_head_dep1 x l hd) (queue_head_dep2 x l)
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 25, "end_line": 1225, "start_col": 0, "start_line": 1210 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x) [@@__steel_reduce__; __reduce__] let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b let vbind_hp // necessary to hide the attribute on hp_of (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) = hp_of (vbind0 a t b) let vbind_sel // same for hp_sel (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot (selector t (vbind_hp a t b)) = sel_of (vbind0 a t b) [@@__steel_reduce__] let vbind' (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot vprop' = { hp = vbind_hp a t b; t = t; sel = vbind_sel a t b; } [@@__steel_reduce__] let vbind (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = VUnit (vbind' a t b) let intro_vbind (#opened: _) (a: vprop) (b' : vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost unit opened (a `star` b') (fun _ -> vbind a t b) (fun h -> t_of b' == t /\ b' == b (h a)) (fun h _ h' -> t_of b' == t /\ b' == b (h a) /\ h' (vbind a t b) == h b' ) = intro_vpure (t == t_of b'); intro_vdep a (vpure (t == t_of b') `star` b') (vbind0_payload a t b); intro_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); change_slprop_rel (vbind0 a t b) (vbind a t b) (fun x y -> x == y) (fun _ -> ()) let elim_vbind (#opened: _) (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost (Ghost.erased (t_of a)) opened (vbind a t b) (fun res -> a `star` b (Ghost.reveal res)) (fun h -> True) (fun h res h' -> h' a == Ghost.reveal res /\ t == t_of (b (Ghost.reveal res)) /\ h' (b (Ghost.reveal res)) == h (vbind a t b) ) = change_slprop_rel (vbind a t b) (vbind0 a t b) (fun x y -> x == y) (fun _ -> ()); elim_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); let res = elim_vdep a (vbind0_payload a t b) in change_equal_slprop (vbind0_payload a t b (Ghost.reveal res)) (vpure (t == t_of (b (Ghost.reveal res))) `star` b (Ghost.reveal res)); elim_vpure (t == t_of (b (Ghost.reveal res))); res let (==) (#a:_) (x y: a) : prop = x == y let snoc_inj (#a: Type) (hd1 hd2: list a) (tl1 tl2: a) : Lemma (requires (hd1 `L.append` [tl1] == hd2 `L.append` [tl2])) (ensures (hd1 == hd2 /\ tl1 == tl2)) [SMTPat (hd1 `L.append` [tl1]); SMTPat (hd2 `L.append` [tl2])] = L.lemma_snoc_unsnoc (hd1, tl1); L.lemma_snoc_unsnoc (hd2, tl2) [@"opaque_to_smt"] let unsnoc (#a: Type) (l: list a) : Pure (list a & a) (requires (Cons? l)) (ensures (fun (hd, tl) -> l == hd `L.append` [tl] /\ L.length hd < L.length l)) = L.lemma_unsnoc_snoc l; L.append_length (fst (L.unsnoc l)) [snd (L.unsnoc l)]; L.unsnoc l let unsnoc_hd (#a: Type) (l: list a) : Pure (list a) (requires (Cons? l)) (ensures (fun l' -> L.length l' < L.length l)) = fst (unsnoc l) let unsnoc_tl (#a: Type) (l: list a) : Pure (a) (requires (Cons? l)) (ensures (fun _ -> True)) = snd (unsnoc l) [@@"opaque_to_smt"] let snoc (#a: Type) (l: list a) (x: a) : Pure (list a) (requires True) (ensures (fun l' -> Cons? l' /\ unsnoc_hd l' == l /\ unsnoc_tl l' == x )) = let l' = L.snoc (l, x) in L.append_length l [x]; snoc_inj l (unsnoc_hd l') x (unsnoc_tl l'); l' let snoc_unsnoc (#a: Type) (l: list a) : Lemma (requires (Cons? l)) (ensures (snoc (unsnoc_hd l) (unsnoc_tl l) == l)) = () unfold let coerce (#a: Type) (x: a) (b: Type) : Pure b (requires (a == b)) (ensures (fun y -> a == b /\ x == y)) = x (* END library *) let t a = cllist_lvalue a let v (a: Type0) = list a let datas (#a: Type0) (l: v a) : Tot (list a) = l (* view from the tail *) let llist_fragment_tail_cons_data_refine (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (d: a) : Tot prop = d == unsnoc_tl (Ghost.reveal l) [@@ __steel_reduce__] let llist_fragment_tail_cons_lvalue_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (c: ccell_lvalue a) : Tot vprop = vptr (ccell_data c) `vrefine` llist_fragment_tail_cons_data_refine l let ccell_is_lvalue_refine (a: Type) (c: ccell_ptrvalue a) : Tot prop = ccell_ptrvalue_is_null c == false [@@ __steel_reduce__ ] let llist_fragment_tail_cons_next_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (ptail: ref (ccell_ptrvalue a)) : Tot vprop = vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l [@@ __steel_reduce__ ] let llist_fragment_tail_cons_rewrite (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (llist_fragment_tail: vprop { t_of llist_fragment_tail == ref (ccell_ptrvalue a) }) (x: normal (t_of (llist_fragment_tail `vdep` (llist_fragment_tail_cons_next_payload l)))) : Tot (ref (ccell_ptrvalue a)) = let (| _, (| c, _ |) |) = x in ccell_next c let rec llist_fragment_tail (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Pure vprop (requires True) (ensures (fun v -> t_of v == ref (ccell_ptrvalue a))) (decreases (Ghost.reveal (L.length l))) = if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) let llist_fragment_tail_eq (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) = assert_norm (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) let llist_fragment_tail_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (requires (Cons? l)) (ensures (Cons? l /\ llist_fragment_tail l phead == ( llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) ))) = llist_fragment_tail_eq l phead unfold let sel_llist_fragment_tail (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_tail l phead) /\ True) }) : GTot (ref (ccell_ptrvalue a)) = coerce (h (llist_fragment_tail l phead)) (ref (ccell_ptrvalue a)) val intro_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened emp (fun _ -> llist_fragment_tail l phead) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_tail l phead h' == phead) let intro_llist_fragment_tail_nil l phead = intro_vconst phead; change_equal_slprop (vconst phead) (llist_fragment_tail l phead) val elim_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l phead) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_tail l phead h == phead) let elim_llist_fragment_tail_nil l phead = change_equal_slprop (llist_fragment_tail l phead) (vconst phead); elim_vconst phead val intro_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: Ghost.erased (ref (ccell_ptrvalue a))) (tail: Ghost.erased (ccell_lvalue a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l phead `star` vptr ptail `star` vptr (ccell_data tail)) (fun res -> llist_fragment_tail res phead) (fun h -> sel_llist_fragment_tail l phead h == Ghost.reveal ptail /\ sel ptail h == Ghost.reveal tail ) (fun h res h' -> Ghost.reveal res == snoc (Ghost.reveal l) (sel (ccell_data tail) h) /\ sel_llist_fragment_tail res phead h' == ccell_next tail ) #push-options "--z3rlimit 16" let intro_llist_fragment_tail_snoc #_ #a l phead ptail tail = let d = gget (vptr (ccell_data tail)) in let l' : (l' : Ghost.erased (list a) { Cons? (Ghost.reveal l') }) = Ghost.hide (snoc (Ghost.reveal l) (Ghost.reveal d)) in intro_vrefine (vptr (ccell_data tail)) (llist_fragment_tail_cons_data_refine l'); intro_vrefine (vptr ptail) (ccell_is_lvalue_refine a); intro_vdep (vptr ptail `vrefine` ccell_is_lvalue_refine a) (vptr (ccell_data tail) `vrefine` llist_fragment_tail_cons_data_refine l') (llist_fragment_tail_cons_lvalue_payload l'); change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead); intro_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead) (vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l') (llist_fragment_tail_cons_next_payload l'); intro_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l') (llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)); llist_fragment_tail_eq_cons l' phead; change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l' `vrewrite` llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)) (llist_fragment_tail l' phead); let g' = gget (llist_fragment_tail l' phead) in assert (Ghost.reveal g' == ccell_next tail); noop (); l' #pop-options [@@erasable] noeq type ll_unsnoc_t (a: Type) = { ll_unsnoc_l: list a; ll_unsnoc_ptail: ref (ccell_ptrvalue a); ll_unsnoc_tail: ccell_lvalue a; } val elim_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost (ll_unsnoc_t a) opened (llist_fragment_tail l phead) (fun res -> llist_fragment_tail res.ll_unsnoc_l phead `star` vptr res.ll_unsnoc_ptail `star` vptr (ccell_data res.ll_unsnoc_tail)) (fun _ -> Cons? l) (fun h res h' -> Cons? l /\ Ghost.reveal res.ll_unsnoc_l == unsnoc_hd l /\ sel res.ll_unsnoc_ptail h' == res.ll_unsnoc_tail /\ sel (ccell_data res.ll_unsnoc_tail) h'== unsnoc_tl l /\ sel_llist_fragment_tail res.ll_unsnoc_l phead h' == res.ll_unsnoc_ptail /\ sel_llist_fragment_tail l phead h == (ccell_next res.ll_unsnoc_tail) ) #push-options "--z3rlimit 32" #restart-solver let elim_llist_fragment_tail_snoc #_ #a l phead = let l0 : (l0: Ghost.erased (list a) { Cons? l0 }) = Ghost.hide (Ghost.reveal l) in llist_fragment_tail_eq_cons l0 phead; change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0 `vrewrite` llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); elim_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0) (llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); let ptail = elim_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail_cons_next_payload l0) in let ptail0 : Ghost.erased (ref (ccell_ptrvalue a)) = ptail in change_equal_slprop (llist_fragment_tail_cons_next_payload l0 (Ghost.reveal ptail)) (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l0); let tail = elim_vdep (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a) (llist_fragment_tail_cons_lvalue_payload l0) in elim_vrefine (vptr (Ghost.reveal ptail0)) (ccell_is_lvalue_refine a); let res = { ll_unsnoc_l = unsnoc_hd l0; ll_unsnoc_ptail = Ghost.reveal ptail0; ll_unsnoc_tail = Ghost.reveal tail; } in change_equal_slprop (vptr (Ghost.reveal ptail0)) (vptr res.ll_unsnoc_ptail); change_equal_slprop (llist_fragment_tail_cons_lvalue_payload l0 (Ghost.reveal tail)) (vptr (ccell_data res.ll_unsnoc_tail) `vrefine` llist_fragment_tail_cons_data_refine l0); elim_vrefine (vptr (ccell_data res.ll_unsnoc_tail)) (llist_fragment_tail_cons_data_refine l0); change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail res.ll_unsnoc_l phead); res #pop-options let rec llist_fragment_tail_append (#opened: _) (#a: Type) (phead0: ref (ccell_ptrvalue a)) (l1: Ghost.erased (list a)) (phead1: Ghost.erased (ref (ccell_ptrvalue a))) (l2: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l1 phead0 `star` llist_fragment_tail l2 phead1) (fun res -> llist_fragment_tail res phead0) (fun h -> Ghost.reveal phead1 == (sel_llist_fragment_tail l1 phead0) h ) (fun h res h' -> Ghost.reveal res == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ (sel_llist_fragment_tail res phead0) h' == (sel_llist_fragment_tail l2 phead1) h ) (decreases (L.length (Ghost.reveal l2))) = let g1 = gget (llist_fragment_tail l1 phead0) in assert (Ghost.reveal phead1 == Ghost.reveal g1); if Nil? l2 then begin L.append_l_nil (Ghost.reveal l1); elim_llist_fragment_tail_nil l2 phead1; l1 end else begin let res = elim_llist_fragment_tail_snoc l2 (Ghost.reveal phead1) in let d = gget (vptr (ccell_data res.ll_unsnoc_tail)) in L.append_assoc (Ghost.reveal l1) (Ghost.reveal res.ll_unsnoc_l) [Ghost.reveal d]; let l3 = llist_fragment_tail_append phead0 l1 phead1 res.ll_unsnoc_l in intro_llist_fragment_tail_snoc l3 phead0 res.ll_unsnoc_ptail res.ll_unsnoc_tail end let queue_tail_refine (#a: Type) (tail1: ref (ccell_ptrvalue a)) (tail2: ref (ccell_ptrvalue a)) (tl: normal (t_of (vptr tail2))) : Tot prop = ccell_ptrvalue_is_null tl == true /\ tail1 == tail2 [@@__steel_reduce__] let queue_tail_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) (tail2: ref (ccell_ptrvalue a)) : Tot vprop = vptr tail2 `vrefine` queue_tail_refine tail1 tail2 [@@__steel_reduce__] let queue_tail_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) : Tot vprop = vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail1 [@@__steel_reduce__; __reduce__] let queue_tail (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = llist_fragment_tail l (cllist_head x) `vdep` queue_tail_dep1 x l val intro_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun _ -> queue_tail x l) (fun h -> sel_llist_fragment_tail l (cllist_head x) h == tail /\ sel (cllist_tail x) h == tail /\ ccell_ptrvalue_is_null (sel tail h) ) (fun _ _ _ -> True) let intro_queue_tail x l tail = intro_vrefine (vptr tail) (queue_tail_refine tail tail); intro_vdep2 (vptr (cllist_tail x)) (vptr tail `vrefine` queue_tail_refine tail tail) tail (queue_tail_dep2 x l tail); intro_vdep2 (llist_fragment_tail l (cllist_head x)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail) tail (queue_tail_dep1 x l) val elim_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (queue_tail x l) (fun tail -> llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun h -> True) (fun _ tail h -> sel_llist_fragment_tail l (cllist_head x) h == Ghost.reveal tail /\ sel (cllist_tail x) h == Ghost.reveal tail /\ ccell_ptrvalue_is_null (h (vptr tail)) ) let elim_queue_tail #_ #a x l = let tail0 = elim_vdep (llist_fragment_tail l (cllist_head x)) (queue_tail_dep1 x l) in let tail : Ghost.erased (ref (ccell_ptrvalue a)) = tail0 in change_equal_slprop (queue_tail_dep1 x l (Ghost.reveal tail0)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail0); let tail2 = elim_vdep (vptr (cllist_tail x)) (queue_tail_dep2 x l tail0) in let tail3 : Ghost.erased (ref (ccell_ptrvalue a)) = tail2 in change_equal_slprop (queue_tail_dep2 x l tail0 (Ghost.reveal tail2)) (vptr tail3 `vrefine` queue_tail_refine tail0 tail3); elim_vrefine (vptr tail3) (queue_tail_refine tail0 tail3); change_equal_slprop (vptr tail3) (vptr tail); tail (* view from the head *) let llist_fragment_head_data_refine (#a: Type) (d: a) (c: vcell a) : Tot prop = c.vcell_data == d let llist_fragment_head_payload (#a: Type) (head: ccell_ptrvalue a) (d: a) (llist_fragment_head: (ref (ccell_ptrvalue a) -> ccell_ptrvalue a -> Tot vprop)) (x: t_of (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine d))) : Tot vprop = llist_fragment_head (ccell_next (fst x)) (snd x).vcell_next let rec llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Tot vprop (decreases (Ghost.reveal l)) = if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) let t_of_llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (t_of (llist_fragment_head l phead head) == ref (ccell_ptrvalue a) & ccell_ptrvalue a) = () unfold let sel_llist_fragment_head (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_head l phead head) /\ True) }) : GTot (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = coerce (h (llist_fragment_head l phead head)) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) val intro_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened emp (fun _ -> llist_fragment_head l phead head) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_head l phead head h' == (phead, head)) let intro_llist_fragment_head_nil l phead head = intro_vconst (phead, head); change_equal_slprop (vconst (phead, head)) (llist_fragment_head l phead head) val elim_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_head l phead head h == (phead, head)) let elim_llist_fragment_head_nil l phead head = change_equal_slprop (llist_fragment_head l phead head) (vconst (phead, head)); elim_vconst (phead, head) let llist_fragment_head_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (requires (Cons? (Ghost.reveal l))) (ensures ( llist_fragment_head l phead head == vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) = assert_norm (llist_fragment_head l phead head == ( if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) val intro_llist_fragment_head_cons (#opened: _) (#a: Type) (phead: ref (ccell_ptrvalue a)) (head: ccell_lvalue a) (next: (ccell_ptrvalue a)) (tl: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (ccell head `star` llist_fragment_head tl (ccell_next head) next) (fun res -> llist_fragment_head res phead head) (fun h -> (h (ccell head)).vcell_next == next) (fun h res h' -> Ghost.reveal res == (h (ccell head)).vcell_data :: Ghost.reveal tl /\ h' (llist_fragment_head res phead head) == h (llist_fragment_head tl (ccell_next head) next) ) let intro_llist_fragment_head_cons #_ #a phead head next tl = let vc = gget (ccell head) in let l' : (l' : Ghost.erased (list a) { Cons? l' }) = Ghost.hide (vc.vcell_data :: tl) in intro_ccell_is_lvalue head; intro_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l')); intro_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (llist_fragment_head tl (ccell_next head) next) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l'))); llist_fragment_head_eq_cons l' phead head; change_equal_slprop (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l')))) (llist_fragment_head l' phead head); l' [@@erasable] noeq type ll_uncons_t (a: Type) = { ll_uncons_pnext: Ghost.erased (ref (ccell_ptrvalue a)); ll_uncons_next: Ghost.erased (ccell_ptrvalue a); ll_uncons_tl: Ghost.erased (list a); } val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) ) let elim_llist_fragment_head_cons #_ #a l0 phead head = let l : (l : Ghost.erased (list a) { Cons? l }) = l0 in change_equal_slprop (llist_fragment_head l0 phead head) (llist_fragment_head l phead head); llist_fragment_head_eq_cons l phead head; change_equal_slprop (llist_fragment_head l phead head) (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)))); let x = elim_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l))) in let head2 = gget (ccell_is_lvalue head) in elim_ccell_is_lvalue head; elim_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l)); let vhead2 = gget (ccell head) in let res = { ll_uncons_pnext = ccell_next head2; ll_uncons_next = vhead2.vcell_next; ll_uncons_tl = L.tl l; } in change_equal_slprop (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)) (Ghost.reveal x)) (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next); res let rec llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_head l1 phead1 head1 `star` llist_fragment_head l2 phead2 head2) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2) ) (decreases (Ghost.reveal l1)) = if Nil? l1 then begin elim_llist_fragment_head_nil l1 phead1 head1; change_equal_slprop (llist_fragment_head l2 phead2 head2) (llist_fragment_head l2 phead1 head1); l2 end else begin let u = elim_llist_fragment_head_cons l1 phead1 head1 in let head1' : Ghost.erased (ccell_lvalue a) = head1 in let l3 = llist_fragment_head_append u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next l2 phead2 head2 in change_equal_slprop (llist_fragment_head l3 u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head l3 (ccell_next head1') u.ll_uncons_next); change_equal_slprop (ccell head1) (ccell head1'); let l4 = intro_llist_fragment_head_cons phead1 head1' u.ll_uncons_next l3 in change_equal_slprop (llist_fragment_head l4 phead1 head1') (llist_fragment_head l4 phead1 head1); l4 end let rec llist_fragment_head_to_tail (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (vptr phead `star` llist_fragment_head l phead head) (fun res -> llist_fragment_tail l phead `star` vptr res) (fun h -> h (vptr phead) == head) (fun h res h' -> let v = sel_llist_fragment_head l phead head h in fst v == Ghost.reveal res /\ fst v == sel_llist_fragment_tail l phead h' /\ snd v == h' (vptr res) ) (decreases (L.length (Ghost.reveal l))) = if Nil? l then begin let ptail = Ghost.hide phead in let gh = gget (vptr phead) in assert (Ghost.reveal gh == head); elim_llist_fragment_head_nil l phead head; intro_llist_fragment_tail_nil l phead; change_equal_slprop (vptr phead) (vptr ptail); ptail end else begin intro_llist_fragment_tail_nil [] phead; change_equal_slprop (vptr phead) (vptr (Ghost.reveal (Ghost.hide phead))); let uc = elim_llist_fragment_head_cons l phead head in let head' = elim_ccell_ghost head in change_equal_slprop (vptr (ccell_next head')) (vptr uc.ll_uncons_pnext); let lc = intro_llist_fragment_tail_snoc [] phead phead head' in let ptail = llist_fragment_head_to_tail uc.ll_uncons_tl uc.ll_uncons_pnext uc.ll_uncons_next in let l' = llist_fragment_tail_append phead lc uc.ll_uncons_pnext uc.ll_uncons_tl in change_equal_slprop (llist_fragment_tail l' phead) (llist_fragment_tail l phead); ptail end #push-options "--z3rlimit 16" #restart-solver let rec llist_fragment_tail_to_head (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: ref (ccell_ptrvalue a)) : SteelGhost (Ghost.erased (ccell_ptrvalue a)) opened (llist_fragment_tail l phead `star` vptr ptail) (fun head -> vptr phead `star` llist_fragment_head l phead (Ghost.reveal head)) (fun h -> Ghost.reveal ptail == sel_llist_fragment_tail l phead h) (fun h head h' -> let v = sel_llist_fragment_head l phead head h' in fst v == ptail /\ snd v == h (vptr ptail) /\ h' (vptr phead) == Ghost.reveal head ) (decreases (L.length (Ghost.reveal l))) = if Nil? l then begin let g = gget (llist_fragment_tail l phead) in assert (Ghost.reveal g == ptail); elim_llist_fragment_tail_nil l phead; change_equal_slprop (vptr ptail) (vptr phead); let head = gget (vptr phead) in intro_llist_fragment_head_nil l phead head; head end else begin let us = elim_llist_fragment_tail_snoc l phead in let tail = gget (vptr ptail) in assert (ccell_next us.ll_unsnoc_tail == ptail); intro_llist_fragment_head_nil [] (ccell_next us.ll_unsnoc_tail) tail; change_equal_slprop (vptr ptail) (vptr (ccell_next us.ll_unsnoc_tail)); intro_ccell us.ll_unsnoc_tail; let lc = intro_llist_fragment_head_cons us.ll_unsnoc_ptail us.ll_unsnoc_tail tail [] in let head = llist_fragment_tail_to_head us.ll_unsnoc_l phead us.ll_unsnoc_ptail in let g = gget (llist_fragment_head us.ll_unsnoc_l phead head) in let g : Ghost.erased (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = Ghost.hide (Ghost.reveal g) in assert (Ghost.reveal g == (Ghost.reveal us.ll_unsnoc_ptail, Ghost.reveal us.ll_unsnoc_tail)); let l' = llist_fragment_head_append us.ll_unsnoc_l phead head lc us.ll_unsnoc_ptail us.ll_unsnoc_tail in change_equal_slprop (llist_fragment_head l' phead head) (llist_fragment_head l phead head); head end #pop-options val llist_fragment_head_is_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> llist_fragment_head l phead head) (fun h -> ccell_ptrvalue_is_null (snd (sel_llist_fragment_head l phead head h)) == true) (fun h _ h' -> Nil? l == ccell_ptrvalue_is_null head /\ h' (llist_fragment_head l phead head) == h (llist_fragment_head l phead head) ) let llist_fragment_head_is_nil l phead head = if Nil? l then begin elim_llist_fragment_head_nil l phead head; assert (ccell_ptrvalue_is_null head == true); intro_llist_fragment_head_nil l phead head end else begin let r = elim_llist_fragment_head_cons l phead head in let head2 : ccell_lvalue _ = head in change_equal_slprop (llist_fragment_head r.ll_uncons_tl r.ll_uncons_pnext r.ll_uncons_next) (llist_fragment_head r.ll_uncons_tl (ccell_next head2) r.ll_uncons_next); change_equal_slprop (ccell head) (ccell head2); let l' = intro_llist_fragment_head_cons phead head2 r.ll_uncons_next r.ll_uncons_tl in change_equal_slprop (llist_fragment_head l' phead head2) (llist_fragment_head l phead head) end val llist_fragment_head_cons_change_phead (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (phead' : ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> llist_fragment_head l phead' head) (fun _ -> Cons? l) (fun h _ h' -> h' (llist_fragment_head l phead' head) == h (llist_fragment_head l phead head)) let llist_fragment_head_cons_change_phead l phead head phead' = let u = elim_llist_fragment_head_cons l phead head in let head2 : ccell_lvalue _ = head in change_equal_slprop (ccell head) (ccell head2); change_equal_slprop (llist_fragment_head u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head u.ll_uncons_tl (ccell_next head2) u.ll_uncons_next); let l' = intro_llist_fragment_head_cons phead' head2 u.ll_uncons_next u.ll_uncons_tl in change_equal_slprop (llist_fragment_head l' phead' head2) (llist_fragment_head l phead' head) let queue_head_refine (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) (ptl: t_of (llist_fragment_head l (cllist_head x) hd)) (tl: ref (ccell_ptrvalue a)) : Tot prop = let ptl : (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = ptl in tl == fst ptl /\ ccell_ptrvalue_is_null (snd ptl) == true let queue_head_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) (ptl: t_of (llist_fragment_head l (cllist_head x) hd)) : Tot vprop = vptr (cllist_tail x) `vrefine` queue_head_refine x l hd ptl let queue_head_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: ccell_ptrvalue a) : Tot vprop = llist_fragment_head l (cllist_head x) hd `vdep` queue_head_dep1 x l hd [@@__reduce__] let queue_head (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = vptr (cllist_head x) `vdep` queue_head_dep2 x l val intro_queue_head (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (hd: Ghost.erased (ccell_ptrvalue a)) : SteelGhost unit opened (vptr (cllist_head x) `star` llist_fragment_head l (cllist_head x) hd `star` vptr (cllist_tail x)) (fun _ -> queue_head x l) (fun h -> ( let frag = (sel_llist_fragment_head l (cllist_head x) hd) h in sel (cllist_head x) h == Ghost.reveal hd /\ sel (cllist_tail x) h == fst frag /\ ccell_ptrvalue_is_null (snd frag) == true )) (fun _ _ _ -> True)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: CQueue.t a -> l: FStar.Ghost.erased (Prims.list a) -> hd: FStar.Ghost.erased (CQueue.Cell.ccell_ptrvalue a) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "CQueue.t", "FStar.Ghost.erased", "Prims.list", "CQueue.Cell.ccell_ptrvalue", "Steel.Effect.Atomic.intro_vdep", "Steel.Reference.vptr", "CQueue.LList.cllist_head", "Steel.Effect.Common.vdep", "CQueue.llist_fragment_head", "FStar.Ghost.reveal", "CQueue.queue_head_dep1", "CQueue.queue_head_dep2", "Prims.unit", "Steel.Effect.Common.vrefine", "Steel.Reference.ref", "CQueue.LList.cllist_tail", "CQueue.queue_head_refine", "Steel.Effect.Common.t_of", "FStar.Pervasives.assert_norm", "CQueue.op_Equals_Equals", "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.intro_vrefine", "Steel.Effect.Atomic.gget" ]
[]
false
true
false
false
false
let intro_queue_head #_ #a x l hd =
let ptl = gget (llist_fragment_head l (cllist_head x) hd) in intro_vrefine (vptr (cllist_tail x)) (queue_head_refine x l hd ptl); assert_norm ((vptr (cllist_tail x)) `vrefine` (queue_head_refine x l hd ptl) == queue_head_dep1 x l hd ptl); intro_vdep (llist_fragment_head l (cllist_head x) hd) ((vptr (cllist_tail x)) `vrefine` (queue_head_refine x l hd ptl)) (queue_head_dep1 x l hd); intro_vdep (vptr (cllist_head x)) ((llist_fragment_head l (cllist_head x) hd) `vdep` (queue_head_dep1 x l hd)) (queue_head_dep2 x l)
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_update1
val poly1305_update1: (#s:field_spec) -> poly1305_update1_st s
val poly1305_update1: (#s:field_spec) -> poly1305_update1_st s
let poly1305_update1 #s ctx text = let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 264, "start_col": 0, "start_line": 261 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b)) let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi [@ Meta.Attribute.specialize ] let poly1305_init #s ctx key = let acc = get_acc ctx in let pre = get_precomp_r ctx in let kr = sub key 0ul 16ul in set_zero acc; poly1305_encode_r #s pre kr inline_for_extraction noextract val update1: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16 (as_seq h0 b) (feval h0 acc).[0]) let update1 #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_block e b; fadd_mul_r acc e pre; pop_frame ()
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Poly1305.poly1305_update1_st s
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.poly1305_ctx", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Poly1305.update1", "Prims.unit", "Hacl.Impl.Poly1305.Fields.felem", "Hacl.Impl.Poly1305.get_acc", "Hacl.Impl.Poly1305.Fields.precomp_r", "Hacl.Impl.Poly1305.get_precomp_r" ]
[]
false
false
false
false
false
let poly1305_update1 #s ctx text =
let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.pow_zero
val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k)
val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k)
let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1)
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 17, "start_col": 0, "start_line": 14 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.pos -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow 0 k == 0) (decreases k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "Prims.int", "FStar.Math.Fermat.pow_zero", "Prims.op_Subtraction", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec pow_zero k =
match k with | 1 -> () | _ -> pow_zero (k - 1)
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_update1_f
val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0])
val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0])
let poly1305_update1_f #s pre nb len text i acc= assert ((v i + 1) * 16 <= v nb * 16); let block = sub #_ #_ #len text (i *! 16ul) 16ul in update1 #s pre block acc
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 347, "start_col": 0, "start_line": 344 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b)) let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi [@ Meta.Attribute.specialize ] let poly1305_init #s ctx key = let acc = get_acc ctx in let pre = get_precomp_r ctx in let kr = sub key 0ul 16ul in set_zero acc; poly1305_encode_r #s pre kr inline_for_extraction noextract val update1: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16 (as_seq h0 b) (feval h0 acc).[0]) let update1 #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_block e b; fadd_mul_r acc e pre; pop_frame () let poly1305_update1 #s ctx text = let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc inline_for_extraction noextract val poly1305_update_last: #s:field_spec -> p:precomp_r s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] (v len) (as_seq h0 b) (feval h0 acc).[0]) #push-options "--z3rlimit 200" let poly1305_update_last #s pre len b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_last e len b; fadd_mul_r acc e pre; pop_frame () #pop-options inline_for_extraction noextract val poly1305_update_nblocks: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 (blocklen s) -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint acc p /\ disjoint acc b /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul)) (as_seq h0 b) (feval h0 acc)) let poly1305_update_nblocks #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_blocks e b; fmul_rn acc acc pre; fadd acc acc e; pop_frame () inline_for_extraction noextract val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0])
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Impl.Poly1305.Fields.precomp_r s -> nb: Lib.IntTypes.size_t -> len: Lib.IntTypes.size_t{Lib.IntTypes.v nb == Lib.IntTypes.v len / 16} -> text: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v nb} -> acc: Hacl.Impl.Poly1305.Fields.felem s -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.Fields.precomp_r", "Lib.IntTypes.size_t", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_Division", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Prims.b2t", "Prims.op_LessThan", "Hacl.Impl.Poly1305.Fields.felem", "Hacl.Impl.Poly1305.update1", "Prims.unit", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.op_Star_Bang", "FStar.UInt32.__uint_to_t", "Prims._assert", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.op_Addition" ]
[]
false
true
false
false
false
let poly1305_update1_f #s pre nb len text i acc =
assert ((v i + 1) * 16 <= v nb * 16); let block = sub #_ #_ #len text (i *! 16ul) 16ul in update1 #s pre block acc
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.binomial_lt
val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0)
val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0)
let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1)
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 78, "start_col": 0, "start_line": 74 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.nat{n < k} -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.binomial n k = 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "FStar.Pervasives.Native.tuple2", "FStar.Math.Fermat.binomial_lt", "Prims.op_Subtraction", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec binomial_lt n k =
match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1)
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum
val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a))
val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a))
let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 145, "start_col": 0, "start_line": 144 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> Prims.Tot Prims.int
Prims.Tot
[ "total", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.int", "Prims.op_Equality", "Prims.bool", "Prims.op_Addition", "FStar.Math.Fermat.sum" ]
[ "recursion" ]
false
false
false
false
false
let rec sum a b f =
if a = b then f a else f a + sum (a + 1) b f
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.binomial
val binomial (n k:nat) : nat
val binomial (n k:nat) : nat
let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1)
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 68, "start_col": 0, "start_line": 64 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.nat -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "Prims.op_Addition", "FStar.Math.Fermat.binomial", "Prims.op_Subtraction" ]
[ "recursion" ]
false
false
false
true
false
let rec binomial n k =
match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1)
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.factorial
val factorial: nat -> pos
val factorial: nat -> pos
let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1)
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 93, "start_col": 0, "start_line": 91 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.nat -> Prims.pos
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.int", "FStar.Mul.op_Star", "FStar.Math.Fermat.factorial", "Prims.op_Subtraction", "Prims.pos" ]
[ "recursion" ]
false
false
false
true
false
let rec factorial =
function | 0 -> 1 | n -> n * factorial (n - 1)
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.binomial_n
val binomial_n (n:nat) : Lemma (binomial n n == 1)
val binomial_n (n:nat) : Lemma (binomial n n == 1)
let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1)
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 84, "start_col": 0, "start_line": 81 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.binomial n n == 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.int", "FStar.Math.Fermat.binomial_n", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Fermat.binomial_lt", "Prims.op_Addition" ]
[ "recursion" ]
false
false
true
false
false
let rec binomial_n n =
match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1)
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.ctx_inv_zeros
val ctx_inv_zeros: #s:field_spec -> ctx:poly1305_ctx s -> h:mem -> Lemma (requires as_seq h ctx == Lib.Sequence.create (v (nlimb s +! precomplen s)) (limb_zero s)) (ensures state_inv_t #s h ctx)
val ctx_inv_zeros: #s:field_spec -> ctx:poly1305_ctx s -> h:mem -> Lemma (requires as_seq h ctx == Lib.Sequence.create (v (nlimb s +! precomplen s)) (limb_zero s)) (ensures state_inv_t #s h ctx)
let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 132, "start_col": 0, "start_line": 123 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires Lib.Buffer.as_seq h ctx == Lib.Sequence.create (Lib.IntTypes.v (Hacl.Impl.Poly1305.Fields.nlimb s +! Hacl.Impl.Poly1305.Fields.precomplen s)) (Hacl.Impl.Poly1305.Fields.limb_zero s)) (ensures Hacl.Impl.Poly1305.state_inv_t h ctx)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.poly1305_ctx", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Poly1305.precomp_inv_zeros", "Prims.unit", "Lib.Sequence.eq_intro", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.precomplen", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Lib.Sequence.create", "Hacl.Impl.Poly1305.Fields.limb_zero", "Lib.Buffer.lbuffer_t", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.gsub", "Lib.IntTypes.op_Plus_Bang", "Hacl.Impl.Poly1305.Fields.nlimb", "Prims._assert", "Hacl.Impl.Poly1305.Fields.felem_fits", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Spec.Poly1305.felem", "Hacl.Impl.Poly1305.Fields.width", "Hacl.Impl.Poly1305.Fields.feval", "Lib.Buffer.as_seq_gsub", "FStar.UInt32.__uint_to_t" ]
[]
true
false
true
false
false
let ctx_inv_zeros #s ctx h =
let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_scale
val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a))
val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a))
let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 190, "start_col": 0, "start_line": 182 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> k: Prims.int -> FStar.Pervasives.Lemma (ensures k * FStar.Math.Fermat.sum a b f == FStar.Math.Fermat.sum a b (fun i -> k * f i)) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.int", "Prims.op_Equality", "Prims.bool", "FStar.Math.Fermat.sum_extensionality", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.unit", "FStar.Math.Fermat.sum_scale" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_scale a b f k =
if a = b then () else (sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i: nat{a <= i /\ i <= b}) -> k * f i) (fun (i: nat{a + 1 <= i /\ i <= b}) -> k * f i))
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_const
val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a))
val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a))
let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 177, "start_col": 0, "start_line": 169 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> k: Prims.int -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.sum a b (fun _ -> k) == k * (b - a + 1)) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.int", "Prims.op_Equality", "Prims.bool", "FStar.Math.Fermat.sum_extensionality", "Prims.op_Addition", "Prims.l_and", "Prims.unit", "FStar.Math.Fermat.sum_const" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_const a b k =
if a = b then () else (sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i: nat{a <= i /\ i <= b}) -> k) (fun (i: nat{a + 1 <= i /\ i <= b}) -> k))
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.pow_mod
val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p)
val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p)
let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 57, "start_col": 0, "start_line": 40 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.pos -> a: Prims.int -> k: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow a k % p == FStar.Math.Fermat.pow (a % p) k % p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.int", "Prims.nat", "Prims.op_Equality", "Prims.bool", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Math.Fermat.pow", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Fermat.pow_mod", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[ "recursion" ]
false
false
true
false
false
let rec pow_mod p a k =
if k = 0 then () else calc ( == ) { pow a k % p; ( == ) { () } a * pow a (k - 1) % p; ( == ) { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; ( == ) { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; ( == ) { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; ( == ) { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } ((a % p) * pow (a % p) (k - 1)) % p; ( == ) { () } pow (a % p) k % p; }
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_extensionality
val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a))
val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a))
let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 153, "start_col": 0, "start_line": 151 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> g: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{a <= i /\ i <= b}). f i == g i) (ensures FStar.Math.Fermat.sum a b f == FStar.Math.Fermat.sum a b g) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.int", "Prims.op_Equality", "Prims.bool", "FStar.Math.Fermat.sum_extensionality", "Prims.op_Addition", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_extensionality a b f g =
if a = b then () else sum_extensionality (a + 1) b f g
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_last
val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a))
val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a))
let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 164, "start_col": 0, "start_line": 162 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a < b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.sum a b f == FStar.Math.Fermat.sum a (b - 1) f + f b) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.int", "Prims.op_Equality", "Prims.op_Addition", "FStar.Math.Fermat.sum_first", "Prims.bool", "FStar.Math.Fermat.sum_last", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_last a b f =
if a + 1 = b then sum_first a b f else sum_last (a + 1) b f
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.pow_plus
val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m)
val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m)
let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 37, "start_col": 0, "start_line": 25 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> k: Prims.nat -> m: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow a (k + m) == FStar.Math.Fermat.pow a k * FStar.Math.Fermat.pow a m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Math.Fermat.pow", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Fermat.pow_plus" ]
[ "recursion" ]
false
false
true
false
false
let rec pow_plus a k m =
match k with | 0 -> () | _ -> calc ( == ) { pow a (k + m); ( == ) { () } a * pow a ((k + m) - 1); ( == ) { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); ( == ) { () } pow a k * pow a m; }
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_add
val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a))
val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a))
let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 203, "start_col": 0, "start_line": 195 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> g: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.sum a b f + FStar.Math.Fermat.sum a b g == FStar.Math.Fermat.sum a b (fun i -> f i + g i)) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.int", "Prims.op_Equality", "Prims.bool", "FStar.Math.Fermat.sum_extensionality", "Prims.op_Addition", "Prims.unit", "FStar.Math.Fermat.sum_add" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_add a b f g =
if a = b then () else (sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i: nat{a <= i /\ i <= b}) -> f i + g i) (fun (i: nat{a + 1 <= i /\ i <= b}) -> f i + g i))
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_shift
val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a))
val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a))
let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 216, "start_col": 0, "start_line": 208 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.sum a b f == FStar.Math.Fermat.sum (a + 1) (b + 1) (fun i -> f (i - 1))) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.int", "Prims.op_Equality", "Prims.bool", "FStar.Math.Fermat.sum_extensionality", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Fermat.sum_shift" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_shift a b f =
if a = b then () else (sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i: nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i: nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)))
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_update_multi_f
val poly1305_update_multi_f: #s:field_spec -> p:precomp_r s -> bs:size_t{v bs == width s * S.size_block} -> nb:size_t -> len:size_t{v nb == v len / v bs /\ v len % v bs == 0} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 p /\ feval h1 acc == LSeq.repeat_blocks_f #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul))) (v nb) (v i) (feval h0 acc))
val poly1305_update_multi_f: #s:field_spec -> p:precomp_r s -> bs:size_t{v bs == width s * S.size_block} -> nb:size_t -> len:size_t{v nb == v len / v bs /\ v len % v bs == 0} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 p /\ feval h1 acc == LSeq.repeat_blocks_f #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul))) (v nb) (v i) (feval h0 acc))
let poly1305_update_multi_f #s pre bs nb len text i acc= assert ((v i + 1) * v bs <= v nb * v bs); let block = sub #_ #_ #len text (i *! bs) bs in let h1 = ST.get () in as_seq_gsub h1 text (i *! bs) bs; poly1305_update_nblocks #s pre block acc
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 438, "start_col": 0, "start_line": 433 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b)) let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi [@ Meta.Attribute.specialize ] let poly1305_init #s ctx key = let acc = get_acc ctx in let pre = get_precomp_r ctx in let kr = sub key 0ul 16ul in set_zero acc; poly1305_encode_r #s pre kr inline_for_extraction noextract val update1: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16 (as_seq h0 b) (feval h0 acc).[0]) let update1 #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_block e b; fadd_mul_r acc e pre; pop_frame () let poly1305_update1 #s ctx text = let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc inline_for_extraction noextract val poly1305_update_last: #s:field_spec -> p:precomp_r s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] (v len) (as_seq h0 b) (feval h0 acc).[0]) #push-options "--z3rlimit 200" let poly1305_update_last #s pre len b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_last e len b; fadd_mul_r acc e pre; pop_frame () #pop-options inline_for_extraction noextract val poly1305_update_nblocks: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 (blocklen s) -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint acc p /\ disjoint acc b /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul)) (as_seq h0 b) (feval h0 acc)) let poly1305_update_nblocks #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_blocks e b; fmul_rn acc acc pre; fadd acc acc e; pop_frame () inline_for_extraction noextract val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0]) let poly1305_update1_f #s pre nb len text i acc= assert ((v i + 1) * 16 <= v nb * 16); let block = sub #_ #_ #len text (i *! 16ul) 16ul in update1 #s pre block acc #push-options "--z3rlimit 100 --max_fuel 1" inline_for_extraction noextract val poly1305_update_scalar: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_scalar #s len text pre acc = let nb = len /. 16ul in let rem = len %. 16ul in let h0 = ST.get () in LSeq.lemma_repeat_blocks #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (S.poly1305_update_last (feval h0 (gsub pre 0ul 5ul)).[0]) (feval h0 acc).[0]; [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre /\ (feval h acc).[0] == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc).[0] in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc).[0] (v i); poly1305_update1_f #s pre nb len text i acc); let h1 = ST.get () in assert ((feval h1 acc).[0] == Lib.LoopCombinators.repeati (v nb) (spec_fh h0) (feval h0 acc).[0]); if rem >. 0ul then ( let last = sub text (nb *! 16ul) rem in as_seq_gsub h1 text (nb *! 16ul) rem; assert (disjoint acc last); poly1305_update_last #s pre rem last acc) #pop-options inline_for_extraction noextract val poly1305_update_multi_f: #s:field_spec -> p:precomp_r s -> bs:size_t{v bs == width s * S.size_block} -> nb:size_t -> len:size_t{v nb == v len / v bs /\ v len % v bs == 0} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 p /\ feval h1 acc == LSeq.repeat_blocks_f #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul))) (v nb) (v i) (feval h0 acc))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Impl.Poly1305.Fields.precomp_r s -> bs: Lib.IntTypes.size_t {Lib.IntTypes.v bs == Hacl.Impl.Poly1305.Fields.width s * Spec.Poly1305.size_block} -> nb: Lib.IntTypes.size_t -> len: Lib.IntTypes.size_t { Lib.IntTypes.v nb == Lib.IntTypes.v len / Lib.IntTypes.v bs /\ Lib.IntTypes.v len % Lib.IntTypes.v bs == 0 } -> text: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v nb} -> acc: Hacl.Impl.Poly1305.Fields.felem s -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.Fields.precomp_r", "Lib.IntTypes.size_t", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Mul.op_Star", "Hacl.Impl.Poly1305.Fields.width", "Spec.Poly1305.size_block", "Prims.l_and", "Prims.op_Division", "Prims.op_Modulus", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Prims.b2t", "Prims.op_LessThan", "Hacl.Impl.Poly1305.Fields.felem", "Hacl.Impl.Poly1305.poly1305_update_nblocks", "Prims.unit", "Lib.Buffer.as_seq_gsub", "Lib.Buffer.MUT", "Lib.IntTypes.op_Star_Bang", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "Prims._assert", "Prims.op_LessThanOrEqual", "Prims.op_Addition" ]
[]
false
true
false
false
false
let poly1305_update_multi_f #s pre bs nb len text i acc =
assert ((v i + 1) * v bs <= v nb * v bs); let block = sub #_ #_ #len text (i *! bs) bs in let h1 = ST.get () in as_seq_gsub h1 text (i *! bs) bs; poly1305_update_nblocks #s pre block acc
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.factorial_mod_prime
val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k)
val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k)
let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 368, "start_col": 0, "start_line": 362 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> k: Prims.pos{k < p} -> FStar.Pervasives.Lemma (requires !k % p = 0) (ensures Prims.l_False) (decreases k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.bool", "FStar.Math.Fermat.factorial_mod_prime", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Euclid.euclid_prime", "FStar.Math.Fermat.op_Bang" ]
[ "recursion" ]
false
false
true
false
false
let rec factorial_mod_prime p k =
if k = 0 then () else (euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1))
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.fmul_precomp_inv_zeros
val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b)
val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b)
let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b))
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 84, "end_line": 96, "start_col": 0, "start_line": 87 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b)
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
precomp_b: Lib.Buffer.lbuffer (Hacl.Impl.Poly1305.Fields.limb s) (Hacl.Impl.Poly1305.Fields.precomplen s) -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires Lib.Buffer.as_seq h precomp_b == Lib.Sequence.create (Lib.IntTypes.v (Hacl.Impl.Poly1305.Fields.precomplen s)) (Hacl.Impl.Poly1305.Fields.limb_zero s)) (ensures Hacl.Impl.Poly1305.Field32xN.fmul_precomp_r_pre h precomp_b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Hacl.Impl.Poly1305.Fields.limb", "Hacl.Impl.Poly1305.Fields.precomplen", "FStar.Monotonic.HyperStack.mem", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.felem5", "Hacl.Impl.Poly1305.Fields.width", "Hacl.Impl.Poly1305.Field32xN.as_tup5", "Hacl.Spec.Poly1305.Field32xN.precomp_r5", "Prims.unit", "Lib.Sequence.eq_intro", "Spec.Poly1305.felem", "Hacl.Impl.Poly1305.Fields.feval", "Lib.Sequence.create", "Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros", "Lib.Buffer.as_seq_gsub", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Fields.nlimb", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.gsub" ]
[]
true
false
true
false
false
let fmul_precomp_inv_zeros #s precomp_b h =
let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Vmr
val va_code_Vmr : dst:va_operand_vec_opr -> src:va_operand_vec_opr -> Tot va_code
val va_code_Vmr : dst:va_operand_vec_opr -> src:va_operand_vec_opr -> Tot va_code
let va_code_Vmr dst src = (Ins (S.Vmr dst src))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 15, "start_col": 0, "start_line": 14 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Vmr", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Vmr dst src =
(Ins (S.Vmr dst src))
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.fermat
val fermat (p:int{is_prime p}) (a:int) : Lemma (pow a p % p == a % p)
val fermat (p:int{is_prime p}) (a:int) : Lemma (pow a p % p == a % p)
let fermat p a = if a % p = 0 then begin small_mod 0 p; pow_mod p a p; pow_zero p end else calc (==) { pow a p % p; == { pow_mod p a p } pow (a % p) p % p; == { fermat_aux p (a % p) } (a % p) % p; == { lemma_mod_twice a p } a % p; }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 475, "start_col": 0, "start_line": 459 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0) let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0) let freshman_aux p a b i = calc (==) { (binomial p i * pow a (p - i) * pow b i) % p; == { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; == { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } (binomial p i % p * (pow a (p - i) * pow b i)) % p; == { binomial_prime p i } 0; } val freshman (p:int{is_prime p}) (a b:int) : Lemma (pow (a + b) p % p = (pow a p + pow b p) % p) let freshman p a b = let f (i:nat{0 <= i /\ i <= p}) = binomial p i * pow a (p - i) * pow b i % p in Classical.forall_intro (freshman_aux p a b); calc (==) { pow (a + b) p % p; == { binomial_theorem a b p } sum 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) % p; == { sum_mod 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) p } sum 0 p f % p; == { sum_first 0 p f; sum_last 1 p f } (f 0 + sum 1 (p - 1) f + f p) % p; == { sum_extensionality 1 (p - 1) f (fun _ -> 0) } (f 0 + sum 1 (p - 1) (fun _ -> 0) + f p) % p; == { sum_const 1 (p - 1) 0 } (f 0 + f p) % p; == { } ((binomial p 0 * pow a p * pow b 0) % p + (binomial p p * pow a 0 * pow b p) % p) % p; == { binomial_0 p; binomial_n p; small_mod 1 p } (pow a p % p + pow b p % p) % p; == { lemma_mod_plus_distr_l (pow a p) (pow b p % p) p; lemma_mod_plus_distr_r (pow a p) (pow b p) p } (pow a p + pow b p) % p; } val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p) (decreases a) let rec fermat_aux p a = if a = 1 then pow_one p else calc (==) { pow a p % p; == { } pow ((a - 1) + 1) p % p; == { freshman p (a - 1) 1 } (pow (a - 1) p + pow 1 p) % p; == { pow_one p } (pow (a - 1) p + 1) % p; == { lemma_mod_plus_distr_l (pow (a - 1) p) 1 p } (pow (a - 1) p % p + 1) % p; == { fermat_aux p (a - 1) } ((a - 1) % p + 1) % p; == { lemma_mod_plus_distr_l (a - 1) 1 p } ((a - 1) + 1) % p; == { } a % p; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.int -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow a p % p == a % p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.op_Equality", "Prims.op_Modulus", "FStar.Math.Fermat.pow_zero", "Prims.unit", "FStar.Math.Fermat.pow_mod", "FStar.Math.Lemmas.small_mod", "Prims.bool", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Math.Fermat.pow", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Fermat.fermat_aux", "FStar.Math.Lemmas.lemma_mod_twice" ]
[]
false
false
true
false
false
let fermat p a =
if a % p = 0 then (small_mod 0 p; pow_mod p a p; pow_zero p) else calc ( == ) { pow a p % p; ( == ) { pow_mod p a p } pow (a % p) p % p; ( == ) { fermat_aux p (a % p) } (a % p) % p; ( == ) { lemma_mod_twice a p } a % p; }
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.mod_mult_congr
val mod_mult_congr (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ c % p <> 0) (ensures a % p = b % p)
val mod_mult_congr (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ c % p <> 0) (ensures a % p = b % p)
let mod_mult_congr p a b c = let open FStar.Math.Lemmas in lemma_mod_mul_distr_l a c p; lemma_mod_mul_distr_l b c p; if a % p = b % p then () else if b % p < a % p then mod_mult_congr_aux p (a % p) (b % p) c else mod_mult_congr_aux p (b % p) (a % p) c
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 501, "start_col": 0, "start_line": 495 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0) let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0) let freshman_aux p a b i = calc (==) { (binomial p i * pow a (p - i) * pow b i) % p; == { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; == { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } (binomial p i % p * (pow a (p - i) * pow b i)) % p; == { binomial_prime p i } 0; } val freshman (p:int{is_prime p}) (a b:int) : Lemma (pow (a + b) p % p = (pow a p + pow b p) % p) let freshman p a b = let f (i:nat{0 <= i /\ i <= p}) = binomial p i * pow a (p - i) * pow b i % p in Classical.forall_intro (freshman_aux p a b); calc (==) { pow (a + b) p % p; == { binomial_theorem a b p } sum 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) % p; == { sum_mod 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) p } sum 0 p f % p; == { sum_first 0 p f; sum_last 1 p f } (f 0 + sum 1 (p - 1) f + f p) % p; == { sum_extensionality 1 (p - 1) f (fun _ -> 0) } (f 0 + sum 1 (p - 1) (fun _ -> 0) + f p) % p; == { sum_const 1 (p - 1) 0 } (f 0 + f p) % p; == { } ((binomial p 0 * pow a p * pow b 0) % p + (binomial p p * pow a 0 * pow b p) % p) % p; == { binomial_0 p; binomial_n p; small_mod 1 p } (pow a p % p + pow b p % p) % p; == { lemma_mod_plus_distr_l (pow a p) (pow b p % p) p; lemma_mod_plus_distr_r (pow a p) (pow b p) p } (pow a p + pow b p) % p; } val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p) (decreases a) let rec fermat_aux p a = if a = 1 then pow_one p else calc (==) { pow a p % p; == { } pow ((a - 1) + 1) p % p; == { freshman p (a - 1) 1 } (pow (a - 1) p + pow 1 p) % p; == { pow_one p } (pow (a - 1) p + 1) % p; == { lemma_mod_plus_distr_l (pow (a - 1) p) 1 p } (pow (a - 1) p % p + 1) % p; == { fermat_aux p (a - 1) } ((a - 1) % p + 1) % p; == { lemma_mod_plus_distr_l (a - 1) 1 p } ((a - 1) + 1) % p; == { } a % p; } let fermat p a = if a % p = 0 then begin small_mod 0 p; pow_mod p a p; pow_zero p end else calc (==) { pow a p % p; == { pow_mod p a p } pow (a % p) p % p; == { fermat_aux p (a % p) } (a % p) % p; == { lemma_mod_twice a p } a % p; } val mod_mult_congr_aux (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ 0 <= b /\ b <= a /\ a < p /\ c % p <> 0) (ensures a = b) let mod_mult_congr_aux p a b c = let open FStar.Math.Lemmas in calc (==>) { (a * c) % p == (b * c) % p; ==> { mod_add_both (a * c) (b * c) (-b * c) p } (a * c - b * c) % p == (b * c - b * c) % p; ==> { swap_mul a c; swap_mul b c; lemma_mul_sub_distr c a b } (c * (a - b)) % p == (b * c - b * c) % p; ==> { small_mod 0 p; lemma_mod_mul_distr_l c (a - b) p } (c % p * (a - b)) % p == 0; }; let r, s = FStar.Math.Euclid.bezout_prime p (c % p) in FStar.Math.Euclid.euclid p (c % p) (a - b) r s; small_mod (a - b) p
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.int -> b: Prims.int -> c: Prims.int -> FStar.Pervasives.Lemma (requires a * c % p = b * c % p /\ c % p <> 0) (ensures a % p = b % p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.op_Equality", "Prims.op_Modulus", "Prims.bool", "Prims.op_LessThan", "FStar.Math.Fermat.mod_mult_congr_aux", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[]
false
false
true
false
false
let mod_mult_congr p a b c =
let open FStar.Math.Lemmas in lemma_mod_mul_distr_l a c p; lemma_mod_mul_distr_l b c p; if a % p = b % p then () else if b % p < a % p then mod_mult_congr_aux p (a % p) (b % p) c else mod_mult_congr_aux p (b % p) (a % p) c
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.sum_mod
val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a))
val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a))
let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 240, "start_col": 0, "start_line": 221 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat{a <= b} -> f: (i: Prims.nat{a <= i /\ i <= b} -> Prims.int) -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.sum a b f % n == FStar.Math.Fermat.sum a b (fun i -> f i % n) % n) (decreases b - a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.int", "Prims.pos", "Prims.op_Equality", "Prims.bool", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Math.Fermat.sum", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Fermat.sum_first", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Math.Fermat.sum_extensionality", "FStar.Math.Fermat.sum_mod", "FStar.Math.Lemmas.lemma_mod_plus_distr_l" ]
[ "recursion" ]
false
false
true
false
false
let rec sum_mod a b f n =
if a = b then () else let g = fun (i: nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i: nat{a + 1 <= i /\ i <= b}) -> f i % n in calc ( == ) { sum a b f % n; ( == ) { sum_first a b f } (f a + sum (a + 1) b f) % n; ( == ) { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; ( == ) { (sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g) } (f a + sum (a + 1) b g % n) % n; ( == ) { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; ( == ) { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; ( == ) { () } sum a b g % n; }
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vmr
val va_codegen_success_Vmr : dst:va_operand_vec_opr -> src:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vmr : dst:va_operand_vec_opr -> src:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vmr dst src = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 19, "start_col": 0, "start_line": 18 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vmr dst src =
(va_ttrue ())
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.freshman_aux
val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0)
val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0)
let freshman_aux p a b i = calc (==) { (binomial p i * pow a (p - i) * pow b i) % p; == { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; == { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } (binomial p i % p * (pow a (p - i) * pow b i)) % p; == { binomial_prime p i } 0; }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 406, "start_col": 0, "start_line": 397 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0) let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.int -> b: Prims.int -> i: Prims.pos{i < p} -> FStar.Pervasives.Lemma (ensures (FStar.Math.Fermat.binomial p i * FStar.Math.Fermat.pow a (p - i)) * FStar.Math.Fermat.pow b i % p == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "FStar.Math.Fermat.binomial", "FStar.Math.Fermat.pow", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Fermat.binomial_prime" ]
[]
false
false
true
false
false
let freshman_aux p a b i =
calc ( == ) { ((binomial p i * pow a (p - i)) * pow b i) % p; ( == ) { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; ( == ) { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } ((binomial p i % p) * (pow a (p - i) * pow b i)) % p; ( == ) { binomial_prime p i } 0; }
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.binomial_prime
val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0)
val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0)
let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 393, "start_col": 0, "start_line": 372 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> k: Prims.pos{k < p} -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.binomial p k % p == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.op_Modulus", "FStar.Math.Fermat.binomial", "Prims.op_Equality", "FStar.Math.Fermat.op_Bang", "FStar.Math.Fermat.factorial_mod_prime", "Prims.bool", "Prims.op_Subtraction", "Prims.unit", "Prims._assert", "Prims.l_or", "FStar.Math.Euclid.euclid_prime", "FStar.Mul.op_Star", "Prims.eq2", "FStar.Math.Fermat.binomial_factorial", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.squash" ]
[]
false
false
true
false
false
let binomial_prime p k =
calc ( == ) { (p * !(p - 1)) % p; ( == ) { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } ((p % p) * !(p - 1)) % p; ( == ) { () } (0 * !(p - 1)) % p; ( == ) { () } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then (euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Mfvsrd
val va_codegen_success_Mfvsrd : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Mfvsrd : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Mfvsrd dst src = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 48, "start_col": 0, "start_line": 47 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_reg_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Mfvsrd dst src =
(va_ttrue ())
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.reveal_ctx_inv'
val reveal_ctx_inv': #s:field_spec -> ctx:poly1305_ctx s -> ctx':poly1305_ctx s -> h0:mem -> h1:mem -> Lemma (requires Seq.equal (as_seq h0 ctx) (as_seq h1 ctx') /\ state_inv_t h0 ctx) (ensures as_get_r h0 ctx == as_get_r h1 ctx' /\ as_get_acc h0 ctx == as_get_acc h1 ctx' /\ state_inv_t h1 ctx')
val reveal_ctx_inv': #s:field_spec -> ctx:poly1305_ctx s -> ctx':poly1305_ctx s -> h0:mem -> h1:mem -> Lemma (requires Seq.equal (as_seq h0 ctx) (as_seq h1 ctx') /\ state_inv_t h0 ctx) (ensures as_get_r h0 ctx == as_get_r h1 ctx' /\ as_get_acc h0 ctx == as_get_acc h1 ctx' /\ state_inv_t h1 ctx')
let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b')
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 79, "start_col": 0, "start_line": 58 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctx: Hacl.Impl.Poly1305.poly1305_ctx s -> ctx': Hacl.Impl.Poly1305.poly1305_ctx s -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (Lib.Buffer.as_seq h0 ctx) (Lib.Buffer.as_seq h1 ctx') /\ Hacl.Impl.Poly1305.state_inv_t h0 ctx) (ensures Hacl.Impl.Poly1305.as_get_r h0 ctx == Hacl.Impl.Poly1305.as_get_r h1 ctx' /\ Hacl.Impl.Poly1305.as_get_acc h0 ctx == Hacl.Impl.Poly1305.as_get_acc h1 ctx' /\ Hacl.Impl.Poly1305.state_inv_t h1 ctx')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.poly1305_ctx", "FStar.Monotonic.HyperStack.mem", "Prims._assert", "Prims.eq2", "Lib.Sequence.lseq", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.precomplen", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Prims.unit", "Hacl.Impl.Poly1305.Fields.nlimb", "Lib.Buffer.as_seq_gsub", "Lib.IntTypes.op_Plus_Bang", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.gsub" ]
[]
true
false
true
false
false
let reveal_ctx_inv' #s ctx ctx' h0 h1 =
let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b')
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Mfvsrld
val va_code_Mfvsrld : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_code
val va_code_Mfvsrld : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_code
let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 74, "start_col": 0, "start_line": 73 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_reg_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Mfvsrld", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Mfvsrld dst src =
(Ins (S.Mfvsrld dst src))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Mfvsrd
val va_code_Mfvsrd : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_code
val va_code_Mfvsrd : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_code
let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 44, "start_col": 0, "start_line": 43 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_reg_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Mfvsrd", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Mfvsrd dst src =
(Ins (S.Mfvsrd dst src))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Mtvsrdd
val va_code_Mtvsrdd : dst:va_operand_vec_opr -> src1:va_operand_reg_opr -> src2:va_operand_reg_opr -> Tot va_code
val va_code_Mtvsrdd : dst:va_operand_vec_opr -> src1:va_operand_reg_opr -> src2:va_operand_reg_opr -> Tot va_code
let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 104, "start_col": 0, "start_line": 103 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_reg_opr -> src2: Vale.PPC64LE.Decls.va_operand_reg_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Mtvsrdd", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Mtvsrdd dst src1 src2 =
(Ins (S.Mtvsrdd dst src1 src2))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Mfvsrld
val va_codegen_success_Mfvsrld : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Mfvsrld : dst:va_operand_reg_opr -> src:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Mfvsrld dst src = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 78, "start_col": 0, "start_line": 77 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_reg_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Mfvsrld dst src =
(va_ttrue ())
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_encode_last
val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b))
val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b))
let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame()
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 200, "start_col": 0, "start_line": 187 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Impl.Poly1305.Fields.felem s -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len < 16} -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 len -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Hacl.Impl.Poly1305.Fields.felem", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Poly1305.Fields.set_bit", "Lib.IntTypes.op_Star_Bang", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Poly1305.Fields.lemma_feval_is_fas_nat", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Poly1305.Fields.load_felem_le", "Prims._assert", "Lib.ByteSequence.nat_from_bytes_le", "Lib.IntTypes.SEC", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Prims.pow2", "FStar.Mul.op_Star", "Prims.eq2", "Prims.nat", "Prims.l_or", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma", "Lib.Buffer.update_sub", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u8", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let poly1305_encode_last #s f len b =
push_frame (); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame ()
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Mtvsrdd
val va_codegen_success_Mtvsrdd : dst:va_operand_vec_opr -> src1:va_operand_reg_opr -> src2:va_operand_reg_opr -> Tot va_pbool
val va_codegen_success_Mtvsrdd : dst:va_operand_vec_opr -> src1:va_operand_reg_opr -> src2:va_operand_reg_opr -> Tot va_pbool
let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 108, "start_col": 0, "start_line": 107 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_reg_opr -> src2: Vale.PPC64LE.Decls.va_operand_reg_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Mtvsrdd dst src1 src2 =
(va_ttrue ())
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Mtvsrws
val va_codegen_success_Mtvsrws : dst:va_operand_vec_opr -> src:va_operand_reg_opr -> Tot va_pbool
val va_codegen_success_Mtvsrws : dst:va_operand_vec_opr -> src:va_operand_reg_opr -> Tot va_pbool
let va_codegen_success_Mtvsrws dst src = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 137, "start_col": 0, "start_line": 136 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src: Vale.PPC64LE.Decls.va_operand_reg_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Mtvsrws dst src =
(va_ttrue ())
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.mod_mult_congr_aux
val mod_mult_congr_aux (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ 0 <= b /\ b <= a /\ a < p /\ c % p <> 0) (ensures a = b)
val mod_mult_congr_aux (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ 0 <= b /\ b <= a /\ a < p /\ c % p <> 0) (ensures a = b)
let mod_mult_congr_aux p a b c = let open FStar.Math.Lemmas in calc (==>) { (a * c) % p == (b * c) % p; ==> { mod_add_both (a * c) (b * c) (-b * c) p } (a * c - b * c) % p == (b * c - b * c) % p; ==> { swap_mul a c; swap_mul b c; lemma_mul_sub_distr c a b } (c * (a - b)) % p == (b * c - b * c) % p; ==> { small_mod 0 p; lemma_mod_mul_distr_l c (a - b) p } (c % p * (a - b)) % p == 0; }; let r, s = FStar.Math.Euclid.bezout_prime p (c % p) in FStar.Math.Euclid.euclid p (c % p) (a - b) r s; small_mod (a - b) p
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 493, "start_col": 0, "start_line": 480 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0) let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0) let freshman_aux p a b i = calc (==) { (binomial p i * pow a (p - i) * pow b i) % p; == { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; == { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } (binomial p i % p * (pow a (p - i) * pow b i)) % p; == { binomial_prime p i } 0; } val freshman (p:int{is_prime p}) (a b:int) : Lemma (pow (a + b) p % p = (pow a p + pow b p) % p) let freshman p a b = let f (i:nat{0 <= i /\ i <= p}) = binomial p i * pow a (p - i) * pow b i % p in Classical.forall_intro (freshman_aux p a b); calc (==) { pow (a + b) p % p; == { binomial_theorem a b p } sum 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) % p; == { sum_mod 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) p } sum 0 p f % p; == { sum_first 0 p f; sum_last 1 p f } (f 0 + sum 1 (p - 1) f + f p) % p; == { sum_extensionality 1 (p - 1) f (fun _ -> 0) } (f 0 + sum 1 (p - 1) (fun _ -> 0) + f p) % p; == { sum_const 1 (p - 1) 0 } (f 0 + f p) % p; == { } ((binomial p 0 * pow a p * pow b 0) % p + (binomial p p * pow a 0 * pow b p) % p) % p; == { binomial_0 p; binomial_n p; small_mod 1 p } (pow a p % p + pow b p % p) % p; == { lemma_mod_plus_distr_l (pow a p) (pow b p % p) p; lemma_mod_plus_distr_r (pow a p) (pow b p) p } (pow a p + pow b p) % p; } val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p) (decreases a) let rec fermat_aux p a = if a = 1 then pow_one p else calc (==) { pow a p % p; == { } pow ((a - 1) + 1) p % p; == { freshman p (a - 1) 1 } (pow (a - 1) p + pow 1 p) % p; == { pow_one p } (pow (a - 1) p + 1) % p; == { lemma_mod_plus_distr_l (pow (a - 1) p) 1 p } (pow (a - 1) p % p + 1) % p; == { fermat_aux p (a - 1) } ((a - 1) % p + 1) % p; == { lemma_mod_plus_distr_l (a - 1) 1 p } ((a - 1) + 1) % p; == { } a % p; } let fermat p a = if a % p = 0 then begin small_mod 0 p; pow_mod p a p; pow_zero p end else calc (==) { pow a p % p; == { pow_mod p a p } pow (a % p) p % p; == { fermat_aux p (a % p) } (a % p) % p; == { lemma_mod_twice a p } a % p; } val mod_mult_congr_aux (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ 0 <= b /\ b <= a /\ a < p /\ c % p <> 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.int -> b: Prims.int -> c: Prims.int -> FStar.Pervasives.Lemma (requires a * c % p = b * c % p /\ 0 <= b /\ b <= a /\ a < p /\ c % p <> 0) (ensures a = b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "FStar.Math.Lemmas.small_mod", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Euclid.euclid", "Prims.op_Modulus", "FStar.Pervasives.Native.tuple2", "FStar.Math.Euclid.bezout_prime", "FStar.Calc.calc_finish", "Prims.logical", "Prims.l_imp", "Prims.eq2", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Calc.calc_push_impl", "Prims.squash", "FStar.Math.Lemmas.mod_add_both", "Prims.op_Minus", "FStar.Math.Lemmas.lemma_mul_sub_distr", "FStar.Math.Lemmas.swap_mul", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[]
false
false
true
false
false
let mod_mult_congr_aux p a b c =
let open FStar.Math.Lemmas in calc ( ==> ) { (a * c) % p == (b * c) % p; ( ==> ) { mod_add_both (a * c) (b * c) (- b * c) p } (a * c - b * c) % p == (b * c - b * c) % p; ( ==> ) { (swap_mul a c; swap_mul b c; lemma_mul_sub_distr c a b) } (c * (a - b)) % p == (b * c - b * c) % p; ( ==> ) { (small_mod 0 p; lemma_mod_mul_distr_l c (a - b) p) } ((c % p) * (a - b)) % p == 0; }; let r, s = FStar.Math.Euclid.bezout_prime p (c % p) in FStar.Math.Euclid.euclid p (c % p) (a - b) r s; small_mod (a - b) p
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Mtvsrws
val va_code_Mtvsrws : dst:va_operand_vec_opr -> src:va_operand_reg_opr -> Tot va_code
val va_code_Mtvsrws : dst:va_operand_vec_opr -> src:va_operand_reg_opr -> Tot va_code
let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 133, "start_col": 0, "start_line": 132 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src: Vale.PPC64LE.Decls.va_operand_reg_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_operand_reg_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Mtvsrws", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Mtvsrws dst src =
(Ins (S.Mtvsrws dst src))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Vadduwm
val va_code_Vadduwm : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
val va_code_Vadduwm : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 162, "start_col": 0, "start_line": 161 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Vadduwm", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Vadduwm dst src1 src2 =
(Ins (S.Vadduwm dst src1 src2))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Vxor
val va_code_Vxor : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
val va_code_Vxor : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 191, "start_col": 0, "start_line": 190 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Vxor", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Vxor dst src1 src2 =
(Ins (S.Vxor dst src1 src2))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vadduwm
val va_codegen_success_Vadduwm : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vadduwm : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 166, "start_col": 0, "start_line": 165 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vadduwm dst src1 src2 =
(va_ttrue ())
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.fermat_aux
val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p) (decreases a)
val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p) (decreases a)
let rec fermat_aux p a = if a = 1 then pow_one p else calc (==) { pow a p % p; == { } pow ((a - 1) + 1) p % p; == { freshman p (a - 1) 1 } (pow (a - 1) p + pow 1 p) % p; == { pow_one p } (pow (a - 1) p + 1) % p; == { lemma_mod_plus_distr_l (pow (a - 1) p) 1 p } (pow (a - 1) p % p + 1) % p; == { fermat_aux p (a - 1) } ((a - 1) % p + 1) % p; == { lemma_mod_plus_distr_l (a - 1) 1 p } ((a - 1) + 1) % p; == { } a % p; }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 457, "start_col": 0, "start_line": 438 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0) let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0) let freshman_aux p a b i = calc (==) { (binomial p i * pow a (p - i) * pow b i) % p; == { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; == { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } (binomial p i % p * (pow a (p - i) * pow b i)) % p; == { binomial_prime p i } 0; } val freshman (p:int{is_prime p}) (a b:int) : Lemma (pow (a + b) p % p = (pow a p + pow b p) % p) let freshman p a b = let f (i:nat{0 <= i /\ i <= p}) = binomial p i * pow a (p - i) * pow b i % p in Classical.forall_intro (freshman_aux p a b); calc (==) { pow (a + b) p % p; == { binomial_theorem a b p } sum 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) % p; == { sum_mod 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) p } sum 0 p f % p; == { sum_first 0 p f; sum_last 1 p f } (f 0 + sum 1 (p - 1) f + f p) % p; == { sum_extensionality 1 (p - 1) f (fun _ -> 0) } (f 0 + sum 1 (p - 1) (fun _ -> 0) + f p) % p; == { sum_const 1 (p - 1) 0 } (f 0 + f p) % p; == { } ((binomial p 0 * pow a p * pow b 0) % p + (binomial p p * pow a 0 * pow b p) % p) % p; == { binomial_0 p; binomial_n p; small_mod 1 p } (pow a p % p + pow b p % p) % p; == { lemma_mod_plus_distr_l (pow a p) (pow b p % p) p; lemma_mod_plus_distr_r (pow a p) (pow b p) p } (pow a p + pow b p) % p; } val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.pos{a < p} -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow a p % p == a % p) (decreases a)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "FStar.Math.Fermat.pow_one", "Prims.bool", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Math.Fermat.pow", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Addition", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Fermat.freshman", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.Math.Fermat.fermat_aux" ]
[ "recursion" ]
false
false
true
false
false
let rec fermat_aux p a =
if a = 1 then pow_one p else calc ( == ) { pow a p % p; ( == ) { () } pow ((a - 1) + 1) p % p; ( == ) { freshman p (a - 1) 1 } (pow (a - 1) p + pow 1 p) % p; ( == ) { pow_one p } (pow (a - 1) p + 1) % p; ( == ) { lemma_mod_plus_distr_l (pow (a - 1) p) 1 p } (pow (a - 1) p % p + 1) % p; ( == ) { fermat_aux p (a - 1) } ((a - 1) % p + 1) % p; ( == ) { lemma_mod_plus_distr_l (a - 1) 1 p } ((a - 1) + 1) % p; ( == ) { () } a % p; }
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vxor
val va_codegen_success_Vxor : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vxor : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 195, "start_col": 0, "start_line": 194 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vxor dst src1 src2 =
(va_ttrue ())
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.fermat_alt
val fermat_alt (p:int{is_prime p}) (a:int{a % p <> 0}) : Lemma (pow a (p - 1) % p == 1)
val fermat_alt (p:int{is_prime p}) (a:int{a % p <> 0}) : Lemma (pow a (p - 1) % p == 1)
let fermat_alt p a = calc (==) { (pow a (p - 1) * a) % p; == { lemma_mod_mul_distr_r (pow a (p - 1)) a p; lemma_mod_mul_distr_l (pow a (p - 1)) (a % p) p } ((pow a (p - 1) % p) * (a % p)) % p; == { pow_mod p a (p - 1) } ((pow (a % p) (p - 1) % p) * (a % p)) % p; == { lemma_mod_mul_distr_l (pow (a % p) (p - 1)) (a % p) p } (pow (a % p) (p - 1) * (a % p)) % p; == { } pow (a % p) p % p; == { fermat p (a % p) } (a % p) % p; == { lemma_mod_twice a p } a % p; == { } (1 * a) % p; }; small_mod 1 p; mod_mult_congr p (pow a (p - 1)) 1 a
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 524, "start_col": 0, "start_line": 503 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m)) let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); } val sum: a:nat -> b:nat{a <= b} -> f:((i:nat{a <= i /\ i <= b}) -> int) -> Tot int (decreases (b - a)) let rec sum a b f = if a = b then f a else f a + sum (a + 1) b f val sum_extensionality (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (requires forall (i:nat{a <= i /\ i <= b}). f i == g i) (ensures sum a b f == sum a b g) (decreases (b - a)) let rec sum_extensionality a b f g = if a = b then () else sum_extensionality (a + 1) b f g val sum_first (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (sum a b f == f a + sum (a + 1) b f) let sum_first a b f = () val sum_last (a:nat) (b:nat{a < b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum a (b - 1) f + f b) (decreases (b - a)) let rec sum_last a b f = if a + 1 = b then sum_first a b f else sum_last (a + 1) b f val sum_const (a:nat) (b:nat{a <= b}) (k:int) : Lemma (ensures sum a b (fun i -> k) == k * (b - a + 1)) (decreases (b - a)) let rec sum_const a b k = if a = b then () else begin sum_const (a + 1) b k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k) end val sum_scale (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (k:int) : Lemma (ensures k * sum a b f == sum a b (fun i -> k * f i)) (decreases (b - a)) let rec sum_scale a b f k = if a = b then () else begin sum_scale (a + 1) b f k; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> k * f i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> k * f i) end val sum_add (a:nat) (b:nat{a <= b}) (f g:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f + sum a b g == sum a b (fun i -> f i + g i)) (decreases (b - a)) let rec sum_add a b f g = if a = b then () else begin sum_add (a + 1) b f g; sum_extensionality (a + 1) b (fun (i:nat{a <= i /\ i <= b}) -> f i + g i) (fun (i:nat{a + 1 <= i /\ i <= b}) -> f i + g i) end val sum_shift (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) : Lemma (ensures sum a b f == sum (a + 1) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1))) (decreases (b - a)) let rec sum_shift a b f = if a = b then () else begin sum_shift (a + 1) b f; sum_extensionality (a + 2) (b + 1) (fun (i:nat{a + 1 <= i /\ i <= b + 1}) -> f (i - 1)) (fun (i:nat{a + 1 + 1 <= i /\ i <= b + 1}) -> f (i - 1)) end val sum_mod (a:nat) (b:nat{a <= b}) (f:(i:nat{a <= i /\ i <= b}) -> int) (n:pos) : Lemma (ensures sum a b f % n == sum a b (fun i -> f i % n) % n) (decreases (b - a)) let rec sum_mod a b f n = if a = b then () else let g = fun (i:nat{a <= i /\ i <= b}) -> f i % n in let f' = fun (i:nat{a + 1 <= i /\ i <= b}) -> f i % n in calc (==) { sum a b f % n; == { sum_first a b f } (f a + sum (a + 1) b f) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b f) n } (f a + (sum (a + 1) b f) % n) % n; == { sum_mod (a + 1) b f n; sum_extensionality (a + 1) b f' g } (f a + sum (a + 1) b g % n) % n; == { lemma_mod_plus_distr_r (f a) (sum (a + 1) b g) n } (f a + sum (a + 1) b g) % n; == { lemma_mod_plus_distr_l (f a) (sum (a + 1) b g) n } (f a % n + sum (a + 1) b g) % n; == { } sum a b g % n; } val binomial_theorem_aux (a b:int) (n:nat) (i:nat{1 <= i /\ i <= n - 1}) : Lemma (a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)) == binomial n i * pow a (n - i) * pow b i) let binomial_theorem_aux a b n i = let open FStar.Math.Lemmas in calc (==) { a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)); == { } a * (binomial (n - 1) i * pow a ((n - i) - 1) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - i) * pow b (i - 1)); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } binomial (n - 1) i * ((a * pow a ((n - i) - 1)) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * (b * pow b (i - 1))); == { assert (a * pow a ((n - i) - 1) == pow a (n - i)); assert (b * pow b (i - 1) == pow b i) } binomial (n - 1) i * (pow a (n - i) * pow b i) + binomial (n - 1) (i - 1) * (pow a (n - i) * pow b i); == { _ by (FStar.Tactics.CanonCommSemiring.int_semiring()) } (binomial (n - 1) i + binomial (n - 1) (i - 1)) * (pow a (n - i) * pow b i); == { pascal (n - 1) i } binomial n i * (pow a (n - i) * pow b i); == { paren_mul_right (binomial n i) (pow a (n - i)) (pow b i) } binomial n i * pow a (n - i) * pow b i; } #push-options "--fuel 2" val binomial_theorem (a b:int) (n:nat) : Lemma (pow (a + b) n == sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i)) let rec binomial_theorem a b n = if n = 0 then () else if n = 1 then (binomial_n 1; binomial_0 1) else let reorder (a b c d:int) : Lemma (a + b + (c + d) == a + d + (b + c)) = assert (a + b + (c + d) == a + d + (b + c)) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { pow (a + b) n; == { } (a + b) * pow (a + b) (n - 1); == { distributivity_add_left a b (pow (a + b) (n - 1)) } a * pow (a + b) (n - 1) + b * pow (a + b) (n - 1); == { binomial_theorem a b (n - 1) } a * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * sum 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i); == { sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) a; sum_scale 0 (n - 1) (fun i -> binomial (n - 1) i * pow a (n - 1 - i) * pow b i) b } sum 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); == { sum_first 0 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_last 0 (n - 1) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 0 (n - 2) (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun (i:nat{0 <= i /\ i <= n - 1}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))} (a * (binomial (n - 0) 0 * pow a (n - 1 - 0) * pow b 0)) + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + b * (binomial (n - 1) (n - 1) * pow a (n - 1 - (n - 1)) * pow b (n - 1))); == { binomial_0 n; binomial_n (n - 1) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + pow b n); == { sum_shift 0 (n - 2) (fun i -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n - 1}) -> (fun (i:nat{0 <= i /\ i <= n - 2}) -> b * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (i - 1)) (fun (i:nat{1 <= i /\ i <= n - 2 + 1}) -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + (sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) + pow b n); == { reorder (pow a n) (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i))) (sum 1 (n - 2 + 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))) (pow b n) } a * pow a (n - 1) + b * pow b (n - 1) + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) + sum 1 (n - 1) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { sum_add 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i)) (fun i -> b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) } pow a n + pow b n + (sum 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1)))); == { Classical.forall_intro (binomial_theorem_aux a b n); sum_extensionality 1 (n - 1) (fun i -> a * (binomial (n - 1) i * pow a (n - 1 - i) * pow b i) + b * (binomial (n - 1) (i - 1) * pow a (n - 1 - (i - 1)) * pow b (i - 1))) (fun i -> binomial n i * pow a (n - i) * pow b i) } pow a n + pow b n + sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i); == { } pow a n + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + pow b n); == { binomial_0 n; binomial_n n } binomial n 0 * pow a (n - 0) * pow b 0 + (sum 1 (n - 1) (fun i -> binomial n i * pow a (n - i) * pow b i) + binomial n n * pow a (n - n) * pow b n); == { sum_first 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_last 1 n (fun i -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 n (fun (i:nat{0 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i); sum_extensionality 1 (n - 1) (fun (i:nat{1 <= i /\ i <= n}) -> binomial n i * pow a (n - i) * pow b i) (fun (i:nat{1 <= i /\ i <= n - 1}) -> binomial n i * pow a (n - i) * pow b i) } sum 0 n (fun i -> binomial n i * pow a (n - i) * pow b i); } #pop-options val factorial_mod_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (requires !k % p = 0) (ensures False) (decreases k) let rec factorial_mod_prime p k = if k = 0 then () else begin euclid_prime p k !(k - 1); factorial_mod_prime p (k - 1) end val binomial_prime (p:int{is_prime p}) (k:pos{k < p}) : Lemma (binomial p k % p == 0) let binomial_prime p k = calc (==) { (p * !(p -1)) % p; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l p (!(p - 1)) p } (p % p * !(p - 1)) % p; == { } (0 * !(p - 1)) % p; == { } 0; }; binomial_factorial (p - k) k; assert (binomial p k * (!k * !(p - k)) == p * !(p - 1)); euclid_prime p (binomial p k) (!k * !(p - k)); if (binomial p k % p <> 0) then begin euclid_prime p !k !(p - k); assert (!k % p = 0 \/ !(p - k) % p = 0); if !k % p = 0 then factorial_mod_prime p k else factorial_mod_prime p (p - k) end val freshman_aux (p:int{is_prime p}) (a b:int) (i:pos{i < p}): Lemma ((binomial p i * pow a (p - i) * pow b i) % p == 0) let freshman_aux p a b i = calc (==) { (binomial p i * pow a (p - i) * pow b i) % p; == { paren_mul_right (binomial p i) (pow a (p - i)) (pow b i) } (binomial p i * (pow a (p - i) * pow b i)) % p; == { lemma_mod_mul_distr_l (binomial p i) (pow a (p - i) * pow b i) p } (binomial p i % p * (pow a (p - i) * pow b i)) % p; == { binomial_prime p i } 0; } val freshman (p:int{is_prime p}) (a b:int) : Lemma (pow (a + b) p % p = (pow a p + pow b p) % p) let freshman p a b = let f (i:nat{0 <= i /\ i <= p}) = binomial p i * pow a (p - i) * pow b i % p in Classical.forall_intro (freshman_aux p a b); calc (==) { pow (a + b) p % p; == { binomial_theorem a b p } sum 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) % p; == { sum_mod 0 p (fun i -> binomial p i * pow a (p - i) * pow b i) p } sum 0 p f % p; == { sum_first 0 p f; sum_last 1 p f } (f 0 + sum 1 (p - 1) f + f p) % p; == { sum_extensionality 1 (p - 1) f (fun _ -> 0) } (f 0 + sum 1 (p - 1) (fun _ -> 0) + f p) % p; == { sum_const 1 (p - 1) 0 } (f 0 + f p) % p; == { } ((binomial p 0 * pow a p * pow b 0) % p + (binomial p p * pow a 0 * pow b p) % p) % p; == { binomial_0 p; binomial_n p; small_mod 1 p } (pow a p % p + pow b p % p) % p; == { lemma_mod_plus_distr_l (pow a p) (pow b p % p) p; lemma_mod_plus_distr_r (pow a p) (pow b p) p } (pow a p + pow b p) % p; } val fermat_aux (p:int{is_prime p}) (a:pos{a < p}) : Lemma (ensures pow a p % p == a % p) (decreases a) let rec fermat_aux p a = if a = 1 then pow_one p else calc (==) { pow a p % p; == { } pow ((a - 1) + 1) p % p; == { freshman p (a - 1) 1 } (pow (a - 1) p + pow 1 p) % p; == { pow_one p } (pow (a - 1) p + 1) % p; == { lemma_mod_plus_distr_l (pow (a - 1) p) 1 p } (pow (a - 1) p % p + 1) % p; == { fermat_aux p (a - 1) } ((a - 1) % p + 1) % p; == { lemma_mod_plus_distr_l (a - 1) 1 p } ((a - 1) + 1) % p; == { } a % p; } let fermat p a = if a % p = 0 then begin small_mod 0 p; pow_mod p a p; pow_zero p end else calc (==) { pow a p % p; == { pow_mod p a p } pow (a % p) p % p; == { fermat_aux p (a % p) } (a % p) % p; == { lemma_mod_twice a p } a % p; } val mod_mult_congr_aux (p:int{is_prime p}) (a b c:int) : Lemma (requires (a * c) % p = (b * c) % p /\ 0 <= b /\ b <= a /\ a < p /\ c % p <> 0) (ensures a = b) let mod_mult_congr_aux p a b c = let open FStar.Math.Lemmas in calc (==>) { (a * c) % p == (b * c) % p; ==> { mod_add_both (a * c) (b * c) (-b * c) p } (a * c - b * c) % p == (b * c - b * c) % p; ==> { swap_mul a c; swap_mul b c; lemma_mul_sub_distr c a b } (c * (a - b)) % p == (b * c - b * c) % p; ==> { small_mod 0 p; lemma_mod_mul_distr_l c (a - b) p } (c % p * (a - b)) % p == 0; }; let r, s = FStar.Math.Euclid.bezout_prime p (c % p) in FStar.Math.Euclid.euclid p (c % p) (a - b) r s; small_mod (a - b) p let mod_mult_congr p a b c = let open FStar.Math.Lemmas in lemma_mod_mul_distr_l a c p; lemma_mod_mul_distr_l b c p; if a % p = b % p then () else if b % p < a % p then mod_mult_congr_aux p (a % p) (b % p) c else mod_mult_congr_aux p (b % p) (a % p) c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.int{a % p <> 0} -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow a (p - 1) % p == 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.b2t", "Prims.op_disEquality", "Prims.op_Modulus", "FStar.Math.Fermat.mod_mult_congr", "FStar.Math.Fermat.pow", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.small_mod", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.squash", "FStar.Math.Fermat.pow_mod", "FStar.Math.Fermat.fermat", "FStar.Math.Lemmas.lemma_mod_twice" ]
[]
false
false
true
false
false
let fermat_alt p a =
calc ( == ) { (pow a (p - 1) * a) % p; ( == ) { (lemma_mod_mul_distr_r (pow a (p - 1)) a p; lemma_mod_mul_distr_l (pow a (p - 1)) (a % p) p) } ((pow a (p - 1) % p) * (a % p)) % p; ( == ) { pow_mod p a (p - 1) } ((pow (a % p) (p - 1) % p) * (a % p)) % p; ( == ) { lemma_mod_mul_distr_l (pow (a % p) (p - 1)) (a % p) p } (pow (a % p) (p - 1) * (a % p)) % p; ( == ) { () } pow (a % p) p % p; ( == ) { fermat p (a % p) } (a % p) % p; ( == ) { lemma_mod_twice a p } a % p; ( == ) { () } (1 * a) % p; }; small_mod 1 p; mod_mult_congr p (pow a (p - 1)) 1 a
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Vand
val va_code_Vand : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
val va_code_Vand : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 220, "start_col": 0, "start_line": 219 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Vand", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Vand dst src1 src2 =
(Ins (S.Vand dst src1 src2))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vand
val va_codegen_success_Vand : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vand : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vand dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 224, "start_col": 0, "start_line": 223 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand [@ "opaque_to_smt"] let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vand dst src1 src2 =
(va_ttrue ())
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vslw
val va_codegen_success_Vslw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vslw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vslw dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 253, "start_col": 0, "start_line": 252 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand [@ "opaque_to_smt"] let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vand dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vand va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vand) (va_code_Vand dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vand dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vand dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vand dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vand (va_code_Vand dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vslw [@ "opaque_to_smt"] let va_code_Vslw dst src1 src2 = (Ins (S.Vslw dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vslw dst src1 src2 =
(va_ttrue ())
false
FStar.Math.Fermat.fst
FStar.Math.Fermat.binomial_factorial
val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m))
val binomial_factorial (m n:nat) : Lemma (binomial (n + m) n * (!n * !m) == !(n + m))
let rec binomial_factorial m n = match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d:int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = assert (a * (b * (c * d)) == c * (a * (b * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in let reorder2 (a b c d:int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = assert (a * ((b * c) * d) == b * (a * (c * d))) by (FStar.Tactics.CanonCommSemiring.int_semiring()) in calc (==) { binomial (n + m) n * (!n * !m); == { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); == { addition_is_associative n m (-1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); == { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); == { } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); == { reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); == { binomial_factorial (m - 1) n; binomial_factorial m (n - 1) } m * !(n + (m - 1)) + n * !((n - 1) + m); == { } m * !(n + m - 1) + n * !(n + m - 1); == { } n * !(n + m - 1) + m * !(n + m - 1); == { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); == { } !(n + m); }
{ "file_name": "ulib/FStar.Math.Fermat.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 140, "start_col": 0, "start_line": 98 }
module FStar.Math.Fermat open FStar.Mul open FStar.Math.Lemmas open FStar.Math.Euclid #set-options "--fuel 1 --ifuel 0 --z3rlimit 20" /// /// Pow /// val pow_zero (k:pos) : Lemma (ensures pow 0 k == 0) (decreases k) let rec pow_zero k = match k with | 1 -> () | _ -> pow_zero (k - 1) val pow_one (k:nat) : Lemma (pow 1 k == 1) let rec pow_one = function | 0 -> () | k -> pow_one (k - 1) val pow_plus (a:int) (k m:nat): Lemma (pow a (k + m) == pow a k * pow a m) let rec pow_plus a k m = match k with | 0 -> () | _ -> calc (==) { pow a (k + m); == { } a * pow a ((k + m) - 1); == { pow_plus a (k - 1) m } a * (pow a (k - 1) * pow a m); == { } pow a k * pow a m; } val pow_mod (p:pos) (a:int) (k:nat) : Lemma (pow a k % p == pow (a % p) k % p) let rec pow_mod p a k = if k = 0 then () else calc (==) { pow a k % p; == { } a * pow a (k - 1) % p; == { lemma_mod_mul_distr_r a (pow a (k - 1)) p } (a * (pow a (k - 1) % p)) % p; == { pow_mod p a (k - 1) } (a * (pow (a % p) (k - 1) % p)) % p; == { lemma_mod_mul_distr_r a (pow (a % p) (k - 1)) p } a * pow (a % p) (k - 1) % p; == { lemma_mod_mul_distr_l a (pow (a % p) (k - 1)) p } (a % p * pow (a % p) (k - 1)) % p; == { } pow (a % p) k % p; } /// /// Binomial theorem /// val binomial (n k:nat) : nat let rec binomial n k = match n, k with | _, 0 -> 1 | 0, _ -> 0 | _, _ -> binomial (n - 1) k + binomial (n - 1) (k - 1) val binomial_0 (n:nat) : Lemma (binomial n 0 == 1) let binomial_0 n = () val binomial_lt (n:nat) (k:nat{n < k}) : Lemma (binomial n k = 0) let rec binomial_lt n k = match n, k with | _, 0 -> () | 0, _ -> () | _ -> binomial_lt (n - 1) k; binomial_lt (n - 1) (k - 1) val binomial_n (n:nat) : Lemma (binomial n n == 1) let rec binomial_n n = match n with | 0 -> () | _ -> binomial_lt n (n + 1); binomial_n (n - 1) val pascal (n:nat) (k:pos{k <= n}) : Lemma (binomial n k + binomial n (k - 1) = binomial (n + 1) k) let pascal n k = () val factorial: nat -> pos let rec factorial = function | 0 -> 1 | n -> n * factorial (n - 1) let ( ! ) n = factorial n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonCommSemiring.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Fermat.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Euclid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat -> n: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.binomial (n + m) n * (!n * !m) == !(n + m))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "FStar.Math.Fermat.binomial_n", "FStar.Pervasives.Native.tuple2", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "FStar.Math.Fermat.binomial", "Prims.op_Addition", "FStar.Math.Fermat.op_Bang", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Fermat.pascal", "Prims.squash", "FStar.Math.Lemmas.addition_is_associative", "Prims.op_Minus", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Fermat.binomial_factorial", "Prims.l_True", "Prims.op_Multiply", "FStar.Pervasives.pattern", "FStar.Tactics.Effect.assert_by_tactic", "FStar.Tactics.CanonCommSemiring.int_semiring" ]
[ "recursion" ]
false
false
true
false
false
let rec binomial_factorial m n =
match m, n with | 0, _ -> binomial_n n | _, 0 -> () | _ -> let open FStar.Math.Lemmas in let reorder1 (a b c d: int) : Lemma (a * (b * (c * d)) == c * (a * (b * d))) = FStar.Tactics.Effect.assert_by_tactic (a * (b * (c * d)) == c * (a * (b * d))) (fun _ -> (); (FStar.Tactics.CanonCommSemiring.int_semiring ())) in let reorder2 (a b c d: int) : Lemma (a * ((b * c) * d) == b * (a * (c * d))) = FStar.Tactics.Effect.assert_by_tactic (a * ((b * c) * d) == b * (a * (c * d))) (fun _ -> (); (FStar.Tactics.CanonCommSemiring.int_semiring ())) in calc ( == ) { binomial (n + m) n * (!n * !m); ( == ) { pascal (n + m - 1) n } (binomial (n + m - 1) n + binomial (n + m - 1) (n - 1)) * (!n * !m); ( == ) { addition_is_associative n m (- 1) } (binomial (n + (m - 1)) n + binomial (n + (m - 1)) (n - 1)) * (!n * !m); ( == ) { distributivity_add_left (binomial (n + (m - 1)) n) (binomial (n + (m - 1)) (n - 1)) (!n * !m) } binomial (n + (m - 1)) n * (!n * !m) + binomial (n + (m - 1)) (n - 1) * (!n * !m); ( == ) { () } binomial (n + (m - 1)) n * (!n * (m * !(m - 1))) + binomial ((n - 1) + m) (n - 1) * ((n * !(n - 1)) * !m); ( == ) { (reorder1 (binomial (n + (m - 1)) n) (!n) m (!(m - 1)); reorder2 (binomial ((n - 1) + m) (n - 1)) n (!(n - 1)) (!m)) } m * (binomial (n + (m - 1)) n * (!n * !(m - 1))) + n * (binomial ((n - 1) + m) (n - 1) * (!(n - 1) * !m)); ( == ) { (binomial_factorial (m - 1) n; binomial_factorial m (n - 1)) } m * !(n + (m - 1)) + n * !((n - 1) + m); ( == ) { () } m * !(n + m - 1) + n * !(n + m - 1); ( == ) { () } n * !(n + m - 1) + m * !(n + m - 1); ( == ) { distributivity_add_left m n (!(n + m - 1)) } (n + m) * !(n + m - 1); ( == ) { () } !(n + m); }
false
Hacl.Impl.Poly1305.fst
Hacl.Impl.Poly1305.poly1305_update_128_256
val poly1305_update_128_256: #s:field_spec { s = M128 || s = M256 } -> poly1305_update_st s
val poly1305_update_128_256: #s:field_spec { s = M128 || s = M256 } -> poly1305_update_st s
let poly1305_update_128_256 #s ctx len text = let pre = get_precomp_r ctx in let acc = get_acc ctx in let h0 = ST.get () in poly1305_update_vec #s len text pre acc; let h1 = ST.get () in Equiv.poly1305_update_vec_lemma #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 114, "end_line": 576, "start_col": 0, "start_line": 570 }
module Hacl.Impl.Poly1305 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Poly1305.Fields open Hacl.Impl.Poly1305.Bignum128 module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module S = Spec.Poly1305 module Vec = Hacl.Spec.Poly1305.Vec module Equiv = Hacl.Spec.Poly1305.Equiv module F32xN = Hacl.Impl.Poly1305.Field32xN friend Lib.LoopCombinators let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract let get_acc #s (ctx:poly1305_ctx s) : Stack (felem s) (requires fun h -> live h ctx) (ensures fun h0 acc h1 -> h0 == h1 /\ live h1 acc /\ acc == gsub ctx 0ul (nlimb s)) = sub ctx 0ul (nlimb s) inline_for_extraction noextract let get_precomp_r #s (ctx:poly1305_ctx s) : Stack (precomp_r s) (requires fun h -> live h ctx) (ensures fun h0 pre h1 -> h0 == h1 /\ live h1 pre /\ pre == gsub ctx (nlimb s) (precomplen s)) = sub ctx (nlimb s) (precomplen s) unfold let op_String_Access #a #len = LSeq.index #a #len let as_get_acc #s h ctx = (feval h (gsub ctx 0ul (nlimb s))).[0] let as_get_r #s h ctx = (feval h (gsub ctx (nlimb s) (nlimb s))).[0] let state_inv_t #s h ctx = felem_fits h (gsub ctx 0ul (nlimb s)) (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h (gsub ctx (nlimb s) (precomplen s)) #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --record_options" let reveal_ctx_inv' #s ctx ctx' h0 h1 = let acc_b = gsub ctx 0ul (nlimb s) in let acc_b' = gsub ctx' 0ul (nlimb s) in let r_b = gsub ctx (nlimb s) (nlimb s) in let r_b' = gsub ctx' (nlimb s) (nlimb s) in let precom_b = gsub ctx (nlimb s) (precomplen s) in let precom_b' = gsub ctx' (nlimb s) (precomplen s) in as_seq_gsub h0 ctx 0ul (nlimb s); as_seq_gsub h1 ctx 0ul (nlimb s); as_seq_gsub h0 ctx (nlimb s) (nlimb s); as_seq_gsub h1 ctx (nlimb s) (nlimb s); as_seq_gsub h0 ctx (nlimb s) (precomplen s); as_seq_gsub h1 ctx (nlimb s) (precomplen s); as_seq_gsub h0 ctx' 0ul (nlimb s); as_seq_gsub h1 ctx' 0ul (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (nlimb s); as_seq_gsub h1 ctx' (nlimb s) (nlimb s); as_seq_gsub h0 ctx' (nlimb s) (precomplen s); as_seq_gsub h1 ctx' (nlimb s) (precomplen s); assert (as_seq h0 acc_b == as_seq h1 acc_b'); assert (as_seq h0 r_b == as_seq h1 r_b'); assert (as_seq h0 precom_b == as_seq h1 precom_b') val fmul_precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.fmul_precomp_r_pre #(width s) h precomp_b) let fmul_precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let r_b5 = gsub precomp_b (nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (nlimb s) (nlimb s); Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h r_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h r_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h r_b)) val precomp_inv_zeros: #s:field_spec -> precomp_b:lbuffer (limb s) (precomplen s) -> h:mem -> Lemma (requires as_seq h precomp_b == Lib.Sequence.create (v (precomplen s)) (limb_zero s)) (ensures F32xN.load_precompute_r_post #(width s) h precomp_b) #push-options "--z3rlimit 150" let precomp_inv_zeros #s precomp_b h = let r_b = gsub precomp_b 0ul (nlimb s) in let rn_b = gsub precomp_b (2ul *! nlimb s) (nlimb s) in let rn_b5 = gsub precomp_b (3ul *! nlimb s) (nlimb s) in as_seq_gsub h precomp_b 0ul (nlimb s); as_seq_gsub h precomp_b (2ul *! nlimb s) (nlimb s); as_seq_gsub h precomp_b (3ul *! nlimb s) (nlimb s); fmul_precomp_inv_zeros #s precomp_b h; Hacl.Spec.Poly1305.Field32xN.Lemmas.precomp_r5_zeros (width s); LSeq.eq_intro (feval h r_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b) (LSeq.create (width s) 0); LSeq.eq_intro (feval h rn_b5) (LSeq.create (width s) 0); assert (F32xN.as_tup5 #(width s) h rn_b5 == F32xN.precomp_r5 (F32xN.as_tup5 h rn_b)); assert (feval h rn_b == Vec.compute_rw (feval h r_b).[0]) #pop-options let ctx_inv_zeros #s ctx h = // ctx = [acc_b; r_b; r_b5; rn_b; rn_b5] let acc_b = gsub ctx 0ul (nlimb s) in as_seq_gsub h ctx 0ul (nlimb s); LSeq.eq_intro (feval h acc_b) (LSeq.create (width s) 0); assert (felem_fits h acc_b (2, 2, 2, 2, 2)); let precomp_b = gsub ctx (nlimb s) (precomplen s) in LSeq.eq_intro (as_seq h precomp_b) (Lib.Sequence.create (v (precomplen s)) (limb_zero s)); precomp_inv_zeros #s precomp_b h #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq' --record_options" inline_for_extraction noextract val poly1305_encode_block: #s:field_spec -> f:felem s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode 16 (as_seq h0 b)) let poly1305_encode_block #s f b = load_felem_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_blocks: #s:field_spec -> f:felem s -> b:lbuffer uint8 (blocklen s) -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ feval h1 f == Vec.load_blocks #(width s) (as_seq h0 b)) let poly1305_encode_blocks #s f b = load_felems_le f b; set_bit128 f inline_for_extraction noextract val poly1305_encode_last: #s:field_spec -> f:felem s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h f /\ disjoint b f) (ensures fun h0 _ h1 -> modifies (loc f) h0 h1 /\ felem_fits h1 f (1, 1, 1, 1, 1) /\ (feval h1 f).[0] == S.encode (v len) (as_seq h0 b)) let poly1305_encode_last #s f len b = push_frame(); let tmp = create 16ul (u8 0) in update_sub tmp 0ul len b; let h0 = ST.get () in Hacl.Impl.Poly1305.Lemmas.nat_from_bytes_le_eq_lemma (v len) (as_seq h0 b); assert (BSeq.nat_from_bytes_le (as_seq h0 b) == BSeq.nat_from_bytes_le (as_seq h0 tmp)); assert (BSeq.nat_from_bytes_le (as_seq h0 b) < pow2 (v len * 8)); load_felem_le f tmp; let h1 = ST.get () in lemma_feval_is_fas_nat h1 f; set_bit f (len *! 8ul); pop_frame() inline_for_extraction noextract val poly1305_encode_r: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h b /\ live h p /\ disjoint b p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F32xN.load_precompute_r_post #(width s) h1 p /\ (feval h1 (gsub p 0ul 5ul)).[0] == S.poly1305_encode_r (as_seq h0 b)) let poly1305_encode_r #s p b = let lo = uint_from_bytes_le (sub b 0ul 8ul) in let hi = uint_from_bytes_le (sub b 8ul 8ul) in let mask0 = u64 0x0ffffffc0fffffff in let mask1 = u64 0x0ffffffc0ffffffc in let lo = lo &. mask0 in let hi = hi &. mask1 in load_precompute_r p lo hi [@ Meta.Attribute.specialize ] let poly1305_init #s ctx key = let acc = get_acc ctx in let pre = get_precomp_r ctx in let kr = sub key 0ul 16ul in set_zero acc; poly1305_encode_r #s pre kr inline_for_extraction noextract val update1: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 16ul -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16 (as_seq h0 b) (feval h0 acc).[0]) let update1 #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_block e b; fadd_mul_r acc e pre; pop_frame () let poly1305_update1 #s ctx text = let pre = get_precomp_r ctx in let acc = get_acc ctx in update1 pre text acc inline_for_extraction noextract val poly1305_update_last: #s:field_spec -> p:precomp_r s -> len:size_t{v len < 16} -> b:lbuffer uint8 len -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint p acc /\ disjoint b acc /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] (v len) (as_seq h0 b) (feval h0 acc).[0]) #push-options "--z3rlimit 200" let poly1305_update_last #s pre len b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_last e len b; fadd_mul_r acc e pre; pop_frame () #pop-options inline_for_extraction noextract val poly1305_update_nblocks: #s:field_spec -> p:precomp_r s -> b:lbuffer uint8 (blocklen s) -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h b /\ live h acc /\ disjoint acc p /\ disjoint acc b /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul)) (as_seq h0 b) (feval h0 acc)) let poly1305_update_nblocks #s pre b acc = push_frame (); let e = create (nlimb s) (limb_zero s) in poly1305_encode_blocks e b; fmul_rn acc acc pre; fadd acc acc e; pop_frame () inline_for_extraction noextract val poly1305_update1_f: #s:field_spec -> p:precomp_r s -> nb:size_t -> len:size_t{v nb == v len / 16} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == LSeq.repeat_blocks_f #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub p 0ul 5ul)).[0] 16) (v nb) (v i) (feval h0 acc).[0]) let poly1305_update1_f #s pre nb len text i acc= assert ((v i + 1) * 16 <= v nb * 16); let block = sub #_ #_ #len text (i *! 16ul) 16ul in update1 #s pre block acc #push-options "--z3rlimit 100 --max_fuel 1" inline_for_extraction noextract val poly1305_update_scalar: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == S.poly1305_update (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_scalar #s len text pre acc = let nb = len /. 16ul in let rem = len %. 16ul in let h0 = ST.get () in LSeq.lemma_repeat_blocks #uint8 #S.felem 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (S.poly1305_update_last (feval h0 (gsub pre 0ul 5ul)).[0]) (feval h0 acc).[0]; [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f 16 (as_seq h0 text) (S.poly1305_update1 (feval h0 (gsub pre 0ul 5ul)).[0] 16) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.fmul_precomp_r_pre #(width s) h pre /\ (feval h acc).[0] == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc).[0] in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc).[0] (v i); poly1305_update1_f #s pre nb len text i acc); let h1 = ST.get () in assert ((feval h1 acc).[0] == Lib.LoopCombinators.repeati (v nb) (spec_fh h0) (feval h0 acc).[0]); if rem >. 0ul then ( let last = sub text (nb *! 16ul) rem in as_seq_gsub h1 text (nb *! 16ul) rem; assert (disjoint acc last); poly1305_update_last #s pre rem last acc) #pop-options inline_for_extraction noextract val poly1305_update_multi_f: #s:field_spec -> p:precomp_r s -> bs:size_t{v bs == width s * S.size_block} -> nb:size_t -> len:size_t{v nb == v len / v bs /\ v len % v bs == 0} -> text:lbuffer uint8 len -> i:size_t{v i < v nb} -> acc:felem s -> Stack unit (requires fun h -> live h p /\ live h text /\ live h acc /\ disjoint acc p /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h p) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 p /\ feval h1 acc == LSeq.repeat_blocks_f #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub p 10ul 5ul))) (v nb) (v i) (feval h0 acc)) let poly1305_update_multi_f #s pre bs nb len text i acc= assert ((v i + 1) * v bs <= v nb * v bs); let block = sub #_ #_ #len text (i *! bs) bs in let h1 = ST.get () in as_seq_gsub h1 text (i *! bs) bs; poly1305_update_nblocks #s pre block acc #push-options "--max_fuel 1" inline_for_extraction noextract val poly1305_update_multi_loop: #s:field_spec -> bs:size_t{v bs == width s * S.size_block} -> len:size_t{v len % v (blocklen s) == 0} -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h pre /\ live h acc /\ live h text /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h1 pre /\ feval h1 acc == LSeq.repeat_blocks_multi #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks (feval h0 (gsub pre 10ul 5ul))) (feval h0 acc)) let poly1305_update_multi_loop #s bs len text pre acc = let nb = len /. bs in let h0 = ST.get () in LSeq.lemma_repeat_blocks_multi #uint8 #(Vec.elem (width s)) (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub pre 10ul 5ul))) (feval h0 acc); [@ inline_let] let spec_fh h0 = LSeq.repeat_blocks_f (v bs) (as_seq h0 text) (Vec.poly1305_update_nblocks #(width s) (feval h0 (gsub pre 10ul 5ul))) (v nb) in [@ inline_let] let inv h (i:nat{i <= v nb}) = modifies1 acc h0 h /\ live h pre /\ live h text /\ live h acc /\ disjoint acc pre /\ disjoint acc text /\ felem_fits h acc (3, 3, 3, 3, 3) /\ F32xN.load_precompute_r_post #(width s) h pre /\ feval h acc == Lib.LoopCombinators.repeati i (spec_fh h0) (feval h0 acc) in Lib.Loops.for (size 0) nb inv (fun i -> Lib.LoopCombinators.unfold_repeati (v nb) (spec_fh h0) (feval h0 acc) (v i); poly1305_update_multi_f #s pre bs nb len text i acc) #pop-options #push-options "--z3rlimit 350" inline_for_extraction noextract val poly1305_update_multi: #s:field_spec -> len:size_t{0 < v len /\ v len % v (blocklen s) == 0} -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h pre /\ live h acc /\ live h text /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == Vec.poly1305_update_multi #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_multi #s len text pre acc = let h0 = ST.get () in assert_norm (v 10ul + v 5ul <= v 20ul); assert (feval h0 (gsub pre 10ul 5ul) == Vec.compute_rw #(width s) ((feval h0 (gsub pre 0ul 5ul)).[0])); let bs = blocklen s in //assert (v bs == width s * S.size_block); let text0 = sub text 0ul bs in load_acc #s acc text0; let len1 = len -! bs in let text1 = sub text bs len1 in poly1305_update_multi_loop #s bs len1 text1 pre acc; fmul_rn_normalize acc pre #pop-options inline_for_extraction noextract val poly1305_update_vec: #s:field_spec -> len:size_t -> text:lbuffer uint8 len -> pre:precomp_r s -> acc:felem s -> Stack unit (requires fun h -> live h text /\ live h acc /\ live h pre /\ disjoint acc text /\ disjoint acc pre /\ felem_fits h acc (2, 2, 2, 2, 2) /\ F32xN.load_precompute_r_post #(width s) h pre) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (2, 2, 2, 2, 2) /\ (feval h1 acc).[0] == Vec.poly1305_update_vec #(width s) (as_seq h0 text) (feval h0 acc).[0] (feval h0 (gsub pre 0ul 5ul)).[0]) let poly1305_update_vec #s len text pre acc = let sz_block = blocklen s in FStar.Math.Lemmas.multiply_fractions (v len) (v sz_block); let len0 = (len /. sz_block) *! sz_block in let t0 = sub text 0ul len0 in FStar.Math.Lemmas.multiple_modulo_lemma (v (len /. sz_block)) (v (blocklen s)); if len0 >. 0ul then poly1305_update_multi len0 t0 pre acc; let len1 = len -! len0 in let t1 = sub text len0 len1 in poly1305_update_scalar #s len1 t1 pre acc inline_for_extraction noextract val poly1305_update32: poly1305_update_st M32 let poly1305_update32 ctx len text = let pre = get_precomp_r ctx in let acc = get_acc ctx in poly1305_update_scalar #M32 len text pre acc inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Equiv.fst.checked", "Hacl.Impl.Poly1305.Lemmas.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Bignum128.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": "F32xN" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Equiv", "short_module": "Equiv" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Bignum128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Poly1305.poly1305_update_st s
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Prims.b2t", "Prims.op_BarBar", "Prims.op_Equality", "Hacl.Impl.Poly1305.Fields.M128", "Hacl.Impl.Poly1305.Fields.M256", "Hacl.Impl.Poly1305.poly1305_ctx", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Spec.Poly1305.Equiv.poly1305_update_vec_lemma", "Hacl.Impl.Poly1305.Fields.width", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.op_String_Access", "Spec.Poly1305.felem", "Hacl.Impl.Poly1305.Fields.feval", "Lib.Buffer.gsub", "Hacl.Impl.Poly1305.Fields.limb", "Hacl.Impl.Poly1305.Fields.precomplen", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Poly1305.poly1305_update_vec", "Hacl.Impl.Poly1305.Fields.felem", "Hacl.Impl.Poly1305.get_acc", "Hacl.Impl.Poly1305.Fields.precomp_r", "Hacl.Impl.Poly1305.get_precomp_r" ]
[]
false
false
false
false
false
let poly1305_update_128_256 #s ctx len text =
let pre = get_precomp_r ctx in let acc = get_acc ctx in let h0 = ST.get () in poly1305_update_vec #s len text pre acc; let h1 = ST.get () in Equiv.poly1305_update_vec_lemma #(width s) (as_seq h0 text) (feval h0 acc).[ 0 ] (feval h0 (gsub pre 0ul 5ul)).[ 0 ]
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Vslw
val va_code_Vslw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
val va_code_Vslw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
let va_code_Vslw dst src1 src2 = (Ins (S.Vslw dst src1 src2))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 249, "start_col": 0, "start_line": 248 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand [@ "opaque_to_smt"] let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vand dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vand va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vand) (va_code_Vand dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vand dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vand dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vand dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vand (va_code_Vand dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vslw
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Vslw", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Vslw dst src1 src2 =
(Ins (S.Vslw dst src1 src2))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_code_Vsrw
val va_code_Vsrw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
val va_code_Vsrw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_code
let va_code_Vsrw dst src1 src2 = (Ins (S.Vsrw dst src1 src2))
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 278, "start_col": 0, "start_line": 277 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand [@ "opaque_to_smt"] let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vand dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vand va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vand) (va_code_Vand dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vand dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vand dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vand dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vand (va_code_Vand dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vslw [@ "opaque_to_smt"] let va_code_Vslw dst src1 src2 = (Ins (S.Vslw dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vslw dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vslw va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vslw) (va_code_Vslw dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vslw dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vslw dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vslw dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vslw (va_code_Vslw dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vsrw
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Machine_s.Ins", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Semantics_s.Vsrw", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_Vsrw dst src1 src2 =
(Ins (S.Vsrw dst src1 src2))
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vsrw
val va_codegen_success_Vsrw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vsrw : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vsrw dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 282, "start_col": 0, "start_line": 281 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand [@ "opaque_to_smt"] let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vand dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vand va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vand) (va_code_Vand dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vand dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vand dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vand dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vand (va_code_Vand dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vslw [@ "opaque_to_smt"] let va_code_Vslw dst src1 src2 = (Ins (S.Vslw dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vslw dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vslw va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vslw) (va_code_Vslw dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vslw dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vslw dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vslw dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vslw (va_code_Vslw dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vsrw [@ "opaque_to_smt"] let va_code_Vsrw dst src1 src2 = (Ins (S.Vsrw dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vsrw dst src1 src2 =
(va_ttrue ())
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_codegen_success_Vsl
val va_codegen_success_Vsl : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
val va_codegen_success_Vsl : dst:va_operand_vec_opr -> src1:va_operand_vec_opr -> src2:va_operand_vec_opr -> Tot va_pbool
let va_codegen_success_Vsl dst src1 src2 = (va_ttrue ())
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 311, "start_col": 0, "start_line": 310 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrd [@ "opaque_to_smt"] let va_code_Mfvsrd dst src = (Ins (S.Mfvsrd dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrd dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrd va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrd) (va_code_Mfvsrd dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrd dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrd dst src)) va_s0 in Vale.Arch.Types.hi64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrd dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrd (va_code_Mfvsrd dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mfvsrld [@ "opaque_to_smt"] let va_code_Mfvsrld dst src = (Ins (S.Mfvsrld dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mfvsrld dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mfvsrld va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mfvsrld) (va_code_Mfvsrld dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mfvsrld dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mfvsrld dst src)) va_s0 in Vale.Arch.Types.lo64_reveal (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mfvsrld dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mfvsrld (va_code_Mfvsrld dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_reg_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_reg_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrdd [@ "opaque_to_smt"] let va_code_Mtvsrdd dst src1 src2 = (Ins (S.Mtvsrdd dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrdd dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrdd va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Mtvsrdd) (va_code_Mtvsrdd dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrdd dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrdd dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrdd dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrdd (va_code_Mtvsrdd dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mtvsrws [@ "opaque_to_smt"] let va_code_Mtvsrws dst src = (Ins (S.Mtvsrws dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mtvsrws dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mtvsrws va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mtvsrws) (va_code_Mtvsrws dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Mtvsrws dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Mtvsrws dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mtvsrws dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mtvsrws (va_code_Mtvsrws dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vadduwm [@ "opaque_to_smt"] let va_code_Vadduwm dst src1 src2 = (Ins (S.Vadduwm dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vadduwm dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vadduwm va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vadduwm) (va_code_Vadduwm dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vadduwm dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vadduwm dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vadduwm dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vadduwm (va_code_Vadduwm dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vxor [@ "opaque_to_smt"] let va_code_Vxor dst src1 src2 = (Ins (S.Vxor dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vxor dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vxor va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vxor) (va_code_Vxor dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vxor dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vxor dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vxor dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vxor (va_code_Vxor dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vand [@ "opaque_to_smt"] let va_code_Vand dst src1 src2 = (Ins (S.Vand dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vand dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vand va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vand) (va_code_Vand dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vand dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vand dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vand dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vand (va_code_Vand dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vslw [@ "opaque_to_smt"] let va_code_Vslw dst src1 src2 = (Ins (S.Vslw dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vslw dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vslw va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vslw) (va_code_Vslw dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vslw dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vslw dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vslw dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vslw (va_code_Vslw dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vsrw [@ "opaque_to_smt"] let va_code_Vsrw dst src1 src2 = (Ins (S.Vsrw dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_Vsrw dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vsrw va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_Vsrw) (va_code_Vsrw dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vsrw dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vsrw dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Vsrw dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vsrw (va_code_Vsrw dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Vsl [@ "opaque_to_smt"] let va_code_Vsl dst src1 src2 = (Ins (S.Vsl dst src1 src2))
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src1: Vale.PPC64LE.Decls.va_operand_vec_opr -> src2: Vale.PPC64LE.Decls.va_operand_vec_opr -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_Vsl dst src1 src2 =
(va_ttrue ())
false
Vale.PPC64LE.InsVector.fst
Vale.PPC64LE.InsVector.va_wpProof_Vmr
val va_wpProof_Vmr : dst:va_operand_vec_opr -> src:va_operand_vec_opr -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Vmr dst src va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Vmr dst src) ([va_mod_vec_opr dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
val va_wpProof_Vmr : dst:va_operand_vec_opr -> src:va_operand_vec_opr -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Vmr dst src va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Vmr dst src) ([va_mod_vec_opr dst]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_Vmr dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g)
{ "file_name": "obj/Vale.PPC64LE.InsVector.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 37, "start_col": 0, "start_line": 31 }
module Vale.PPC64LE.InsVector open Vale.Def.Types_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Spec.Hash.Definitions open Spec.SHA2 friend Vale.PPC64LE.Decls module S = Vale.PPC64LE.Semantics_s #reset-options "--initial_fuel 2 --max_fuel 4 --max_ifuel 2 --z3rlimit 50" //-- Vmr [@ "opaque_to_smt"] let va_code_Vmr dst src = (Ins (S.Vmr dst src)) [@ "opaque_to_smt"] let va_codegen_success_Vmr dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Vmr va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Vmr) (va_code_Vmr dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (Ins (S.Vmr dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (Ins (S.Vmr dst src)) va_s0 in (va_sM, va_fM)
{ "checked_file": "/", "dependencies": [ "Vale.SHA.PPC64LE.SHA_helpers.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.PPC64LE.Decls.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.fsti.checked", "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.InsVector.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.PPC64LE.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Sel", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 4, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dst: Vale.PPC64LE.Decls.va_operand_vec_opr -> src: Vale.PPC64LE.Decls.va_operand_vec_opr -> va_s0: Vale.PPC64LE.Decls.va_state -> va_k: (_: Vale.PPC64LE.Decls.va_state -> _: Prims.unit -> Type0) -> Prims.Ghost ((Vale.PPC64LE.Decls.va_state * Vale.PPC64LE.Decls.va_fuel) * Prims.unit)
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Decls.va_operand_vec_opr", "Vale.PPC64LE.Decls.va_state", "Prims.unit", "Vale.PPC64LE.Decls.va_fuel", "FStar.Pervasives.Native.Mktuple3", "Vale.PPC64LE.QuickCode.va_lemma_norm_mods", "Prims.Cons", "Vale.PPC64LE.QuickCode.mod_t", "Vale.PPC64LE.QuickCode.va_mod_vec_opr", "Prims.Nil", "Prims._assert", "Vale.PPC64LE.Decls.va_state_eq", "Vale.PPC64LE.Decls.va_update_ok", "Vale.PPC64LE.Decls.va_update_operand_vec_opr", "Vale.PPC64LE.Decls.va_lemma_upd_update", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.tuple2", "Vale.PPC64LE.Machine_s.state", "Vale.PPC64LE.InsVector.va_lemma_Vmr", "Vale.PPC64LE.InsVector.va_code_Vmr" ]
[]
false
false
false
false
false
let va_wpProof_Vmr dst src va_s0 va_k =
let va_sM, va_f0 = va_lemma_Vmr (va_code_Vmr dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_vec_opr dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_vec_opr dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g)
false